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Abstract: The solution of a wide class of applied problems can be represented as an integral over
the trajectories of a random process. The process is usually modeled with the Monte Carlo method
and the integral is estimated as the average value of a certain function on the trajectories of this
process. Solving this problem with acceptable accuracy usually requires modeling a very large
number of trajectories; therefore development of methods to improve the accuracy of such algorithms
is extremely important. The paper discusses Monte Carlo method modifications that use some
classical results of the theory of cubature formulas (quasi-random methods). A new approach to the
derivation of the well known Koksma-Hlawka inequality is pointed out. It is shown that for high
(s > 5) dimensions of the integral, the asymptotic decrease of the error comparable to the asymptotic
behavior of the Monte Carlo method, can be achieved only for a very large number of nodes N.
It is shown that a special criterion can serve as a correct characteristic of the error decrease (average
order of the error decrease). Using this criterion, it is possible to analyze the error for reasonable
values of N and to compare various quasi-random sequences. Several numerical examples are
given. Obtained results make it possible to formulate recommendations on the correct use of the
quasi-random numbers when calculating integrals over the trajectories of random processes.

Keywords: Monte Carlo method; quasi-Monte Carlo method; Koksma-Hlawka inequality;
quasi-random sequences; stochastic processes

1. Introduction

Let ξ(t, ω) be a random process, t1 < t2 < . . . < tn are given time moments, and
Fn(t1, x1, . . . , tn, xn) = P(ξ(t1, ω) ≤ x1; . . . ; ξ(tn, ω) ≤ xn) are finite-dimensional distributions of
the process. The Monte Carlo method of modeling a process ξ(t, ω) usually consists of modeling its
finite-dimensional distributions. Extensive literature is devoted to the algorithms of such modeling
(for example, [1] and some cited sources). The methods developed in these papers allow us to express
realizations of a random vector Ξ = P(ξ(t1, ω); . . . ; ξ(tn, ω)) through a certain set of randomizations of
a random variable (α1, . . . , αM) uniformly distributed on [0, 1], where M ≥ n and, generally speaking,
these can be random.

Ultimately, the problem solution Φ is represented as the expectation of a certain function Ψ of a
random vector Ξ for selected finite values n and M. That means Φ = EΨ(Ξ), and the computational
process consists in multiple (N times) calculations of the independent realizations Ξj of the vector Ξ and
in estimation of Φ using the arithmetic mean EΨ(Ξ) ≈ 1/N ∑N

j=1 Ψ(Ξj). Let us notice that the value
M = Mj may depend on the number of the realization j. The maximum value M = m

j
axMj is called a

constructive dimension of the algorithm. Finally, recall that Ξj is expressed in terms of realizations of
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uniformly distributed numbers, i.e., Φ, the integral over the M-dimensional unit hypercube, has the
following form

Φ = EΨ(Ξ(α1, . . . , αM)) =
∫ 1

0
dα1 . . .

∫ 1

0
dαM.

Further, it is convenient to change the designations and talk about the calculation of the integral
J =

∫
Ds

f (X)dX using the s-dimensional unit hypercube, X = (x1, . . . , xs), Ds = {X : 0 ≤ xi ≤ 1;
i = 1, . . . , s}. The problem of calculating this integral using the Monte Carlo method is well known.
If it is estimated using the sum J ≈ 1/N ∑N

j=1 f (αj
1, . . . , α

j
s) , where α

j
i are independent realizations

of a random variable uniformly distributed on [0, 1], and f is a quadratically integrable function, then
for the error it is possible to construct a confidence interval of width O(N−1/2). At the same time,
a number of articles [2–4] based on the theory of numbers considerations, pointed out sequences
of s-dimensional vectors Y1, . . . , YN , for which the error J − 1/N ∑N

j=1 f (Yj) decreased as lnsN/N,
for functions that have the first partial derivative with respect to each variable. This result is obviously
almost

√
N times better than the Monte Carlo method. The sequences Y1, . . . , YN , possessing the

property mentioned above, are called quasi-random . Extensive literature is devoted to their properties
and applications (see, for example, [5] and the bibliography available there).

