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Abstract: In this paper, we aim to obtain fixed-point results by merging the interesting fixed-point
theorem of Pata and Suzuki in the framework of complete metric space and to extend these results by
involving admissible mapping. After introducing two new contractions, we investigate the existence
of a (common) fixed point in these new settings. In addition, we shall consider an integral equation
as an application of obtained results.
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1. Introduction and Preliminaries

For the solution of several differential/fractional/integral equations, fixed-point theory plays a
significant role. In such investigations, usually well-known Banach fixed-point theorems are sufficient
to provide the desired results. In the case of the inadequacy, the researcher in the fixed-point theory
proposes some extension of the Banach contraction principle. Among them, we recall one of the
significant theorems given by Popescu [1] inspired from the notion of C-condition defined by Suzuki [2].

Definition 1 (See [3]). Let T be a self-mapping on a metric space (X, d). It is called C-condition if

1
2

d(κ, Tκ) ≤ d(κ, y) implies that d(Tκ, Ty) ≤ d(κ, y), ∀κ, y ∈ X.

Indeed, by using the notion of C-condition, Suzuki [2] extended the famous Edelstein Theorem.
More precisely, For a self-mapping T on a compact metric space (X, d), if T is C-condition and the
inequality d(Tκ, Ty) < d(κ, y), for all κ 6= y, then T possesses a unique fixed point.

Popescu [1] considered Bogin-type fixed-point theorem involving the notion of C-condition in a
complete metric space as follows:

Theorem 1. Let a self-mapping T on a complete metric space (X, d) satisfy the following condition:

1
2

d(κ, Tκ) ≤ d(κ, y) (1)

implies
d(Tκ, Ty) ≤ ad(κ, y) + b[d(κ, Tκ) + d(y, Ty)] + c[d(κ, Ty) + d(y, Tκ)] (2)

where a ≥ 0, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point.
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Another outstanding generalization of Banach mapping principle was given by Pata [4].
Before giving the result of Pata [4], we fix some notations:

For an arbitrary point κ0 in a complete metric space (X, d), we shall consider a functional

‖κ‖ = d(κ,κ0), ∀κ ∈ X,

that will be called “the zero of X”. In addition, ψ : [0, 1]→ [0, ∞) will be a fixed increasing function
that is continuous at zero, with ψ(0) = 0.

Theorem 2 (See [4]). Let T be a self-mapping on a metric space (X, d). Suppose that β ∈ [0, α] Λ ≥ 0 and
α ≥ 1 are fixed constants. A self-mapping T possesses a unique fixed point if

d(Tκ, Ty) ≤ (1− ε)d(κ, y) + Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖]β ,

holds for all κ, y ∈ X and for every ε ∈ [0, 1].

This theorem has been extended, modified, and generalized by several authors, e.g., [5–16].
The main goal of this paper is to introduce new contractions that are inspired from the results of

Suzuki [2], Popescu [1], and Pata [4]. More precisely, our new contraction not only merges these two
successful generalization Banach contractions, but also extends the structure by involving α-admissible
mappings in it. After that, we aim to investigate the existence and uniqueness of this new contraction
in the context of complete metric spaces.

For this purpose, we recall some basic notions and results from recent literature.

Definition 2 ([17]). Let X 6= ∅ and α : X× X → [0, ∞) be an auxiliary function. A self-mapping T on X is
called α-orbital admissible if

α(κ, Tκ) ≥ 1 implies that α(Tκ, T2κ) ≥ 1, for any κ ∈ X.

Lemma 1 (See[18]). Let {pn} be a sequence on a metric space (X, d). Suppose that the sequence {d(pn+1, pn)}
is nonincreasing with

lim
n→∞

d(pn+1, pn) = 0,

If {pn} is not a Cauchy sequence then there exists a δ > 0 and two strictly increasing sequences {mk} and
{nk} in N such that the following sequences tend to δ :

d(pmk , pnk ), d(pmk , pnk+1), d(pmk−1 , pnk ), d(pmk−1 , pnk+1), d(pmk+1 , pnk+1),

as k→ ∞.

