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Abstract: In this paper, we introduce a new family of efficient and optimal iterative methods for
finding multiple roots of nonlinear equations with known multiplicity (m ≥ 1). We use the weight
function approach involving one and two parameters to develop the new family. A comprehensive
convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested
scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results
formulated in this paper and illustrates that the suggested family is efficient among the domain of
multiple root finding methods.
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1. Introduction

The problem of solving nonlinear equation is recognized to be very old in history as many
practical problems which arise are nonlinear in nature . Various one-point and multi-point methods
are presented to solve nonlinear equations or systems of nonlinear equations [1–3]. The above-cited
methods are designed for the simple root of nonlinear equations but the behavior of these methods
is not similar when dealing with multiple roots of nonlinear equations. The well known Newton’s
method with quadratic convergence for simple roots of nonlinear equations decays to first order when
dealing with multiple roots of nonlinear equations. These problems lead to minor troubles such as
greater computational cost and severe troubles such as no convergence at all. The prior knowledge of
multiplicity of roots make it simpler to manage these troubles. The strange behavior of the iterative
methods while dealing with multiple roots has been well known since 19th century in the least when
Schröder [4] developed a modification of classical Newton’s method to conserve its second order of
convergence for multiple roots. The nonlinear equations with multiple roots commonly arise from
different topics such as complex variables, fractional diffusion or image processing, applications to
economics and statistics (Lēvy distributions), etc. By knowing the practical nature of multiple root
finders, various one-point and multi-point root solvers have been developed in recent past [5–18]
but most of them are not optimal as defined by Kung and Traub [19], who stated that an optimal
without memory method can achieve its convergence order at the most 2n requiring n + 1 evaluations
of functions or derivatives. As stated by Ostrowski [1], if an iterative method possess order of
convergence as O and total number of functional evaluations is n per iterative step, then the index
defined by E = O1/n is recognized as efficiency index of an iterative method.

Sharma and Sharma [17] proposed the following optimal fourth-order multiple root finder with
known multiplicity m as follows:

yn = xn − 2m
m+2 ·

f (xn)
f ′(xn)

, m > 1

xn+1 = xn − m
8 Φ(xn)

f (xn)
f ′(xn)

,
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where Φ(xn) =
{
(m3 − 4m + 8)− (m + 2)2( m

m+2 )
m f ′(xn)

f ′(yn)
× 2(m− 1)(m + 2)( m

m+2 )
m f ′(xn)

f ′(yn)

}
.

A two-step sixth-order non-optimal family for multiple roots presented by Geum et al. [9] is
given by:

yn = xn −m · f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −Q(rn, sn) ·
f (yn)

f ′(yn)
, (1)

where, rn = m

√
f (yn)
f (xn)

, sn = m−1

√
f ′(yn)
f ′(xn)

and Q : C2 → C is holomorphic in a neighborhood of (0, 0).

The following is a special case of their family:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0, m > 1,

xn+1 = yn −m
[
1 + 2(m− 1)(rn − sn)− 4rnsn + s2

n

]
· f (yn)

f ′(yn)
. (2)

Another non-optimal family of three-point sixth-order methods for multiple roots by
Geum et al. [10] is given as follows:

yn = xn −m · f (xn)

f ′(xn)
, m ≥ 1,

wn = yn −m · G(pn) ·
f (xn)

f ′(xn)
, (3)

xn+1 = wn −m · K(pn, vn, ) · f (xn)

f ′(xn)
,

where pn = m

√
f (yn)
f (xn)

and vn = m

√
f (wn)
f (xn)

. The weight functions G : C→ C is analytic in a neighborhood

of 0 and K : C2 → C is holomorphic in a neighborhood of (0, 0). The following is a special case of the
family in Equation (3):

yn = xn −m · f (xn)

f ′(xn)
, m ≥ 1,

wn = yn −m ·
[
1 + pn + 2p2

n

]
· f (xn)

f ′(xn)
, (4)

xn+1 = wn −m ·
[
1 + pn + 2p2

n + (1 + 2pn)vn

]
· f (xn)

f ′(xn)
.