As a rule, the authors consider that quasi-random sequences are significantly better than the
pseudo-random sequences used in the Monte Carlo method. The legitimacy of such comparisons
is studied in detail below.

2. Koksma-Hlawka Inequality and Random Quadrature Formulas

One of the well-known approaches to constructing the sum

KN [ f ] =
N

∑
j=1

Aj f (Xj), (1)

where Aj are constants, Xj = (x(j)
1 , . . . , x(j)

s ) ∈ D ⊂ Rs, which is used in the integral
∫

D f (X)dX
calculation, is as follows. It is assumed that f ⊂ F belongs to a linear normed space of functions, the
error of the integration formula

RN [ f ] =
∫

D
f (X)dX− KN [ f ] (2)

is considered as a functional in this space and parameters of the formula (1) are Aj and Xj, j = 1, . . . , N
are chosen so as to minimize the norm of the functional [6].

This task is usually very difficult. It is enough to note that it is possible to obtain the explicit
expression of the above-mentioned functional norm only in a few particular cases. One of these cases
is Aj = 1/N, j = 1, . . . , N, D is a unit hypercube Ds = {X : 0 ≤ xl ≤ 1, l = 1, . . . , s} and F is
a space of functions of bounded variation in the Hardy-Krause sense. In this case one can use the
Koksma-Hlawka inequality [7,8] ∣∣RN [ f ]

∣∣ ≤ V( f ) · D∗(X1, . . . , XN), (3)

where V( f ) is the variation mentioned above, and D∗(X1, . . . , XN) is the error norm, which is called a
discrepancy in the non-Russian literature or a deviation in the Russian one. Sometimes it is also called
a star discrepancy. In the number-theoretical sense, this quantity characterizes the uniformity of the
sequences distribution and equals to

sup
X

∣∣S(X)− 1
N

A(X1, . . . , XN)
∣∣, (4)
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where S(X) is the volume of the multidimensional box ∆(X) = {Y : yl ≤ xl , l = 1, . . . , s}, and
A(X1, . . . , XN) is a number of points of sequences belonging to ∆(X).

Similar explanations regarding the value V( f ) can be found in Appendix A for this article. For
our purposes, it suffices to note that for N → ∞, one knows the upper bound for the asymptotic
behavior of D∗(X1, . . . , XN) [9], namely

D∗(X1, . . . , XN) ≤ O(
lnsN

N
). (5)

The authors of [2–4] indicate of the algorithms for constructing sequences X1, . . . , XN for which
equality is achieved in (5). These sequences are called quasi-random due to the formal similarity
of algorithms of quasi-random numerical integration with the Monte Carlo method of calculating
multiple integrals. As we have already said, the authors of numerous articles devoted to the study
and use of quasi-random numbers usually note that the Monte-Carlo method has an asymptotic error
decrease of the same order as O(N−1/2), while from (5) we can conclude that quasi-random methods
provide an error decrease as O(N−1), more precisely O(N−1+ε) for any arbitrarily small ε.

The proof of Inequality (3) given in the literature is quite large and complex. As we have already
noted, it can easily be obtained by means of functional analysis. For s = 2 we showed it in the
application. The general case simply requires more complex definitions. It can be noted that using the
theory of cubature formulas [1], one can obtain analogs of Inequality (3) for Sobolev functions and many
other classes of functions and specify sequences for these classes that have faster order of the error
decrease. However, at the same time, computational algorithms are usually significantly complicated.

Other important applications of classical computational mathematics arise while estimating the
error of quasi-random methods. The construction of the confidence interval in the Monte Carlo method
automatically gives an estimate of the error, but for the quasi-Monte Carlo in its pure form there is
only the Inequality (3), which is of little use when solving a specific problem. This difficulty can be
overcome by randomizing quasi-random points.