2. Main Results

We start with the definition of the α-Pata–Suzuki contraction:

Definition 3. Let (X, d) be a metric space and let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed constants.
A self-mapping T, defined on X, is called α-Pata–Suzuki contraction if for every ε ∈ [0, 1] and all x, y ∈ X,
satisfies the following condition

(i) T is an α-orbital admissible mapping
(ii)

1
2

d(x, T x) ≤ d(x, y)

implies
α(x, T x)α(y, T y)d(T x, T y) ≤ P(x, y)



Mathematics 2019, 7, 720 3 of 11

where

P(x, y) = (1− ε)max
{

d(x, y), d(x, T x), d(y, T y), 1
2 [d(x, T y) + d(y, T x)]

}
+Λ(ε)αψ(ε) [1 + ‖x‖+ ‖y‖+ ‖T x‖+ ‖T y‖]β .

This is the first main result of this paper.

Theorem 3. Let (X, d) be a metric space and T be a self-mapping on X. If

(i) T on X is α-Pata–Suzuki contraction;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x as n→ ∞, then α(xn, x) ≥ 1

for all n, we have α(x, T x) ≥ 1;
(iv) α(x∗, T x∗) ≥ 1 for all x∗ ∈ Fix(T ), where Fix(T ) := {x ∈ X : Tx = x}, then T has a fixed

point z ∈ X.

Proof. Due to assumptions of the theorem, there is x0 ∈ X so that α(x0, T x0) ≥ 1. In addition, we set
‖x‖ = d(x, x0), ∀x ∈ X. Since T is an α-orbital admissible mapping, we have

α(T x0, T 2x0) ≥ 1.

and iteratively, we have
α(T nx0, T n+1x0) ≥ 1 for each n ∈ N. (3)

Starting at this point x0 we shall construct an iterative sequence {xn} by xn = T nx0 for
n = 1, 2, 3, · · · . Here, we assume that consequent terms are distinct. Indeed, if there exists k0 ∈ N
such that

T k
0 x0 = xk0 = xk0+1 = T k0+1x0 = T (T kx0) = T (xk0),

then, xk0 forms a fixed point. To avoid from the trivial case, we suppose that

xn 6= xn+1 for all n = 1, 2, 3, · · · .

To prove that the sequence {d(xn, xn+1)} is decreasing, suppose on the contrary that

d(xn, xn+1) = max{d(xn, xn+1), d(xn, xn−1)}.

Since 1
2 d(xn−1, xn) ≤ d(xn−1, xn) and since T is a α-Pata–Suzuki contraction, we find that

d(xn, xn+1) = d(T xn−1, T xn)

≤ α(xn−1, T xn−1)α(xn, T xn)d(T xn−1, T xn)

≤ (1− ε)max
{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), 1
2 [d(xn, xn) + d(xn−1, xn+1)]

}
+Λ(ε)αψ(ε) [1 + ‖xn−1‖+ ‖xn‖+ ‖T xn−1‖+ ‖T xn‖]β

≤ (1− ε)d(xn, xn+1) + K(ε)αψ(ε),

for some K > 0. It follows that d(xn, xn+1) = 0 which is a contradiction. Hence, {d(xn, xn+1)} is a
decreasing sequence, thus tending to some non-negative real number, say, d∗.

As a next step, we shall show that the sequence {‖xn‖} is bounded. For simplicity, let Cn = ‖xn‖,
and hence, we claim that the sequence {Cn} is bounded.
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Since the sequence {d(xn, xn+1)} is decreasing, from the triangle inequality, we find that

Cn = d(xn, x0) ≤ d(xn, xn+1) + d(T xn, T x0) + C1

≤ 2C1 + d(T xn, T x0).

We assert that

1
2

d(xn, xn+1) ≤ d(xn, x0) or
1
2

d(xn−1, xn) ≤ d(xn−1, x0).

Suppose, on contrary that

1
2

d(xn, xn+1) > d(xn, x0) and
1
2

d(xn−1, xn) > d(xn−1, x0).

In this case, we derive that

d(xn−1, xn) ≤ d(xn−1, x0) + d(x0, xn)

<
1
2
[d(xn−1, xn) + d(xn, xn+1)]

≤ d(xn−1, xn),

is a contradiction. Hence, our assertion is held, i.e.,

1
2

d(xn, xn+1) ≤ d(xn, x0) or
1
2

d(xn−1, xn) ≤ d(xn−1, x0).