The families in Equations (1) and (3) require four evaluations of function to produce convergence
of order six having efficiency index 6

1
4 = 1.5650 and therefore are not optimal in the sense of the

Kung–Traub conjecture [19].
Recently, Behl et al. [20] presented a multiple root finding family of iterative methods possessing

convergence order eight given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
, (5)

xn+1 = zn − untnG(hn, tn)
f (xn)

f ′(xn)
,
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where the functions Q : C→ C and G : C2 → C are restricted to be analytic functions in the regions

nearby (0) and (0, 0), respectively, with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
and tn =

(
f (zn)
f (yn)

) 1
m , being a1

and a2 complex non-zero free parameters.
We take Case (27) for (a1 = 1, a2 = 1, G02 = 0) from the family of Behl et al. [20] and represent it

by BM given by:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −
(

m + 2hnm +
1
2

h2
n(4m + 2m)

)
f (xn)

f ′(xn)
un (6)

xn+1 = zn −
(

m + mtn + 3mh2
n + mhn(2 + 4tn + hn)

) f (xn)

f ′(xn)
untn.

Most recently, another optimal eighth-order scheme presented by Zafar et al. [21] is given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −mun H(un)
f (xn)

f ′(xn)
, (7)

xn+1 = zn − untn(B1 + B2un)P(tn)G(wn)
f (xn)

f ′(xn)
,

where B1,B2 ∈ R are suppose to be free parameters and weight functions H : C→ C, P : C→ C and

G : C → C are restricted to be analytic in the regions nearby 0 with un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m

and wn =
(

f (zn)
f (xn)

) 1
m .

From the eighth-order family of Zafar et al. [21], we consider the following special case denoted
by ZM:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun

(
6u3

n − u2
n + 2un + 1

) f (xn)

f ′(xn)
,

xn+1 = zn −muntn (1 + 2un) (1 + tn)(1 + 2wn)
f (xn)

f ′(xn)
. (8)

The class of iterative methods referred as optimal is significant as compared to non-optimal
methods due to their speed of convergence and efficiency index. Therefore, there was a need to
develop optimal eighth-order schemes for finding multiple zeros (m > 1) and simple zeros (m = 1)
due to their competitive efficiencies and order of convergence [1]; in addition, fewer iterations are
needed to get desired accuracy as compared to iterative methods having order four and six given by
Sharma and Geum [9,10,17], respectively. In this paper, our main concern is to find the optimal iterative
methods for multiple root µ with known multiplicity m ∈ N of an adequately differentiable nonlinear
function f : I ⊆ R→ R, where I represents an open interval. We develop an optimal eighth-order zero
finder for multiple roots with known multiplicity m ≥ 1. The beauty of the method lies in the fact that
developed scheme is simple to implement with minimum possible number of functional evaluations.
Four evaluations of the function are needed to obtain a family of convergence order eighth having
efficiency index 8

1
4 = 1.6817.

The rest of the paper is organized as follows. In Section 2, we present the newly developed
optimal iterative family of order eight for multiple roots of nonlinear equations. The discussion of
analysis of convergence is also given in this section. In Section 3, some special cases of newly developed



Mathematics 2019, 7, 672 4 of 14

eighth-order schemes are presented. In Section 4, numerical results and comparison of the presented
schemes with existing schemes of its domain is discussed. Concluding remarks are given in Section 5.

2. Development of the Scheme and Convergence Analysis

In this section, we suggest a new family of eighth-order method with known multiplicity m ≥ 1
of the required multiple root as follows:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · H(t) · f (xn)

f ′(xn)
, (9)

xn+1 = zn −m · t · L(s, u) · f (xn)

f ′(xn)
,

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
.

where the function H : C → C is restricted to be analytic function in the regions nearby 0 and
weight function L : C2 → C is holomorphic in the regions nearby (0, 0) and t, s and u are one-to-m
multiple-valued functions.

