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1. Introduction

If F and G are continuous compact single valued maps and F ∼= G, then F is essential [1] if and
only if G is essential. This result was extended to multimaps in a variety of settings; see [2,3] and
the references therein. In this paper, using the topological transversality by the author for compact
acyclic maps [2,4–7], we establish a variety of Leray-Schauder type theorems which are useful from
an application viewpoint. Please note that essential maps automatically generate fixed point results
for these maps. As a result, our theory can be applied when considering variation methods, iteration
methods, perturbation methods, degree theory methods, upper and lower solution methods, etc.
(see for example [8–10]). Many problems which arise naturally in applications can be formulated
in the form x ∈ F x and we can relate it to a simpler problem via the family of problems x ∈ λ F x,
0 ≤ λ ≤ 1. If the zero map is essential then under appropriate conditions (see our Leray-Schauder
type alternatives) F will be essential (so it automatically has a fixed point).

Let H be the C̆ech homology functor with compact carriers and coefficients in the field of rational
numbers K from the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Now H(X) = {Hq(X)} (where X is a Hausdorff
topological space) is a graded vector space, Hq(X) being the q-dimensional C̆ech homology group
with compact carriers of X. For a continuous map f : X → X, H( f ) is the induced linear map
f? = { f? q} where f? q : Hq(X) → Hq(X). A space X is called acyclic if X is nonempty, Hq(X) = 0
for every q ≥ 1, and H0(X) ≈ K. Let X and Z be subsets of Hausdorff topological spaces. Consider
a map F : X → K(Z) where K(Z) denotes the family of nonempty compact subsets of Z. Now
F : X → K(Z) is called acyclic if F is upper semicontinuous (u.s.c.) with acyclic values.

2. Topological Transversality Theorem

We begin this section with essential maps. Let E be a completely regular topological space (i.e., a
Tychonoff space) and U an open subset of E (now U is the closure of U in E and ∂U the boundary
of U in E).

Definition 1. Write F ∈ AC(U, E) if F : U → K(E) is an acyclic compact map.

Definition 2. Write F ∈ AC∂U(U, E) if F ∈ AC(U, E) with x /∈ F(x) when x ∈ ∂U.
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Definition 3. Considering two maps F, G ∈ AC∂U(U, E) and they are said to be homotopic in AC∂U(U, E),
written F ∼= G in AC∂U(U, E) if there exists a u.s.c. compact map Ψ : U × [0, 1] → K(E) with Ψt ∈
AC∂U(U, E) for each t ∈ [0, 1], Ψ1 = F and Ψ0 = G (where Ψt(x) = Ψ(t, x)).

Note ∼= is an equivalence relation in AC∂U(U, E).

Definition 4. A map F ∈ AC∂U(U, E) is essential in AC∂U(U, E) if for any G ∈ AC∂U(U, E) with
G|∂U = F|∂U and with G ∼= F in AC∂U(U, E) there exists a x ∈ U with x ∈ G(x).

In [4] we established the topological transversality theorem.

Theorem 1. Consider two maps F and G in AC∂U(U, E) with F ∼= G in AC∂U(U, E). Now F is essential
in AC∂U(U, E) iff G is essential in AC∂U(U, E).

We now present two ways of proceeding from here.

Approach 1.

This approach is motivated from [4,7] (here we present a more general result). We consider the
question: If F and G are two maps in AC∂U(U, E) with G|∂U = F|∂U is F ∼= G in AC∂U(U, E)? We
will now show that this is true if E is a topological (Hausdorff) vector space, U is convex and

there exists a retraction (continuous) r : U → ∂U. (1)

[Note if E is an infinite dimensional Banach space and U is convex then [7] we know (1) holds].
Let F, G be two maps in AC∂U(U, E) with G|∂U = F|∂U and let r be as in (1). Consider F?

defined by F?(x) = F(r(x)), x ∈ U. Note F?(x) = G(r(x)), x ∈ U since G|∂U = F|∂U . With

Λ(x, λ) = G(2 λ r(x) + (1− 2 λ) x) = G ◦ j (x, λ) for (x, λ) ∈ U ×
[

0,
1
2

]

(here j : U ×
[
0, 1

2

]
→ U (note U is convex) is j(x, λ) = 2 λ r(x) + (1− 2 λ) x) it is immediate that