Suppose Y1, . . . , YN are quasi-random vectors of dimension s, and
−→
β1 , . . . ,

−→
βm are realizations

of vectors of the same dimension, uniformly distributed in Ds. The sum Sm,N( f ) =

1/m ∑m
l=1 1/N ∑N

k=1 f ({Yk +
−→
βl }) is an unbiased estimate of the integral

ESm,N( f ) =
∫

Ds
f (X)dX. (6)

The curly brackets denote the operation of taking the fractional part performed on the components
of the vector. The error for this randomized sum can be approximated using the central limit theorem.
The following statement is trivial

J ≈ 1
N

N

∑
k=1

f ({Yk +
−→
β }), (7)

where
−→
β is a vector uniformly distributed in Ds, is a random quadrature formula with one free node.

The theory of such formulas is given in detail in [1]. With the help of this theory, one can establish
for which class of functions the formula is exact. A number of papers consider other methods for
randomizing quasi-random numbers, known as scrambling methods.

3. Numerical Error Estimation Experiment: Monte Carlo and Quasi-Monte Carlo

In this paper we show that references to Inequality (3) when evaluating a computational algorithm
are not completely correct, at least for s > 5, and we suggest some correct approaches to determining
the asymptotical error decrease of the quasi-random methods. It can be immediately noted that in the
case of the Monte Carlo (MC) method, we are talking about the width of the confidence interval and
the asymptotic behavior in the central limit theorem is already seen for small N (N > 5, for example).
The situation is different for the expression (5). The multiplier lnsN plays a significant role already for
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s ≥ 4. The asymptotics of order O(N−1+ε) can be reached when N → ∞, but as follows from Table 1,
for s = 5 the rate of error decrease of the two methods becomes approximately equal with N12, for
s = 10, with N40, for s = 15 with N = 1065.

Table 1. Asymptotical error decrease.

s 5 10 15

N 106 1012 1014 106 1018 1040 106 1030 1065

lns N
N 0.5 10−5 10−8 105 10−2 10−21 1011 10−3 10−33

1√
N

10−3 10−6 10−8 10−3 10−9 10−20 10−3 10−15 10−33

The data given in Table 1 clearly confirm the unsuitability of Inequality (5) to show the advantages
of the quasi-Monte Carlo (QMC) method for calculating integrals of large multiplicity and, with
increasing multiplicity of the integral, this situation worsens. Many authors (for example, [10]) confirm
that the real error decrease for different values of N for s > 5 does not obey inequality (5), but behaves
like N−1+ε with 0 ≤ ε ≤ 1/2. Thus, one should speak about the quality of a particular quasi-random
sequence only for reasonable values of N, when the asymptotic behavior indicated by equality (3)
hasn’t been fulfilled yet and one should introduce a reasonable quality criterion only from empirical
considerations. First, we discuss the behavior of the integration error in some numerical examples.
Let f (X) be defined and integrable in the s-dimensional unit cube Ds and the integral

∫
Ds

f (X)dX is
calculated using the cubature formula (1).

Consider the integrals:

I1 =
∫

Ds
2ses/(e− 1)s

s

∏
i=1

xie−x2
i dX, I2 =

∫
Ds
(8/π)s

( s

∏
i=1

xi(1− xi)
)1/2

dX. (8)

I3 =
∫

Ds

s

∏
i=1

|4xi − 2|+ i
i + 1

dX, I4 =
∫

Ds

√
1/|

s

∑
i=1

(xi − 1/2)2 − 1/4|dX. (9)

The exact value of the integrals I1, I2, I3 are known, they are equal to 1 for all s. Table 2 shows the
absolute error of the QMC method, calculated for N = 106 and for the quasi-random Sobol (ErrS) and
Halton (ErrH) sequences.

Table 2. The absolute error of the quasi-Monte Carlo (QMC) method.

Ii I1 I2 I3

s 10 15 20 10 15 20 10 15 20

ErrS 10−4 10−4 10−3 10−6 10−4 10−4 10−7 10−6 10−6

ErrH 10−4 10−3 10−3 10−6 10−4 10−4 10−7 10−7 10−7

lns N
N 105 1011 1016 105 1011 1016 105 1011 1016

The obtained calculations lead to the following conclusions. The error values differ by no more
than one order of magnitude for the considered sequences. The well-known estimate lnsN/N cannot
serve as a reasonable estimate of the error in this case (see the last line in the Table 2). As already noted,
the practical application of quasi-Monte Carlo for large s is limited. The calculations of integrals by the
QMC method, the exact value of which is unknown, do not allow us to compare the accuracy of the
various quasi-sequences used among themselves.
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4. The Criterion of Decreasing Residual

We show that the use of the randomized quasi-Monte Carlo (RQMC) procedure allows us to
effectively estimate the error of the quasi-Monte Carlo method. Consider a new criterion, that will
allow us to judge about the error decrease depending on N, and will provide an opportunity to
compare the quality of various quasi-random integration methods.