In the next theorem, it is demonstrated that the proposed scheme in Equation (9) achieves the
optimal eighth order of convergence without increasing the number of functional evaluations.

Theorem 1. Suppose x = µ (say) is a multiple root having multiplicity m ≥ 1 of an analytic function
f : C→ C in the region enclosing a multiple zero µ of f (x). Which implies that the family of iterative methods
defined by Equation (9) has convergence of order eighth when the following conditions are fulfilled:

H0 = 1, H1 = 2, H2 = −2, H3 = 36, L00 = 0, L10 = 1, L01 = 2, L11 = 4, L20 = 2. (10)

Then, the proposed scheme in Equation (9) satisfies the following error equation:

en+1 =
1

24m7 {c1(c2
1(11 + m)− 2mc2)((677 + 108m + 7m2)c4

1

−24m(9 + m)c2
1c2 + 12m2c2

2 + 12m2c1c3)e8
n}+ O(e9

n), (11)

where en = xn − µ and ck =
m!

(m+k)!
f (m+k)(µ)

f (m)(µ)
, k = 1, 2, 3, · · ·.

Proof. Suppose x = µ is a multiple root of f (x). We expand f (xn) and f ′(xn) by Taylor’s series
expansion about x = µ using Mathematica (Computer based algebra software), to get

f (xn) =
f (m)(µ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)
)

, (12)

and

f ′(xn) = f (m)(µ)
m! em−1

n m + c1(m + 1)en + c2(m + 2)e2
n + c3(m + 3)e3

n + c4(m + 4)e4
n

+c5(m + 5)e5
n + c6(m + 6)e6

n + c7(m + 7)e7
n + c8(m + 8)e8

n + O(e9
n),

respectively. By utilizing the above Equations (11) and (12) in the first substep of Equation (9), we obtain

yn − µ =
c1e2

n
m

+
(2c2m− c2

1(m + 1))e3
n

m2 + ∑
4

lim
k=0

Gkek+4
n + O(e9

n), (13)
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where Gk = Gk(m, c1, c2, . . . , c8) are expressed in terms of m, c1, c2, c3, . . . , c8 and the two coefficients
G0and G1 can be explicitly written as G0 = 1

m3 {3c3m2 + c3
1(m + 1)2 − c1c2m(3m + 4)} and G1 =

− 1
m4 {c4

1(m + 1)3 − 2c2c2
1m(2m2 + 5m + 3) + 2c3c1m2(2m + 3) + 2m2(c2

2(m + 2)− 2c4m)}. By Taylor’s
expansion, we get

f (yn) = f (m)(µ)e2m
n

[
( c1

m )m

m!
+

(2mc2 − (m + 1)c2
1)(

c1
m )men

c1m!
+

6

∑
k=0

Gkek+2
n + O(e9

n)

]
. (14)

By using Equations (12) and (14), we get

u =
c1en

m
+

(2mc2 − (m + 2)c2
1)e

2
n

m2 + ψ1e3
n + ψ2e4

n + ψ3e5
n + O(e6

n), (15)

where ψ1 = 1
2m3 [c3

1(2m2 + 7m + 7) + 6c3m2 − 2c1c2m(3m + 7)], ψ2 = − 1
6m4 [c4

1(6m3 + 29m2 +

51m + 34) − 6c2c2
1m(4m2 + 16m + 17) + 12c1c3m2(2m + 5) + 12m2(c2

2(m + 3) − 2c4m)], ψ3 =
1

24m5 [−24m3(c2c3(5m + 17)− 5c5m) + 12c3c2
1m2(10m2 + 43m + 49) + 12c1m2{c2

2(10m2 + 47m + 53)−
2c4m(5m + 13)} − 4c2c3

1m(30m3 + 163m2 + 306m + 209) + c5
1(24m4 + 146m3 + 355m2 + 418m + 209)].