G ∼= F? in AC∂U(U, E);

note Λ : U ×
[
0, 1

2

]
→ K(E) is a u.s.c. compact map and for any fixed x ∈ U and t ∈

[
0, 1

2

]
note

Λt(x) = G(j (x, t)) has acyclic values and finally note if x ∈ ∂U and λ ∈
[
0, 1

2

]
with x ∈ Λλ(x) then

x ∈ G(2 λ x + (1− 2 λ) x) = G(x), a contradiction.
With

Θ(x, λ) = F((2− 2 λ) r(x) + (2 λ− 1) x) for (x, λ) ∈ U ×
[

1
2

, 1
]

we have
F? ∼= F in AC∂U(U, E).

Consequently G ∼= F in AC∂U(U, E).

In this situation we replace Definition 4 with:

Definition 5. A map F ∈ AC∂U(U, E) is essential in AC∂U(U, E) if any map G ∈ AC∂U(U, E) with
G|∂U = F|∂U there exists a x ∈ U with x ∈ G(x).

Recall topological vector spaces are Tychonoff so from Theorem 1 we have:

Theorem 2. Let E be a topological vector space, U an open convex subset of E and suppose (1) holds. Suppose
F, G ∈ AC∂U(U, E) with F ∼= G in AC∂U(U, E). Now F is essential (Definition 5) in AC∂U(U, E) iff G
is essential (Definition 5) in AC∂U(U, E).

From Theorem 2 we present very general Leray-Schauder type results.
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Definition 6. Write F ∈ AC(E, E) if F : E→ K(E) is an acyclic compact map.

Theorem 3. Let E be a topological vector space, U an open convex subset of E , (1) holds and F ∈ AC∂U(U, E).
Assume J ∈ AC(E, E) with

z /∈ J(z) for z ∈ E \U (2)

and

for any map Φ ∈ AC(E, E) there exists y ∈ E with y ∈ Φ(y). (3)

Suppose F ∼= J in AC∂U(U, E). Then F is essential (Definition 5) in AC∂U(U, E).

Proof. We show J is essential (Definition 5) in AC∂U(U, E). If this is true then F is essential (Definition
5) in AC∂U(U, E) from Theorem 2. Let G ∈ AC∂U(U, E) with G|∂U = J|∂U . We need to show that G
has a fixed point in U. Let

Φ(x) =

{
G(x), x ∈ U
J(x), x ∈ E \U.

Note Φ ∈ AC(E, E) so from (3) we have a z ∈ E with z ∈ Φ(z). Now (2) yields z ∈ U so z ∈ G(z).

Corollary 1. Let E be a topological vector space, U an open convex subset of E , (1) holds, F ∈ AC∂U(U, E),
u0 ∈ U and suppose (3) holds. Suppose F ∼= {u0} in AC∂U(U, E). Then F is essential (Definition 5) in
AC∂U(U, E).

Proof. Let J(x) = {u0} for x ∈ E and the result follows from Theorem 3.

Remark 1. (i). For spaces E which satisfy (3) we refer the reader to [11].
(ii). Without loss of generality, take u0 = 0. Note if E is a completely metrizable locally convex space and

x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1) then one homotopy from F to {0} is Ψ(x, t) = t F(x) (here t ∈ [0, 1] and
x ∈ U). To see this note Ψ : U × [0, 1]→ K(E) is a u.s.c. compact (see [12], Theorem 4.18) map and also note
for a fixed t ∈ [0, 1] and a fixed x ∈ U that Ψt(x) is acyclic valued (recall homeomorphic spaces have isomorphic
homology groups) so Ψt ∈ AC∂U(U, E). [Note E being a completely metrizable locally convex space can be
replaced by any (Hausdorff) topological vector space E which has the property that the closed convex hull of a
compact set in E is compact].

Approach 2.

Here we do not assume E is a topological vector space and we do not assume (1). In this approach,
instead of concentrating on homotopies, we will consider essential maps and spaces in general.

From Theorem 1, we present very general Leray-Schauder type results.

