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Abstract

:

The primary objective of this manuscript is to obtain the approximate analytical solution of Camassa–Holm (CH), modified Camassa–Holm (mCH), and Degasperis–Procesi (DP) equations with time-fractional derivatives labeled in the Caputo sense with the help of an iterative approach called fractional reduced differential transform method (FRDTM). The main benefits of using this technique are that linearization is not required for this method and therefore it reduces complex numerical computations significantly compared to the other existing methods such as the perturbation technique, differential transform method (DTM), and Adomian decomposition method (ADM). Small size computations over other techniques are the main advantages of the proposed method. Obtained results are compared with the solutions carried out by other technique which demonstrates that the proposed method is easy to implement and takes small size computation compared to other numerical techniques while dealing with complex physical problems of fractional order arising in science and engineering.
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1. Introduction


Nonlinear phenomena are of significant importance in natural sciences and engineering. Most of our real-life problems are modeled through the use of nonlinear phenomena. In the present years, fractional calculus has become widespread because of its applications in mathematical biology, electrochemistry, and physics [1,2,3,4,5,6,7,8]. For example, the earthquake model [9] and traffic model [10] with fractional derivatives have been demonstrated. However, sometimes, it is challenging to find the exact and numerical solutions of these models. During the last few decades, several analytical and numerical approaches have been established for the solution of such types of models such as homotopy perturbation method (HPM) [10,11], homotopy perturbation transform method [12,13], homotopy analysis method (HAM) [14,15], Adomian decomposition method (ADM) [16,17], sine-cosine method [18] and transform method [19]. Recently, multi-dimensional diffusion equation of fractional order has been solved by Kumar et al. [20] by modified HPM (m-HPM). In this approach, parameter p has been presented to extend the solution in series form, whereas the nonlinear terms can be extended by using He’s polynomial [21]. It has been observed that the computation of He’s polynomial is complicated, and the main disadvantage of this approach is its complexity in that regard and enormous calculations.



Among all the listed method, FRDTM plays a vital role because it takes small size computation, easy to implement as compared to other techniques. It was first introduced and developed by Keskin and Oturanc [22]. It is a beneficial and powerful semi-analytical approach. By implementation of the FRDTM, many physical nonlinear problems can be solved easily. In this article, the nonlinear time-fractional Camassa–Holm (CH) equation is taken as [23,24]


∂αψ∂tα+2c∂ψ∂x−∂3ψ∂x2∂t+3ψ∂ψ∂x=2∂ψ∂x∂2ψ∂x2+ψ∂3ψ∂x3,for t>0, x∈ℜ, 0<α≤1,



(1)




with initial condition (IC)


ψ(x,0)=g(x),



(1a)







The modified Camassa–Holm (mCH) and Degasperis–Procesi (DP) equations are derived from modified b-equation [25] which is


∂ψ∂t−∂3ψ∂x2∂t+(b+1)ψ2∂ψ∂x=b∂ψ∂x∂2ψ∂x2+ψ∂3ψ∂x3



(1b)




where b is a positive integer.



The time-fractional mCH and time-fractional DP are derived from fractional modified b-equation which may be written as


∂αψ∂tα−∂3ψ∂x2∂t+(b+1)ψ2∂ψ∂x=b∂ψ∂x∂2ψ∂x2+ψ∂3ψ∂x3



(1c)







By substituting b = 2, b = 3 into Equation (1c), we obtain the time-fractional mCH equation and time-fractional DP equation, respectively. So, the nonlinear time-fractional mCH equation is written as [11,24,25]


∂αψ∂tα−∂3ψ∂x2∂t+3ψ2∂ψ∂x=2∂ψ∂x∂2ψ∂x2+ψ∂3ψ∂x3, for t>0, x∈ℜ, 0<α≤1



(2)




with IC


ψ(x,0)=p(x),



(2a)




and the nonlinear time-fractional DP equation is given as [11,24,25]


∂αψ∂tα−∂3ψ∂x2∂t+4ψ2∂ψ∂x=3∂ψ∂x∂2ψ∂x2+ψ∂3ψ∂x3, for t>0, x∈ℜ, 0<α≤1



(3)




with IC


ψ(x,0)=f(x),



(3a)







These three models are the unidirectional shallow water waves propagation over a flat bottom. Equation (1) is a shallow water wave equation and was initially determined as an estimation to the incompressible Euler equation and observed to be integrable with a Lax pair [26]. Equation (3) is the shallow-water dynamics model and found to be completely integrable. All the equations possess not only the peakon solutions but also the multi-peakon solutions [26]. Recently, Degasperis and Gaeta [27] have been examined the behavior of the DP equation with the help of the bifurcation theory of dynamical system. To the best of authors’ knowledge, for the first time, the fractional-order three relevant wave equations have been studied by the present authors analytically using FRDTM.