As a quality criterion, we will use the average order of the error decrease.
Consider the error change interval [N1, N2] for some randomized quasi-random quadrature

formula. The average value for a given number of realizations N, N ∈ [N1, N2] is denoted α and we
will approximate R f (N) using the least squares method with the function y = a + b · N−α. The value
of α is called the average order of the error decrease. In the case when the exact value of the integral is
unknown we use the error estimate obtained by randomization.

Let us estimate the average order of the error decrease of the numerical integration for integrals
I4. The exact value of these integrals is not known. The calculations were carried out for n = 105

(the number of nodes) and M = 10 (the number of randomizations) for quasi-random sequences
of the Sobol and Halton method. Moreover, the total number of nodes is N = 106. The value
of random error R f (N) is approximated on the following intervals: ∆r1 = [99, 700, 99, 800], ∆r2 =

[99, 800, 99, 900], ∆r3 = [99, 900, 100, 000]. The results of the calculations are given in Tables 3 and 4,
where δ is the average order of the error decrease value on a given interval.

Table 3. The average decreasing order of the error α = α(∆) for the integral I4. Randomized
quasi-Monte Carlo (RQMC).

s = 15 s = 20

Method ∆r1 ∆r2 ∆r3 δ ∆r1 ∆r2 ∆r3 δ

RQMC, Sobol 0.84 0.85 0.87 0.85 0.95 1.0 1.0 0.98

RQMC, Halton 0.70 0.64 0.61 0.65 0.85 0.92 0.98 0.92

Table 4. The average decreasing order of the error α = α(∆) for the integral I1.

s = 15 s = 20

Method ∆r1 ∆r2 ∆r3 δ ∆r1 ∆r2 ∆r3 δ

RQMC, Sobol 0.59 0.61 0.61 0.61 0.65 0.63 0.52 0.47

RQMC, Halton 0.61 0.61 0.60 0.61 0.53 0.52 0.52 0.60

Conducted calculations show the relative stability of the estimate of α for changing N1 and N2.

5. Conclusions

Error analysis of numerical methods plays a major role in the choice of algorithms for solving
a problem. The main goals of this article are to propose a new quality criterion for algorithms for
calculating multidimensional integrals; point out the incorrect use of the Koksma-Hlawka inequality
when comparing the asymptotic error behavior of the Monte Carlo and the quasi-Monte Carlo methods
for calculating integrals; and propose a new quality criterion for calculation algorithm integrals with
large multiplicity.

This will allow, in particular, to choose the ratio between the number of random and quasi-random
components of the nodes used in quadrature formulas, when their number (constructive dimension) is
very large. The results obtained are confirmed by numerical examples. It makes possible to judge the
comparative quality of various quasi-random sequences in some cases.

The results obtained, can be useful in solving other problems (for example, optimization problems).
However, this requires separate studies that are beyond the scope of this work.
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Appendix A

For the reader’s convenience a brief proof of the inequality Koksma-Hlawki in the
two-dimensional case is given.

Let f (x, y) have integrable derivatives ∂ f (x, 1)/∂x, ∂ f (1, y)/∂y and ∂2 f (x, y)/∂x∂y in unit square
D2 = {0 ≤ x ≤ 1; 0 ≤ y ≤ 1}. Then we have

f (x, y) = f (1, 1) +
∫ 1

x
f ′x(u, 1)du +

∫ 1

y
f ′y(1, v)dv−

∫ 1

x

∫ 1

y
f ′′xy(u, v)dudv.