Definition 7. Consider two maps F, J ∈ AC(E, E) and they are said to be homotopic in AC(E, E), written
F ∼= J in AC(E, E), if there exists a u.s.c. compact map R : E× [0, 1]→ K(E) with Rt ∈ AC(E, E) for each
t ∈ [0, 1], R1 = F and R0 = J (where Rt(x) = R(x, t)).

Theorem 4. Let E be a completely regular topological space, U an open subset of E and suppose F ∈
AC∂U(U, E). Assume J ∈ AC(E, E) with (2) holding and suppose

there exists y ∈ U with y ∈ J(y) (4)

and
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for any Φ ∈ AC(E, E) with Φ ∼= J in AC(E, E)
there exists z ∈ E with z ∈ Φ(z).

(5)

Suppose F ∼= J in AC∂U(U, E). Then F is essential (Definition 4) in AC∂U(U, E).

Proof. We show J is essential (Definition 4) in AC∂U(U, E) (so then F is essential (Definition 4)
in AC∂U(U, E) from Theorem 1). Let G ∈ AC∂U(U, E) with G|∂U = J|∂U and with G ∼= J in
AC∂U(U, E). We need to show G has a fixed point in U. There exists (see Definition 3) a u.s.c. compact
map Θ : U × [0, 1]→ K(E) with Θt ∈ AC∂U(U, E) for each t ∈ [0, 1], Θ0 = J and Θ1 = G and let

Ω =
{

x ∈ U : x ∈ Θt(x) for some t ∈ [0, 1]
}

.

Notice Ω 6= ∅ (see (4)) is closed and compact and Ω ∩ (E \U) = ∅ (note Θt ∈ AC∂U(U, E) for
t ∈ [0, 1]). Thus, there exists a continuous map σ : E→ [0, 1] with σ(Ω) = 1 and σ(E\U) = 0. Define
Ψ : E× [0, 1]→ K(E) by

Ψ(x, t) =

{
Θ(x, t σ(x)), x ∈ U
J(x), x ∈ E\U.

Note Ψ : E× [0, 1]→ K(E) is an upper semicontinuous compact map with Ψt ∈ AC(E, E) for each
t ∈ [0, 1], so as a result Ψ1

∼= Ψ0 = J in AC(E, E). From (5) we have a x ∈ E with x ∈ Ψ1(x). If
x ∈ E\U then x ∈ J(x) which contradicts (2). Consequently x ∈ U so x ∈ Λ(x, σ(x)) and as a result
x ∈ Ω which implies σ(x) = 1 and so x ∈ Λ(x, 1) = G(x).

Corollary 2. Let E be a completely regular topological space, U an open subset of E, u0 ∈ U and suppose
F ∈ AC∂U(U, E). Assume

for any Φ ∈ AC(E, E) with Φ ∼= {u0} in AC(E, E)
there exists z ∈ E with z ∈ Φ(z).

(6)

Suppose F ∼= {u0} in AC∂U(U, E). Then F is essential (Definition 4) in AC∂U(U, E).

Proof. Let J(x) = {u0} for x ∈ E and apply Theorem 4.

Of course if (3) holds then automatically (6) holds. We now give a result where Φ ∼= {u0} in
AC(E, E) plays a major role.

Theorem 5. Let E be a (metrizable) ANR, U an open subset of E, u0 ∈ U, F ∈ AC∂U(U, E) and suppose
F ∼= {u0} in AC∂U(U, E). Then F is essential (Definition 4) in AC∂U(U, E).

Proof. It follows immediately from Corollary 2. once we show (6). Let Φ ∈ AC(E, E) with Φ ∼= {u0}
in AC(E, E), so (see Definition 7) there exists a u.s.c. compact map R : E × [0, 1] → K(E) with
Rt ∈ AC(E, E) for each t ∈ [0, 1], R1 = Φ and R0 = {u0}. Note E can be regarded as a closed subset
of a normed space X (see the Arens-Eells theorem). Since E ∈ ANR there is an open neighborhood
V of E in X and a retraction (continuous) r : V → E. Let λ : X → [0, 1] be a (continuous) function
with λ(X \V) = 0 and λ(E) = 1 and let