Also, on account of (3), we have

α(xn, T xn)α(x0, T x0) ≥ 1.

Regarding T is α-Pata–Suzuki contraction, we get

d(T xn, T x0) ≤ α(xn, T xn)α(x0, T x0)d(T xn, T x0)

≤ (1− ε)max
{

d(xn, x0), d(x0, x1), d(xn, xn+1), 1
2 [d(xn, x1) + d(x0, xn+1)]

}
+Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖x0‖+ ‖xn+1‖+ ‖x1‖]β

≤ (1− ε)max {Cn, C1, C1 + Cn}+ Λ(ε)αψ(ε) [1 + Cn + C1 + C1 + Cn]
β

≤ (1− ε)(C1 + Cn) + Λ(ε)αψ(ε) [1 + 2Cn + 2C1]
β .

Consequently, we derive from the above inequality that

Cn = d(xn, x0) ≤ d(xn, xn+1) + d( f xn, f x0) + C1

≤ 2C1 + (1− ε)(C1 + Cn) + a(ε)αψ(ε).

A simple calculation yields that

εCn ≤ a(ε)αψ(ε) + b,

for some constants a, b > 0. By verbatim of the proof of ([18], Lemma 1.5) it follows that the sequence
{Cn} is bounded.
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In what follows we prove that d∗ = 0 by employing the fact that {Cn} is bounded. Indeed,
we have that

d(xn+1, xn) = d(T xn, T xn−1)

≤ α(xn−1, T xn−1)α(xn, T xn)d(T xn, T xn−1)

≤ (1− ε)d(xn, xn−1) + Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖xn−1‖+ ‖xn‖+ ‖xn+1‖]β

≤ (1− ε)d(xn, xn−1) + Λ(ε)αψ(ε) [1 + 2 ‖xn‖+ ‖xn−1‖+ ‖xn+1‖]β

≤ (1− ε)d(xn, xn−1) + K(ε)αψ(ε),

for some K > 0. As n→ ∞ in the inequality above, it follows that d∗ = 0.

As a next step, we shall indicate that {xn} is a Cauchy sequence by using the method of Reductio
ad Absurdum. Assume, on the contrary, that the sequence {xn} is not Cauchy. Accordingly, regarding
on Lemma 1, there exists δ > 0 and two increasing sequences {mk} and {nk} , with nk > mk > k
such that the sequences d(xmk , xnk ),d(xmk , xnk+1),d(xmk−1 , xnk ),d(xmk−1 , xnk+1),d(xmk+1 , xnk+1) tends to δ

as n→ ∞.
We claim that 1

2 d(xmk−1 , xmk ) ≤ d(xmk−1 , xnk ). Indeed, if the inequality above is not held, that is,
if 1

2 d(xmk−1 , xmk ) > d(xmk−1 , xnk ) then we get a contradiction. More precisely, by letting k→ ∞ in the
previous inequality, we get δ ≤ 0, a contradiction.

Hence, our claim is valid, i.e., 1
2 d(xmk−1 , xmk ) ≤ d(xmk−1 , xnk ). Notice also that

α(xmk−1 , f (xmk−1))α(xnk , f xnk ) ≥ 1 ∀k ≥ N. Since T is α-Pata–Suzuki contraction, we deduce that

d(xmk , xnk+1) = d(T xmk−1 , T xnk )

≤ α(xmk−1 , T (xmk−1))α(xnk , T , xnk )d(T xmk−1 , T xnk )

≤ (1− ε)max

{
d(xmk−1 , xnk ),d(xmk−1 , xmk ),d(xnk , xnk+1),

1
2
[
d(xnk , xmk ) + d(xmk−1 , xnk+1)

] }
+Λ(ε)αψ(ε)

[
1 +

∥∥xmk−1

∥∥+ ∥∥xnk

∥∥+ ∥∥xmk

∥∥+ ∥∥xnk+1

∥∥]β

≤ (1− ε)max

{
d(xmk−1 , xnk ),d(xmk−1 , xmk ),d(xnk , xnk+1),

1
2
[
d(xnk , xmk ) + d(xmk−1 , xnk+1)