This article is prepared as follows: In Section 2, the essential features of fractional calculus related to the titled problem are included. Fundamental theories of FRDTM are described in Section 3. In Section 4, Section 5 and Section 6, implementations of FRDTM on CH, mCH, and DP equation are incorporated respectively. Numerical results and discussion are discussed in Section 7. Lastly, a conclusion is given in Section 8.




2. Preliminaries


Definition 1.

The operatorDxαofu(x)in Riemann-Liouville (R-L) sense is


written asDαu(x)={dmdxmu(x),                    α=m1Γ(m−α)dmdxm∫0xu(t)(x−t)α−m+1dt,   m−1<α<m



(4)




wherem∈Z+,α∈R+.





Definition 2.

The operatorJxαofu(x)in R-L sense is described as


Jαu(x)=1Γ(α)∫0x(x−t)α−1u(t) dt,t>0, α>0.



(5)







Following Podlubny [1] we may have


Jαtn=Γ(n+1)Γ(n+α+1)tn+α.



(6)






Dαtn=Γ(n+1)Γ(n−α+1)tn−α



(7)









Definition 3.

The operatorDxαofu(x)in the Caputo sense is defined as


Dαu(x)={1Γ(m−α)∫0xum(t)(x−t)α−m+1dt,  m−1<α<m,dmdtmu(x),                 α=m



(8)









Definition 4.



(a) DtαJtαf(t)=f(t),



(9)






(b) JtαDtαf(t) =f(t)−∑k=0mf(k)(0+)tkk!, for t>0 and m−1<α≤m ,



(10)










3. FRDTM


Definition 5.

Fractional reduced differential transform of an analytic and continuously differentiable functionu(x,t)is defined by


Uk(x)=1Γ(α k+1)[Dtα ku(x,t)]t=t0 for k=0, 1, 2, …



(11)







Taking the inverse transform ofUk(x)is defined as


u(x,t)=∑k=0∞Uk(x)(t−t0)αk



(12)







From Equations (11) and (12), we have


u (x,t)=∑k=0∞1Γ(α k+1)[Dtαku(x,t)]t=t0(t−t0)α k



(13)







In particular, att0=0, we get


u(x,t)=∑k=0∞Uk(x)tαk=∑k=0∞(1Γ(αk+1)){Dtαku(x,t)}t=0tαk



(14)









As such Table 1 incorporates fractional reduced differential transform of few standard functions.



In order to explain the concept of FRDTM, let us consider the following equation in the operator form as


Lψ(x,t)+Rψ(x,t)+Nψ(x,t)=h(x,t),



(15)




with IC


ψ(x,0)=g(x),



(16)




where L=∂α∂tα, R, N are linear, nonlinear operators and h(x,t) is an inhomogeneous source term.



Using Table 1 and Equation (11), Equation (15) reduces to


Γ(1+α k+α)Γ(1+α k)ψk+1(x)=Hk(x)−Rψk(x)−Nψk(x), for k=0,1,2…



(17)




where ψk(x) and Hk(x) are the transformed forms of ψ(x,t) and h(x,t), respectively.



Appling FRDTM on IC, we obtain


ψ0(x)=g(x),



(18)







Using Equations (17) and (18), ψk(x) for k=1, 2, 3, … can be determined.



Then by taking the inverse transformation of {ψk(x)}k=0n gives n-term approximate solution as


ψn(x,t)=∑k=0nψk(x) tαk,



(19)







So, the analytical result of Equation (15) is written as ψ(x,t)=limn→∞ψn(x,t).




4. Implementation of FRDTM on the CH Equation


The time-fractional CH Equation (1) in an operator form as


Dtαψ+2c Dxψ−Dxxtψ+3ψ Dxψ=2Dxψ Dxxψ+ψ Dxxxψ, 0<α≤1,



(20)




with IC


ψ(x,0)=g(x)



(21)







Applying FRDTM on Equations (20) and (21), the following recurrence relation is obtained as


{Γ(1+αk+α)Γ(1+αk)ψk+1(x)=2∑i=0k(∂ψi(x)∂x∂2ψk−i(x)∂x2)+∑i=0k(ψi(x)∂3ψk−i(x)∂x3)−2c∂ψk(x)∂x+∂3ψk(x)∂x2∂t−3∑i=0k(ψi(x)∂ψk−i(x)∂x)ψ0(x)=g(x)



(22)







Solving Equation (22) we obtain


ψ1(x)=1Γ(1+α)(g(x)g(3)(x)−2(c+32g(x)−g(2)(x))g(1)(x)).