Q(x) =

{
R(r(x), λ(x)), x ∈ V
{u0}, x ∈ X \V

(note if x ∈ ∂V then Q(x) = R(r(x), λ(x)) = R(r(x), 0) = R0(r(x)) = {u0}). For fixed x ∈ X note
Q(x) is acyclic valued and Q : X → K(X) is a u.s.c. compact map i.e., Q ∈ AC(X, X). Now from [3]
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there exists a x0 ∈ X with x0 ∈ Q(x0). If x0 ∈ X \V then x0 ∈ {u0}, a contradiction (note u0 ∈ E
and E ⊆ V). If x0 ∈ V \ E then since Q : X → K(E) (note R : E× [0, 1] → K(E)) and x0 ∈ Q(x0)

one has x0 ∈ E, a contradiction. Thus, x0 ∈ E, r(x0) = x0, λ(x0) = 1 so x0 ∈ R(x0, 1) = Φ(x0) i.e.,
(6) holds.

Remark 2. From the proof above, please note that one could replace E is a (metrizable) ANR with any space
provided the following hold: (i). E can be regarded as a closed subset of a normal space X, (ii). there exists an
open neighborhood V of E in X and a retraction r : V → E, and (iii). any map Ψ ∈ AC(X, X) has a fixed
point in X.

One can extend the above ideas to many other natural situations. In the remainder of this section,
we will consider several extensions. Let X be a (Hausdorff) topological vector space (so automatically
Tychonoff), Y a topological vector space, and U an open subset of X. Also L : dom L ⊆ X → Y
is a linear (not necessarily continuous) single valued map where dom L is a vector subspace of X
and finally let T : X → Y be a linear, continuous single valued map with L + T : dom L → Y an
isomorphism (i.e., a linear homeomorphism) and for convenience we say T ∈ HL(X, Y).

A map F : U → 2Y is said to be (L, T) upper semicontinuous ((L, T) u.s.c.) if (L + T)−1 (F + T) :
U → K(X) is u.s.c. Now F : U → 2Y is said to be (L, T) compact if (L + T)−1 (F + T) : U → 2X is a
compact map.

Definition 8. Write F ∈ AC(U, Y; L, T) if (L + T)−1 (F + T) ∈ AC(U, X).

Definition 9. Write F ∈ AC∂U(U, Y; L, T) if F ∈ AC(U, Y; L, T) with L x /∈ F(x) for x ∈ ∂U ∩ dom L.

Definition 10. Consider two maps F, G ∈ AC∂U(U, Y; L, T) and they are said to be homotopic in
AC∂U(U, Y; L, T), written F ∼= G in AC∂U(U, Y; L, T), if there exists a (L, T) u.s.c., (L, T) compact
mapping N : U × [0, 1] → 2Y such that Nt ∈ AC∂U(U, Y; L, T) for each t ∈ [0, 1] and N0 = F with
N1 = G (where Nt(u) = N(u, t)).

Definition 11. A map F ∈ AC∂U(U, Y; L, T) is L-essential in AC∂U(U, Y; L, T) if for any G ∈
AC∂U(U, Y; L, T) with G|∂U = F|∂U and with F ∼= G in AC∂U(U, Y; L, T) there exists a x ∈ U ∩ dom L
with L x ∈ G(x).

In [2,4,5] we established the topological transversality theorem.

Theorem 6. Consider maps F and G in AC∂U(U, Y; L, T) with F ∼= G in AC∂U(U, Y; L, T). Now F is
L-essential in AC∂U(U, Y; L, T) if and only if G is L-essential in AC∂U(U, Y; L, T).

We present the analogue of Theorem 2. Suppose (1) holds and U is convex. Let F, G be in
AC∂U(U, Y; L, T) with G|∂U = F|∂U . Then F ∼= G in AC∂U(U, Y; L, T). To see this let F?, Λ and
Θ be as before Definition 5 Note Λ and Θ are (L, T) u.s.c. and (L, T) compact mappings and
G ∼= F? in AC∂U(U, Y; L, T) (if x ∈ ∂U ∩ dom L and λ ∈

[
0, 1

2

]
with L x ∈ Λλ(x) then L x ∈

G(2 λ x + (1− 2 λ) x) = G(x), a contradiction) and F? ∼= F in AC∂U(U, Y; L, T). Combining gives
F ∼= G in AC∂U(U, Y; L, T).