] }
+K(ε)αψ(ε),

where K > 0. By letting k→ ∞ in the obtained inequality above, we get that δ = 0, a contradiction.
Hence, {xn} is a Cauchy sequence. Since X is complete, there exists z∗ ∈ X such that xn → z∗

and by (v) and α(z∗, T z∗) ≥ 1.
Now, we shall prove that z∗ = T z∗. Suppose, on the contrary, that z∗ 6= T z∗. For this purpose,

we need to prove the claim: For each n ≥ 1, at least one of the following assertions holds.

1
2

d(xn−1, xn) ≤ d(xn−1, z∗) or
1
2

d(xn, xn+1) ≤ d(xn, z∗).

Again, we use the method of Reductio ad Absurdum and assume it does not hold, i.e.,

1
2

d(xn−1, xn) > d(xn−1, z∗) and
1
2

d(xn, xn+1) > d(xn, z∗),
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for some n ≥ 1. Then, keeping in mind that {d(xn, xn+1)} is a decreasing sequence, the triangle
inequality infers

d(xn−1, xn) ≤ d(xn−1, z∗) + d(z∗, xn)

< 1
2 [d(xn−1, xn) + d(xn, xn+1)]

< d(xn−1, xn),

which is a contradiction, and so the claim holds.
Due to the assumption (v) and the observation (3), we have

α(xn, T xn)α(z∗, T z∗) ≥ 1, holds for all n ∈ N.

Taking 1
2 d(xn, T xn) ≤ d(xn, z∗) into account, the assumption (i) yields that

d(T xn, T z∗) ≤ (1− ε)max
{

d(xn, z∗), d(z∗, T z∗), d(xn, xn+1), 1
2 [d(xn, T z∗) + d(z∗, T xn)]

}
+Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖z∗‖+ ‖T z∗‖+ ‖T xn‖]β

= (1− ε)max
{

d(xn, z∗), d(z∗, T z∗), d(xn, xn+1), 1
2 [d(xn, T z∗) + d(z∗, T xn)]

}
+K(ε)αψ(ε),

for some K > 0. By letting n→ ∞ in the inequality above, we find that

d(z∗, f z1) ≤ (1− ε)max
{

0, d(z∗, T z∗), 0, d(z∗ ,T z∗)
2

}
+ K(ε)αψ(ε)

< (1− ε)d(z∗, T z∗) + K(ε)αψ(ε)

for some K > 0. It implies that d(z∗, T z∗) = 0, a contradiction. Hence z∗ = T z∗.
As a final step, we examine the uniqueness of the found fixed point z∗. Suppose that v∗ is another

fixed point of T that is distinct from z∗. T z∗ = z∗ and T v∗ = v∗. By (v) we have

α(z∗, T z∗) ≥ 1 and α(v, T v∗) ≥ 1.

Since 1
2 d(z∗, T z∗) ≤ d(z∗, v∗) the assumption (i) yields that

d(T z∗, T v∗) ≤ (1− ε)max
{

d(z∗, v∗), d(z, T z∗), d(v∗, T v∗), 1
2 [d(z

∗, T v) + d(v∗, T z∗)]
}

+Λ(ε)αψ(ε) [1 + 2 ‖z∗‖+ 2 ‖v∗‖]β

< (1− ε)d(z∗, v∗) + K(ε)αψ(ε)

for some K > 0 that yields that d(z∗, v∗) = 0, a contradiction. Hence z∗ = v∗.

Example 1. Let X = [0, ∞) and let d(x, y) = |x − y| for all x, y ∈ X. Let Λ = 1
2 , α = 1, β = 1 and

ψ(ε) = ε
1
2 for every ε ∈ [0, 1] and a mapping T : X → X be defined by

Tx =

{
1
2 x
2x

i f 0 ≤ x ≤ 1,
i f x > 1.

,

Also, we define a function α : X× X → [0, ∞) in the following way

α(x, y) =

{
1
0

i f 0 ≤ x, y ≤ 1,
otherwise
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Also, we have
1
2
− 1 + ε ≤ 1

2
(1− 2 +

ε

2
) ≤ 1

2
(ε)

1
2 .