(23)






ψ2(x)=1Γ(1+2α)[(g(x))2g(6)(x)+7g(1)(x)g(x)g(5)(x)+g(4)(x)(−4cg(x)−6g(x)2+13g(x)g(2)(x)+8(g(1)(x))2)+8g(x)(g(3)(x))2−12g(1)(x)(g(3)(x))2(c+114g(x)−116g(2)(x))+4(g(2)(x))3+(−21g(x)−8c)(g(2)(x))2−30(g(1)(x))2g(2)(x)+4g(2)(x)(c+32g(x))2+12(g(1)(x))2(c+32g(x))].



(24)







Continuing the procedure, likewise, the rest of the components can be evaluated. So the approximate analytical solution of Equation (20) is


ψ(x,t)=∑n=0∞ψn(x)tnα.



(25)








5. Implementation of FRDTM on the mCH Equation


Consider Equation (2) in an operator form as


Dtαψ−Dxxtψ+3ψ2Dxψ=2Dxψ Dxxψ+ψ Dxxxψ



(26)




with IC


ψ(x,0)=p(x),



(27)







Using FRDTM on Equations (26) and (27), the following recurrence relation is obtained as


{Γ(1+α k+α)Γ(1+α k)ψk+1(x)=2∑i=0k(∂ψi(x)∂ x∂2ψk−i(x)∂ x2)+∑i=0k(ψi∂3ψk−i(x)∂ x3)+∂3ψk(x)∂x2∂t−3∑i=0k∑j=0i(ψjψi−j∂ψk−i(x)∂x)ψ0(x)=p(x)



(28)







Solving the recurrence relation Equation (28), we get


ψ1(x)=1Γ(1+α)[p(x)p(3)(x)−3(p(x))2p(1)(x)+2p(2)(x)p(1)(x)].



(29)






ψ2(x)=1Γ(1+2α)[(p(x))2p(6)(x)+7p(1)(x)p(x)p(5)(x)+p(4)(x)(−6(p(x))3+13p(x)p(2)(x)+8(p(1)(x))2)+8p(x)(p(3)(x))2−48p(1)(x)(p(3)(x))2((p(x))2−1124p(2)(x))+4(p(2)(x))3+(−30p(x))(p(2)(x))2+9(p(x))2p(2)(x)−96p(x)(p(1)(x))2p(2)(x)+36(p(x))3(p(1)(x))2−12(p(1)(x))4]



(30)







Similarly, the rest of the components ψ3,ψ4,… can be evaluated. So the approximate analytical solution of Equation (26) is


ψ(x,t)=∑n=0∞ψn(x)tnα,



(31)








6. Implementation of FRDTM on the DP Equation


Considering Equation (3) in operator form, we get


Dtαψ−Dxxtψ+4ψ2Dxψ=3Dxψ Dxxψ+ψ Dxxxψ,



(32)




with IC


ψ(x,0)=f(x)



(33)







Applying FRDTM to Equation (32), we obtain


{Γ(1+α k+α)Γ(1+α k)ψk+1(x)=3∑i=0k(∂ψi(x)∂ x∂2ψk−i(x)∂ x2)+∑i=0k(ψi∂3ψk−i(x)∂ x3)+∂3ψk(x)∂ x2∂ t−4∑i=0k∑j=0i(ψjψi−j∂ψk−i(x)∂ x)



(34)







Applying FRDTM to Equation (33), we get


ψ0(x)=f(x).



(35)







Substituting Equation (35) in Equation (34), the following recursive values of (ψn)n=1∞ are obtained


ψ1(x)=1Γ(1+α)[f(x)f(3)(x)−4(p(x))2p(1)(x)+3p(2)(x)p(1)(x)].



(36)






ψ2(x)=1Γ(1+2α)[(f(x))2f(6)(x)+9f(1)(x)f(x)f(5)(x)+f(4)(x)(−8(f(x))3+18f(x)f(2)(x)+15(f(1)(x))2)+11f(x)(f(3)(x))2−72f(1)(x)(f(3)(x))((f(x))2−58f(2)(x))+9(f(2)(x))3−48(f(x))2(f(2)(x))2+16(f(x))4f(2)(x)−168f(x)(f(1)(x))2f(2)(x)+64(f(x))3(f(1)(x))2−24(f(1)(x))4].