In this situation we replace Definition 11 with:

Definition 12. A map F ∈ AC∂U(U, Y; L, T) is L-essential in AC∂U(U, Y; L, T) if for any G ∈
AC∂U(U, Y; L, T) with G|∂U = F|∂U there exists a x ∈ U ∩ dom L with L x ∈ G(x).

From Theorem 6 we have:

Theorem 7. Let U be convex and suppose (1) holds. Consider two maps F and G in AC∂U(U, Y; L, T) with
F ∼= G in AC∂U(U, Y; L, T). Now F is L-essential (Definition 12) in AC∂U(U, Y; L, T) if and only if G is
L-essential (Definition 12) in AC∂U(U, Y; L, T).

Now we present the analogue of Theorem 4.
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Definition 13. Write F ∈ AC(X, Y; L, T) if (L + T)−1 (F + T) ∈ AC(X, X).

Definition 14. Consider two maps F, J ∈ AC(X, Y; L, T) and they are said to be homotopic in AC(X, Y; L, T),
written F ∼= J in AC(X, Y; L, T), if there exists a (L, T) u.s.c., (L, T) compact mapping R : X× [0, 1]→ 2Y

with Rt ∈ AC(X, Y; L, T) for each t ∈ [0, 1], R1 = F and R0 = J (where Rt(x) = R(x, t)).

Theorem 8. Let X, Y, U, L and T be as above and suppose F ∈ AC∂U(U, Y; L, T). Assume J ∈
AC(X, Y; L, T) and the following hold:

L z /∈ J(z) for z ∈ X \ (U ∩ dom L) (7)

there exists y ∈ U ∩ dom L with L y ∈ J(y) (8)

for any Φ ∈ AC(X, Y; L, T) with Φ ∼= J in AC(X, Y; L, T)
there exists z ∈ X with z ∈ (L + T)−1 (Φ + T)(z).

(9)

Suppose F ∼= J in AC∂U(U, Y; L, T). Then F is L-essential (Definition 11) in AC∂U(U, Y; L, T).

Proof. We show J is L-essential (Definition 11) in AC∂U(U, Y; L, T) (and then apply Theorem 6). Let
G ∈ AC∂U(U, Y; L, T) with G|∂U = J|∂U and with G ∼= J in AC∂U(U, Y; L, T). We need to show there
exists a x ∈ U ∩ dom L with L x ∈ G(x). There exists (see Definition 10) a (L, T) u.s.c., (L, T) compact
mapping Λ : U × [0, 1] → 2Y with Λt ∈ AC∂U(U, Y; L, T) for each t ∈ [0, 1], Λ0 = J and Λ1 = G
and let

Ω =
{

x ∈ U ∩ dom L : L x ∈ Λt(x) for some t ∈ [0, 1]
}

=
{

x ∈ U : x ∈ (L + T)−1 (Λt + T) (x) for some t ∈ [0, 1]
}

.

Now Ω 6= ∅ (see (8)) is compact, Ω∩ (X \U) = ∅, and since X is Tychonoff there exists a (continuous)
map σ : X → [0, 1] with σ(Ω) = 1 and σ(X\U) = 0. Let Ψ : X× [0, 1]→ 2Y be

Ψ(x, t) =

{
Λ(x, t σ(x)), x ∈ U
J(x), x ∈ X \U.

Now Ψ : X × [0, 1] → 2Y is a (L, T) u.s.c., (L, T) compact mapping and Ψt ∈ AC(X, Y; L, T) for
each t ∈ [0, 1], so Ψ1

∼= Ψ0 = J in AC(X, Y; L, T). Now from (9) there exists x ∈ X with x ∈
(L + T)−1 (Ψ1 + T)(x). If x ∈ X \ (U ∩ dom L) then L x ∈ J(x) which contradicts (7). Consequently
x ∈ U ∩ dom L so L x ∈ Λ(x, σ(x)) and so x ∈ Ω, σ(x) = 1 and L x ∈ Λ(x, 1) = G(x).

Next we consider a generalization of essential maps, namely the d-essential maps. Let E be a
completely regular topological space and U an open subset of E.