Now
1
2

d(x, Tx) =
1
2
|x− x

2
| ≤ d(x, y)

implies
d(Tx, Ty)

=≤ |Tx− Ty|
= | x2 −

y
2 |

= 1
2 |x− y|

≤ 1
2 P(x, y)

= (1− ε)P(x, y) + ( 1
2 − 1 + ε)P(x, y)

≤ (1− ε)P(x, y) + ( 1
2 − 1 + ε) [1 + ‖x‖+ ‖y‖+ ‖Tx‖+ ‖Ty‖]

≤ (1− ε)P(x, y) + ( 1
2 εε

1
2 ) [1 + ‖x‖+ ‖y‖+ ‖Tx‖+ ‖Ty‖]

Hence, T satisfies all the conditions of theorem and T has a unique fixed point.

Immediate Consequences

In this subsection, we list a few consequences of our main result. These corollaries also indicate
how we can conclude further consequences.

If we let α(x, Tx) = 1 for all x ∈ X, we get the following results:

Theorem 4. Let T be a self-mapping on a metric space (X, d). Suppose that β ∈ [0, α] Λ ≥ 0 and α ≥ 1 are
fixed constants. A self-mapping T possesses a unique fixed point if 1

2 d(κ, T κ) ≤ d(κ, y) implies

d(T κ, T y) ≤ P(κ, y)

where
P(κ, y) = (1− ε)max

{
d(κ, y), d(κ, T κ), d(y, T y), 1

2 [d(κ, T y) + d(y, T κ)]
}

+Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖+ ‖T κ‖+ ‖T y‖]β .

for all κ, y ∈ X and for every ε ∈ [0, 1].

Let (X,�) be a partially ordered set and d be a metric on X. We say that (X,�, d) is regular if for
every nondecreasing sequence {κn} ⊂ X such that κn → x ∈ X as n→ ∞, there exists a subsequence
{κn(k)} of {κn} such that κn(k) � x for all k.

Theorem 5. Let (X,�) be a partially ordered set and d be a metric on X such that (X, d) is complete.
Let T : X → X be a nondecreasing mapping with respect to �. Suppose that β ∈ [0, α] Λ ≥ 0 and α ≥ 1 are
fixed constants such that the self-mapping T satisfies the following condition: 1

2 d(κ, T κ) ≤ d(κ, y) implies

d(T κ, T y) ≤ P(κ, y)

where
P(κ, y) = (1− ε)max

{
d(κ, y), d(κ, T κ), d(y, T y), 1

2 [d(κ, T y) + d(y, T κ)]
}

+Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖+ ‖T κ‖+ ‖T y‖]β .

for all κ, y ∈ X with κ � y and for every ε ∈ [0, 1]. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;



Mathematics 2019, 7, 720 8 of 11

(ii) (X,�, d) is regular.
(iii) T is nondecreasing with respect to � (that is, κ, y ∈ X, κ � y =⇒ Tκ � Ty.)

Then T has a fixed point.
Moreover, if for all κ, y ∈ X there exists z ∈ X such that κ,� z and y � z, we have uniqueness of the

fixed point.

Proof. Set α : X× X → [0, ∞) in a way that

α(x, y) =

{
1 if κ � y or κ � y,
0 otherwise.

It is apparent that T is an α-Suzuki-Pata contractive mapping, i.e.,

α(κ, y)d(Tκ, Ty) ≤ P(κ, y),

for all κ, y ∈ X. By assumption, the inequality α(κ0, Tκ0) ≥ 1 is observed. In addition, for all κ, y ∈ X,
due to the fact that T is nondecreasing, we find

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

Consequently, we note that T is α−admissible. Now, assume that (X,�, d) is regular. Let {κn} be
a sequence in X such that α(κn,κn+1) ≥ 1 for all n and κn → x ∈ X as n → ∞. From the regularity
hypothesis, there exists a subsequence {κn(k)} of {xn} such that κn(k) � x for all k. On account of α

we derive that α(κn(k),κ) ≥ 1 for all k. Consequently, the existence and uniqueness of the fixed point
is derived by Theorem 3.