(37)







Continuing in this manner ψ3,ψ4,… can be evaluated. So the approximate analytical solution of Equation (32) is


ψ(x,t)=∑n=0∞ψn(x)tnα



(38)








7. Results and Discussion


In this section, approximate solutions of displacement ψ(x,t)  for different values of α are calculated for different values of t and x at fixed c=0.005 and k=0.5. In Section 4, IC [24,28] is considered as ψ(x,0)=g(x)=(k+c)e−|x|−c for showing the nature of the displacements of CH Equation (1). The solutions ψ(x,t)  for different values of t, x and α are depicted in Figure 1a–d for the CH equation. In Section 5, we considered the IC [11] as ψ(x,0)=p(x)=−2sech2(x2), a particular case for viewing the behavior of the displacements. The numerical results of ψ(x,t)  for various values of t, x and α are portrayed in Figure 2a–d for the mCH Equation (2). Similarly, in Section 6, the IC [11] is assumed as ψ(x,0)=f(x)=−158sech2(x2) for presenting the nature of the displacements. The numerical solutions ψ(x,t)  for various values of t, x and α are illustrated in Figure 3a–d for the DP Equation (3). Also, comparison tests have been included among the existing solution and the results of Zhang et al. [11] and Zhang et al. [28] in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9. One may see from Table 2, Table 3 and Table 4 that approximate solutions solved by FRDTM are quite close to the solutions solved by Zhang et al. [11,28].




8. Conclusions


In this article, FRDTM is successfully implemented for solving time-fractional CH, mCH, and DP equations with suitable initial conditions. Solutions are obtained without any transformation and perturbation. Three test problems were performed to validate the precision and efficacy of the current method. Also, it was seen that the obtained results are a good agreement with the solution obtained by Zhang et al. [11,28]. The main benefit of this approach is that linearization is not required for this method and therefore it reduces complex numerical computations significantly compared to the other existing methods such as the perturbation technique, DTM, and ADM. Small size computations over other techniques are the main advantages of the proposed method.
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Figure 1. The solution plots of ψ(x,t) at (a) α=0.5 (b) α=0.25 (c) α=0.75 (d) α=1 with c=0.005 and k=0.5 for Equation (25). 
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Figure 2. Plots of ψ(x,t) with respect to x and t at (a) α=0.5 (b) α=0.25 (c) α=0.75 (d) α=1 for Equation (31). 
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Figure 3. Plots of ψ(x,t) with respect to x and t at (a) α=0.5 (b) α=0.25 (c) α=0.75 (d) α=1 for Equation (38). 
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Figure 4. Comparison plots of ψFRDTM and ψHPM of Camassa–Holm (CH) equation for −2≤x≤2. (a) c=0.005, k=0.5, t=0.05, α=1; (b) c=0.005, k=0.5, t=0.1, α=1. 






Figure 4. Comparison plots of ψFRDTM and ψHPM of Camassa–Holm (CH) equation for −2≤x≤2. (a) c=0.005, k=0.5, t=0.05, α=1; (b) c=0.005, k=0.5, t=0.1, α=1.
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Figure 5. The solution plots of CH equation at α=1 (a) two-terms FRDTM solution (b) homotopy perturbation method (HPM) solution [28]. 
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Figure 6. Comparison plots of ψFRDTM and ψHPM of modified Camassa–Holm (mCH) equation for −10≤x≤10. (a) t=0.05, α=1; (b) t=0.1, α=1. 
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Figure 7. The solution plots of mCH equation at α=1 (a) two-terms FRDTM solution (b) HPM solution [11]. 
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Figure 8. Comparison plots of ψFRDTM and ψHPM [11] of Degasperis–Procesi (DP) equation for −10≤x≤10. (a) t=0.05, α=1; (b) t=0.1, α=1. 
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Figure 9. The solution plots of DP equation at α=1. (a) two-terms FRDTM solution (b) HPM solution [11]. 
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Table 1. The major operation of fractional reduced differential transform method (FRDTM) [22].






Table 1. The major operation of fractional reduced differential transform method (FRDTM) [22].