Consider F ∈ AC(U, E) and write F? = I × F : U → K(U × E), here I : U → U is I(x) = x,
and let

d :
{
(F?)−1 (B)

}
∪ {∅} → D (10)

be any map with values in the nonempty set D where B =
{
(x, x) : x ∈ U

}
.

Definition 15. Let F ∈ AC∂U(U, E) and write F? = I × F. We write F? : U → K(U × E) is d-essential
if for any J ∈ AC∂U(U, E) (write J? = I × J) and J|∂U = F|∂U and J ∼= F in AC∂U(U, E) we have
d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).
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Remark 3. If F? is d-essential then

∅ 6= (F?)−1 (B) = {x ∈ U : (x, F x) ∩ (x, x) 6= ∅},

so there exists a x ∈ U with (x, x) ∈ F?(x).

In [6] we established the topological transversality theorem.

Theorem 9. Consider two maps Φ and Ψ in AC∂U(U, E) (write Φ? = I × Φ and Ψ? = I × Ψ) with
Φ ∼= Ψ in AC∂U(U, E). Now Φ? is d-essential if and only if Ψ? is d-essential.

We present the analogue of Theorem 2. Suppose E is a (Hausdorff) topological vector space, U is
convex and assume (1) holds. Let F, G be in AC∂U(U, E) with G|∂U = F|∂U . Then before Definition 5
we showed F ∼= G in AC∂U(U, E). In this situation, we can replace Definition 15 with:

Definition 16. Let F ∈ AC∂U(U, E) and write F? = I× F. We write F? : U → K(U× E) is d-essential if for
any J ∈ AC∂U(U, E) (write J? = I × J) and J|∂U = F|∂U we have d

(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6=

d(∅).

From Theorem 9 we have:

Theorem 10. Let E be a topological vector space, U an open convex subset of E, and suppose (1) holds.
Consider two maps Φ and Ψ in AC∂U(U, E) (write Φ? = I × Φ and Ψ? = I × Ψ) with Φ ∼= Ψ in
AC∂U(U, E). Now Φ? is d-essential (Definition 16) if and only if Ψ? is d-essential (Definition 16).

Now we present the analogue of Theorem 4.

Consider F ∈ AC(E, E) and write F? = I × F : E → K(E× E), here I : E → E is I(x) = x,
and let

d :
{
(F?)−1 (B̃)

}
∪ {∅} → D (11)

be any map with values in the nonempty set D where B̃ = {(x, x) : x ∈ E}.

Theorem 11. Let E be a completely regular topological space, U an open subset of E, B = {(x, x) : x ∈ U},
B̃ = {(x, x) : x ∈ E} and d is the map defined in (11). Suppose F ∈ AC∂U(U, E) (write F? = I × F),
J ∈ AC(E, E) (write J? = I × J) and (2) and (4) hold. Also suppose

for any Φ ∈ AC(E, E) (write Φ? = I ×Φ) with Φ ∼= J
in AC(E, E) we have d

(
(Φ?)−1 (B̃)

)
= d

(
(J?)−1 (B̃)

)
6= d(∅),

(12)

and F ∼= J in AC∂U(U, E). Then F is d-essential (Definition 15).

Proof. We show J is d-essential (Definition 15) (and then F is d-essential (Definition 15) from
Theorem 9). Let G ∈ AC∂U(U, E) (write G? = I × G), G|∂U = J|∂U with G ∼= J in AC∂U(U, E).
We need to show d

(
(G?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅). There exists (see Definition 3) a u.s.c.

compact map Λ : U × [0, 1]→ K(E) with Λt ∈ AC∂U(U, E) for each t ∈ [0, 1], Λ0 = J and Λ1 = G.
Let Λ? : U × [0, 1]→ K(U × E) be Λ?(x, t) = (x, Λ(x, t)) and let

Ω =
{

x ∈ U : (x, x) ∈ Λ?
t (x) for some t ∈ [0, 1]

}
.

Notice Ω 6= ∅ (see (4)) is compact and Ω ∩ (E \U) = ∅. Thus, there exists a continuous function
σ : E→ [0, 1] with σ(Ω) = 1 and σ(E\U) = 0. Let Ψ : E× [0, 1]→ K(E) be

Ψ(x, t) =

{
Λ(x, t σ(x)), x ∈ U
J(x), x ∈ E\U.
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Note Ψ : E × [0, 1] → K(E) is a u.s.c. compact map with Ψt ∈ AC(E, E) for each t ∈ [0, 1], so
Ψ1
∼= Ψ0 = J in AC(E, E). Write Ψ?