Taylor series of H(t) about 0 is given by:

H(t) = H0 + H1t +
H2

2!
t2 +

H3

3!
t3 + O(e4

n) (16)

where Hj = H j(0) for 0 ≤ j ≤ 3. Inserting Equations (13)–(16) in the second substep of the scheme in
Equation (9), we get

zn = µ +
−(1 + H0)c1e2

n
m

−
(1 + H1 + m− H0(3 + m)c2

1) + 2(−1 + H0)mc2)e3
n

m2

+
1

2m3

[
(2 + 10H1 − H2 + 4m + 4H1m + 2m2 − H0(13 + 11m + 2m2))c3

1

+2m(−4− 4H1 − 3m + H0(11 + 3m)c1c2 − 6(−1 + H0)m2c3)e4
n

]
+ z5e5

n

+z6e6
n + z7e7

n + O(e8
n).

By selecting H0 = 1 and H1 = 2, we obtain

zn = µ +
(c3

1(9− H2 + m)− 2mc1c2)

2m3 e4
n + z5e5

n + z6e6
n + z7e7

n + O(e8
n), (17)

where z5 = − 1
6m4 {c4

1(125 + H3 + 84m + 7m2 − 3H2(7 + 3m) + 6m(−3H2 + 4(7 + m))c2
1c2 + 12c2

2m2 +

12c2c1m) , z6 = 1
24m5 {1507 + 1850m + 677m2 + 46m3 + 4H3(9 + 4m)− 6H2(59 + 53m + 12m2))c5

1 −
4m(925 + 8H3 + 594m + 53m2 − 3H2(53 + 21m)c3

1c2 +12m2(83 − 9H2 + 13m)c2
1c3 − 168m3c2c3 +

12m2c1(115− 12H2 + 17m)c2
2 − 6mc4) and z7 = −{12c2

1c3m2(36β + 13m + 11) + (37− 168c2c3m3 +

4c3
1c2m(96β2 + 252β + 53m2 + 18(14β + 5)m) + 12c1m2(c2

2(48β + 17m + 19)− 6c4m)}.
Again, we use the Taylor’s expansion for Equation (17) to get:

f (zn) = f (m)(µ)e4m
n

2−m
(

c3
1(9−H2+m)−2mc1c2

m3

)m

m! −

(
2−m

(
c3
1(9−H2+m)−2mc1c2

m3

)m−1

ρ0

)
3(m3m!) en

+∑ lim7
j=0 H je

j+1
n + O(e9

n),
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where ρ0 = c4
1(125 + H3 + 84m + 7m2 − 3H2(7 + 3m))c4

1 − 6m(−3H2 + 4(7 + m))c2
1c2 + 12m2c2

2 +

12c3c1m2). With the help of Equations (12) and (18), we have

s =
c2

1(9− H2 + m)− 2mc2

2m2 e2
n + ρ1e3

n + ρ2e4
n + ρ3e5

n + O(e6
n), (18)

where

ρ1 = − 1
6m3 {c

3
1(98 + H3 + 4m2 + 54m− 6H2(3 + m)− 12m(9− H2 + m)c1c2 + 12m2c3},

ρ2 =
1

24m4 899 + 1002m + 313m2 + 18m3 + 4H3(8 + 3m)− 6H2(43 + 33m + 6m2))c4
1−

12m(167 + 2H3 + 87m + 6m2 − H2(33 + 10m)c2
1c2 + 24m2(26− 3H2 + 3m)c1c3+

12m2(c2
2(35− 4H2 + 3m)− 6mc4)

and ρ3 = − 1
60m5 [−4257− 7270m − 4455m2 − 101m3 − 48m4 − 10H3(37 + 30m + 6m2) + 30H2(60 +

75m + 31m2 + 4m3)c5
1 + 10m(1454 + 60H3 + 1548m + 21H3m + 454m2 + 24m3 − 18H2(25 + 18m +