3. Application

In this section, we shall consider an application for our main result. Let X = C[0, 1] be the space
of all continuous functions defined on interval [0, 1] with the metric

d(x, y) = sup
t∈[0,1]

|x(t)− y(t)| .

In what follows we shall use Theorem 5 to show that there is a solution to the following
integral equation:

x(t) = y(t) +
1∫

0

k(t, s, x(s))ds, t ∈ [0, 1] (4)

Assume that k(t, s, x) is continuous. Let y ∈ C[0, 1].
We consider the following conditions:

(a) k : [0, 1]× [0, 1]×R×R→ R is continuous;
(b) there exists a continuous function γ : [0, ∞]×R→ R such that

sup
t∈[0,1]

1∫
0

γ(t, s) ≤ 1;
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(c) there exists ε ∈ [0, 1] such that

1
2

∣∣∣∣∣∣x(s)− y(s)−
1∫

0

k(t, s, x(s))ds

∣∣∣∣∣∣ ≤ |x(s)− y(s)|

implies
|k(t, s, x(s))− k(t, s, y(s))| ≤ (1− ε) |x(s)− y(s)| ,

for all x, y ∈ X;
(d) there exists x0 ∈ C([0, 1]) such that for all t ∈ [0, 1], we have

ζ(x0(t),
1∫

0

k(t, s, x(s))ds) ≥ 0,

where ζ : X× X → [0, ∞);
(e) For all t ∈ [0, 1], x, y ∈ C[0, 1],

ζ(x(t), y(t)) ≥ 0⇒ ζ(

1∫
0

k(t, s, x(s))ds,
1∫

0

k(t, s, y(s))ds) ≥ 0;

(f) If xn is a sequence in C[0,1] such that xn → x ∈ C[0, 1] and ζ(xn, xn+1) ≥ 0 for all n, then
ζ(xn, x) ≥ 0 for all n.

Theorem 6. Suppose that the conditions (a)–( f ) are satisfied. Then, the integral Equation (4) has solution
in C[0, 1].

Proof. Since k and the function y are continuous, now define an operator

T : C[0, 1]→ C[0, 1]

write the integral Equation (4) in the form x = T x, where

T x(t) = y(t) +
1∫

0

k(t, s, x(s))ds. (5)

It follows that

1
2
|x(s)− y(s)−

1∫
0

k(t, s, x(s))ds| ≤ (1− ε)|x(s)− y(s)|
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implies

d(T x, T y) = supt∈[0,1] |T x(t)− T y(t)|

≤ supt∈[0,1]

1∫
0
|k(t, s, x(s))− k(t, s, y(s))|ds

≤ sups∈[0,1]

1∫
0

γ(t, s)ds|k(t, s, x)− k(t, s, y)|

≤ (1− ε)|x(s)− y(s)|
≤ (1− ε)max

{
d(x, y), d(x, T x), d(y, T y), 1

2 [d(x, T y) + d(y, T x)]
}

+Λ(ε)αψ(ε) [1 + ‖x‖+ ‖y‖+ ‖T x‖+ ‖T y‖]β λ ≥ 0 α ≥ 1 and β ∈ [0, α].

Define the function α : C[0, 1]× C[0, 1]→ [0,+∞) by

α(x, y) =

{
1 i f ζ(x(t), y(t)) ≥ 0, t ∈ [0, 1],
0 otherwise.

For all x, y ∈ C[0, 1], we have

Therefore, all the conditions of Theorem 5 are satisfied. Consequently, the mapping T has a
unique fixed point in X, which is a solution of integral equation.

4. Conclusions

In this paper, we combine and extend significant fixed-point results, namely Suzuki [2],
Popescu [1], and Pata [4] by involving the admissible mappings. As in [3] (see also [19]), by proper
choice of the auxiliary admissible mapping α and replacing the set P(κ, y) with some concrete subset,
we can derive several more consequences. Since the techniques are the same in [3], we skip the details
and we avoid listing all possible corollaries. Indeed, Theorem 4 and Theorem 5 are the basic examples
of this consideration. Notice also that the given example and an integral equation can be improved
according to choice of α.
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