1 = I ×Ψ1 and (12) implies

d
(
(Ψ?

1)
−1 (B̃)

)
= d

(
(J?)−1 (B̃)

)
6= d(∅).

Note from (2) that

(J?)−1 (B̃) = {x ∈ E : (x, x) ∩ (x, J(x)) 6= ∅} =
{

x ∈ U : (x, x) ∩ (x, J(x)) 6= ∅
}

= (J?)−1 (B)

and also from (2) (note Ψ1(x) = J(x) for x ∈ E\U) that

(Ψ?
1)
−1 (B̃) = {x ∈ E : (x, x) ∩ (x, Ψ1(x)) 6= ∅} =

{
x ∈ U : (x, x) ∩ (x, Ψ1(x)) 6= ∅

}
= (Ψ?

1)
−1 (B)

so
d
(
(Ψ?

1)
−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Finally, note σ(Ω) = 1 (note (x, Λ(x, σ(x))) = Λ?
σ(x)(x)) so

(Ψ?
1)
−1 (B̃) =

{
x ∈ U : (x, x) ∩ (x, Λ(x, σ(x))) 6= ∅

}
=
{

x ∈ U : (x, x) ∩ (x, Λ(x, 1)) 6= ∅
}

= (G?)−1 (B)

and as a result
d
(
(G?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Next we consider a generalization of L-essential maps, namely the d-L-essential maps. Let
X, Y, U, L and T be as described after Remark 2.

Consider F ∈ AC(U, Y; L, T) and write F? = I × (L + T)−1 (F + T) : U → K(U × X), here
I : U → U is I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅} → D (13)

be any map with values in the nonempty set D where B =
{
(x, x) : x ∈ U

}
.

Definition 17. Let F ∈ AC∂U(U, Y; L, T) and write F? = I × (L + T)−1 (F + T). We write F? : U →
K(U × X) is d-L-essential if for any J ∈ AC∂U(U, Y; L, T) (write J? = I × (L + T)−1 (J + T) ) with
J|∂U = F|∂U and J ∼= F in AC∂U(U, Y; L, T) we have d

(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Remark 4. If F? is d-L-essential then

∅ 6= (F?)−1 (B) = {x ∈ U : (x, (L + T)−1 (F + T)(x)) ∩ (x, x) 6= ∅},

so there exists a x ∈ U ∩ dom L with (x, x) ∈ F?(x).

In [5] we established the topological transversality theorem.

Theorem 12. Consider maps Φ and Ψ in AC∂U(U, Y; L, T) (write Φ? = I × (L + T)−1 (Φ + T) and
Ψ? = I × (L + T)−1 (Ψ + T)) with Φ ∼= Ψ in AC∂U(U, Y; L, T). Now Φ? is d-L-essential if and only if Ψ?

is d-L-essential.
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We present the analogue of Theorem 2. Suppose (1) holds and U is convex. Let F, G be in
AC∂U(U, Y; L, T) with G|∂U = F|∂U . Then after Theorem 6 we showed F ∼= G in AC∂U(U, Y; L, T).
In this situation we can replace Definition 17 with:

Definition 18. Let F ∈ AC∂U(U, Y; L, T) and write F? = I × (L + T)−1 (F + T). We write F? : U →
K(U × X) is d-L-essential if for any J ∈ AC∂U(U, Y; L, T) (write J? = I × (L + T)−1 (J + T)) with
J|∂U = F|∂U we have d

(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

From Theorem 12 we have:

Theorem 17. Let U be convex and suppose (1) holds. Consider two maps Φ and Ψ in AC∂U(U, Y; L, T)
(write Φ? = I × (L + T)−1 (Φ + T) and Ψ? = I × (L + T)−1 (Ψ + T)) with Φ ∼= Ψ in AC∂U(U, Y; L, T).
Now Φ? is d-L-essential (Definition 18) if and only if Ψ? is d-L-essential (Definition 18).