Elementary transformations allow to obtain from

RN [ f ] =
∫

D2

f (x, y)dxdy− 1
N

N

∑
j=1

f (xj, yj)

the expression

RN [ f ] =
∫ 1

0
f ′x(u, 1)[−u +

1
N ∑ Θ(xj − u)]du

+
∫ 1

0
f ′y(1, v)[−v +

1
N ∑ Θ(yj − v)]dv

+
∫ 1

0

∫ 1

0
f ′′xy(u, v)[uv− 1

N ∑ Θ(xj − u)Θ(yj − v)]dudv, (A1)

where

Θ(z) =


1 z < 0
0 z > 0
1/2 z = 0.

If we denote

V( f ) =
∫ 1

0
| f ′x(u, 1)|du +

∫ 1

0
| f ′y(1, v)|dv +

∫ 1

0

∫ 1

0
| f ′′xy(u, v)|dudv,

that we have∣∣RN [ f ]
∣∣ ≤ V( f ) ·max(K1(x1, . . . , xN), K1(y1, . . . , yN), K2(x1, y1; . . . ; xN , yN),

where
K1(xj, . . . , xN) = sup

u
|u− 1

N ∑ Θ(xj − u)|,

K1(yj, . . . , yN) = sup
v
|v− 1

N ∑ Θ(yj − u)|,

K2 = sup
uv
|uv− 1

N ∑ Θ(xj − u)Θ(yj − v)|.

However, as you can see,

K1(x1, . . . , xN) ≤ K2(x1, y1; . . . ; xN , yN), K1(y1, . . . , yN) ≤ K2(x1, y1; . . . ; xN , yN)
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and
∣∣RN [ f ]

∣∣ ≤ V( f ) · K2(x1, y1; . . . ; xN , yN), K2(x1, y1; . . . ; xN , yN) and there is discrepance of a
sequence of points.

In general, D∗(X1, . . . , XN) and V( f ) are defined as follows

D∗[ f ] = sup
x1,··· ,xs

∣∣ s

∏
l=1

xl −
1
N

A(X1, . . . , XN)]
∣∣,

here
s

∏
l=1

xl is the volume of the hyperparallelepiped Γ = {Y : 0 ≤ yl ≤ xl , l = 1, . . . , s}, and

A(X1, . . . , XN) is the number of sequence points X1, · · · , XN , belonging to this parallelepiped.

References

1. Ermakov, S.M. Monte Carlo Method and Related Questions; Fizmatlit: Moscow, Russia, 1975. (In Russian)
2. Halton, J.H. On the Efficiency of Certain Quasi-random Sequence of Points Inevaluating Multi-dimensional

Integrals. Numer. Math. 1960, 1988, 84–90. [CrossRef]
3. Sobol, I.M. Multidimensional Quadrature Formulas and Haar Functions; Nauka: Moscow, Russia, 1969.

(In Russian)
4. Korobov, N.M. Number-Theoretic Methods in Approximate Analysis; MZNMO: Moscow, Russia, 2004.

(In Russian)
5. Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling; Springer: New York, NY, USA, 2009.
6. Sobolev, S.L. Introduction to the Theory of Cubature Formulas; Nauka: Moscow, Russia, 1974. (In Russian)
7. Koksma, J.F. Een algemeene stelling inuit de theorie der gelijkmatige verdeelingmodulo 1. Math. (Zutphen B)

1942, 11, 7–11.
8. Hlawka, E. Discrepancy and Riemann Integration. In Studies in Pure Mathematics; Academic Press: London,

UK, 1971; pp. 21–129.
9. Kuipers, L; Niederreiter, H. Uniform Distribution of Sequences; John Wiley and Sons: New York, NY, USA, 1974.
10. Levitan, Y.L.; Markovich, N.I.; Rozin, S.R.; Sobol, I.M. On quasi-random sequences for numerical calculations.

Zh. Vychisl. Math Mat. Phys. 1988, 28, 755–759.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01386213
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Koksma-Hlawka Inequality and Random Quadrature Formulas
	Numerical Error Estimation Experiment: Monte Carlo and Quasi-Monte Carlo 
	The Criterion of Decreasing Residual
	Conclusions
	
	References