	Functional Form
	Transformed Form





	g(x,t)
	Gk(x)=1k![∂k∂tkg(x,t)]



	w(x,t)=g (x,t)+h (x,t)
	Wk(x)=Gk(x)+Hk(x)



	w(x,t)=α g(x,t)
	Wk(x)=α  Gk(x)



	w(x,t)=g(x,t)h(x,t)
	Wk(x)=∑r=0kGk−r(x)Hr(x)



	w(x,t)=∂r∂trg(x,t)
	Wk(x)=(k+r)!k!Gk+r(x)



	w(x,t)=∂∂xg(x,t)
	Wk(x)=∂∂xGk(x)



	w(x,t)=Dtpα(g(x,t))
	Wk(x)=Γ(1+(k+p)α)Γ(1+kα)Gk+p










[image: Table]





Table 2. The two term FRDTM approximation results of CH equation with HPM [28] for α=1.






Table 2. The two term FRDTM approximation results of CH equation with HPM [28] for α=1.





	
(x,t)

	
ψHPM [28]

	
FRDTM

(n = 0)

	
FRDTM

(n = 1)

	
FRDTM

(n = 2)

	
FRDTM

(n = 3)






	
(0.1, 0.05)

	
0.47479025

	
0.45194289

	
0.45194289

	
0.45194289

	
0.45194289




	
(0.2, 0.05)

	
0.42913217

	
0.40845903

	
0.40845903

	
0.40845903

	
0.40845903




	
(0.4, 0.05)

	
0.35043736

	
0.33351162

	
0.33351162

	
0.33351162

	
0.33351162




	
(0.8, 0.05)

	
0.23325678

	
0.22191112

	
0.22191112

	
0.22191112

	
0.22191112




	
(−0.2, 0.05)

	
0.42913217

	
0.40845903

	
0.40845903

	
0.40845903

	
0.40845903




	
(−0.4, 0.05)

	
0.35043736

	
0.33351162

	
0.33351162

	
0.33351162

	
0.33351162




	
CPU time

	
0.053s

	
0.063s

	
0.078s

	
0.124s
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Table 3. The two term FRDTM approximation results of mCH equation with HPM [11] for α=1






Table 3. The two term FRDTM approximation results of mCH equation with HPM [11] for α=1





	
(x,t)

	
ψHPM [11]

	
FRDTM

(n = 0)

	
FRDTM

(n = 1)

	
FRDTM

(n = 2)

	
FRDTM

(n = 3)






	
(8, 0.05)

	
−0.00268298

	
−0.00268190

	
−0.00268297

	
−0.00268298

	
−0.00268298




	
(9, 0.05)

	
−0.00098718

	
−0.00098703

	
−0.00098718

	
−0.00098718

	
−0.00098718




	
(10, 0.05)

	
−0.00036318

	
−0.00036316

	
−0.00036318

	
−0.00036318

	
−0.00036318




	
(8, 0.1)

	
−0.00268406

	
−0.00268105

	
−0.00268405

	
−0.00268406

	
−0.00268406




	
(9, 0.1)

	
−0.00098732

	
−0.00098703

	
−0.00098732

	
−0.00098732

	
−0.00098732




	
(10, 0.1)

	
−0.00036320

	
−0.00036316

	
−0.00036320

	
−0.00036320

	
−0.00036320




	
CPU time

	
0.063 s

	
0.093 s

	
0.078 s

	
0.094 s
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Table 4. The two term FRDTM approximation results of DP equation with HPM [11] for α=1






Table 4. The two term FRDTM approximation results of DP equation with HPM [11] for α=1





	
(x,t)

	
ψHPM [11]

	
FRDTM

(n = 0)

	
FRDTM

(n = 1)

	
FRDTM

(n = 2)

	
FRDTM

(n = 3)






	
(0, 0)

	
−1.875

	
−1.8750

	
−1.875

	
−1.875

	
−1.875




	
(0.2, 0.2)

	
−2.1311490

	
−1.8563742

	
−2.1311490

	
−2.1311490

	
−2.1311490




	
(0.4, 0.4)

	
−2.8273737

	
−1.8019555

	
−2.8273737

	
−2.8273737

	
−2.8273737




	
(0.8, 0.8)

	
−4.7337056

	
−4.7337056

	
−4.7337056

	
−4.7337056

	
−4.7337056




	
(−0.2, 0.2)

	
−1.5815995

	
−1.8563742

	
−1.5815995

	
−1.5815995

	
−1.5815995




	
(−0.4, 0.4)

	
−0.7765374

	
−1.8019555

	
−0.7765374

	
−0.7765374

	
−0.7765374




	
CPU time

	
0.01 s

	
0.016 s

	
0.062 s

	
0.078 s
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