Finally, we present the analogue of Theorem 4. Consider F ∈ AC(X, Y; L, T) and write F? =

I × (L + T)−1 (F + T) : X → K(X× X), here I : X → X given is I(x) = x, and let

d :
{
(F?)−1 (B̃)

}
∪ {∅} → D (14)

be any map with values in the nonempty set D where B̃ = {(x, x) : x ∈ X}.

Theorem 18. Let X, Y, U, L and T be as above, B = {(x, x) : x ∈ U}, B̃ = {(x, x) : x ∈ X}
and d is the map defined in (14). Suppose F ∈ AC∂U(U, Y; L, T) (write F? = I × (L + T)−1 (F + T)),
J ∈ AC(X, Y; L, T) (write J? = I × (L + T)−1 (J + T)) and (7) and (8) hold. In addition assume

for any Φ ∈ AC(X, Y; L, T) (write Φ? = I × (L + T)−1 (Φ + T))
with Φ ∼= J in AC(X, Y; L, T) we have
d
(
(Φ?)−1 (B̃)

)
= d

(
(J?)−1 (B̃)

)
6= d(∅),

(15)

and F ∼= J in AC∂U(U, Y; L, T). Then F is d-L-essential (Definition 17).

Proof. We show J is d-L-essential (Definition 17) (and then apply Theorem 12). Let G ∈
AC∂U(U, Y; L, T) and write G? = I × (L + T)−1 (G + T), G|∂U = J|∂U with G ∼= J in
AC∂U(U, Y; L, T). Now there exists (Definition 10) a (L, T) u.s.c., (L, T) compact map Λ : U × [0, 1]→
2Y with Λt ∈ AC∂U(U, Y; L, T) for each t ∈ [0, 1], Λ0 = J and Λ1 = G. Let Λ? : U × [0, 1] →
K(U × X) be Λ?(x, t) = (x, (L + T)−1 (Λt + T)(x)) and let

Ω =
{

x ∈ U : (x, x) ∈ Λ?
t (x) for some t ∈ [0, 1]

}
.

Note Ω 6= ∅ (see (8)) is compact, Ω∩ (X \U) = ∅ and since X is Tychonoff there exists a (continuous)
map σ : X → [0, 1] with σ(Ω) = 1 and σ(X\U) = 0. Let Ψ : X× [0, 1]→ 2Y by

Ψ(x, t) =

{
Λ(x, t σ(x)), x ∈ U
J(x), x ∈ X\U.

Note Ψ : X × [0, 1] → 2Y is a (L, T) u.s.c., (L, T) compact map with Ψt ∈ AC(X, Y; L, T) for each
t ∈ [0, 1], so Ψ1

∼= Ψ0 = J in AC(X, Y; L, T). Write Ψ?
1 = I × (L + T)−1 (Ψ1 + T) and (15) implies

d
(
(Ψ?

1)
−1 (B̃)

)
= d

(
(J?)−1 (B̃)

)
6= d(∅).
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Note from (7) that

(J?)−1 (B̃) =
{

x ∈ X : (x, x) ∩ (x, (L + T)−1 (J + T)(x)) 6= ∅
}

=
{

x ∈ U : (x, x) ∩ (x, (L + T)−1 (J + T)(x)) 6= ∅
}

= (J?)−1 (B)

and also from (7) (note Ψ1(x) = J(x) for x ∈ X\U) we have

(Ψ?
1)
−1 (B̃) =

{
x ∈ X : (x, x) ∩ (x, (L + T)−1 (Ψ1 + T)(x)) 6= ∅

}
=

{
x ∈ U : (x, x) ∩ (x, (L + T)−1 (Ψ1 + T)(x)) 6= ∅

}
= (Ψ?

1)
−1 (B)

so
d
(
(Ψ?

1)
−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Finally, note σ(Ω) = 1 (note (x, (L + T)−1 (Λσ(x) + T)(x))) = Λ?
σ(x)(x)) so

(Ψ?
1)
−1 (B̃) =

{
x ∈ U : (x, x) ∩ (x, (L + T)−1 (Λσ(x) + T)(x))) 6= ∅

}
=

{
x ∈ U : (x, x) ∩ (x, (L + T)−1 (Λ1 + T)(x))) 6= ∅

}
= (G?)−1 (B)

and so
d
(
(G?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).
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