3m2)c3
1c2 − 30m2(234 + 3H3 + 118m + 8m2 − 2H2(24 + 7m)c2

1c3 − 60m2c1(141 + 2H3 + 67m +

4m2 − 2H2(15 + 4m)c2
2 + 2(−17 + 2H2 − 2m)mc4) − 120m3(−25 + 3H2 − 2m)c2c3 + 2mc5} +

( 1
720m6 )((102047+ 180H2

2 + 204435m + 187055m2 + 81525m3 + 14738m4 + 600m5 + 40H3(389+ 498m +

214m2 + 30m3)− 45H2(1223+ 2030m+ 1353m2 + 394m3 + 40m4))− 30m(13629+ 22190m+ 12915m2 +

2746m3 + 120m4 + 16H3(83 + 64m + 12m2)− 6H2(1015 + 1209m + 470m2 + 56m3)) + 120m2(2063 +

2088m + 589m2 + 30m3 + H3(88+ 30m)− 18H2 + (36+ 25m + 4m2)) + 80m2(2323+ 2348m + 635m2 +

30m3 + 4H3(28+ 9m)− 3H2(259+ 173m + 26m2))− 2m(303+ 4H3 + 149m + 10m2− 9H2(7+ 2m))−
720m3((393+ 6H3 + 178m+ 10m2−H2(87+ 22m))] + (−42+ 5H2− 5m)mc5) + 20m3((−473− 8H3−
195m− 10m2 + 12H2(9 + 2m))c2c3 + 6m(65− 8H2 + 5m)c2 + 3m(71− 9H2 + 5m)c10mc6.

Since it is obvious from Equation (15) that u possess order en, the expansion of weight function
L f (s, u) by Taylor’s series is possible in the regions nearby origin given as follows:

L(s, u) = L00 + sL10 + uL01 + suL11 +
s2

2!
L20 (19)

where Li,j =
1

i!j!
∂i+j

∂sj∂uj L(s, u)
∣∣∣
(0,0)

. By using Equations (12)–(19) in the proposed scheme in Equation (9),

we have
en+1 = M2e2

n + M3e3
n + M4e4

n + M5e5
n + M6e6

n + M7e7
n + O(e8

n), (20)

where the coefficients Mi(2 ≤ i ≤ 7) depend generally on m and the parameters Li,j. To obtain at least
fifth-order convergence, we have to choose L00 = 0, L10 = 1 and get

en+1 =
((−2 + L01)c2

1((−9 + H2 −m)c2
1 + 2mc2)

2m4 e5
n + M̄6e6

n + M̄7e7
n + O(e8

n).

where the coefficients M̄i(6 ≤ i ≤ 7) depend generally on m and the parameters Li,j. To obtain
eighth-order convergence, we are restricted to choosing the values of parameters given by:

H2 = −2, H3 = 36, L00 = 0, L10 = 1, L01 = 2, L20 = 2, L11 = 4. (21)

This leads us to the following error equation:

en+1 =
1

24m7 [c1(c2
1(11 + m)− 2mc2)((677 + 108m + 7m2)c4

1 − 24m(9 + m)c2
1c2

+12m2c2
2 + 12m2c1c3)]e8

n + O(e9
n). (22)
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The above error equation (Equation (22)) confirms that the presented scheme in Equation (9)
achieves optimal order of convergence eight by utilizing only four functional evaluations (using
f (xn), f ′(xn), f (yn) and f (zn)) per iteration.

3. Special Cases of Weight Functions

From Theorem 1, several choices of weight functions can be obtained. We have considered
the following:

Case 1: The polynomial form of the weight function satisfying the conditions in Equation (10) can be
represented as:

H(t) = 1 + 2t− t2 + 6t3

L(s, u) = s + 2u + 4su + s2 (23)

The particular iterative method related to Equation (23) is given by:
SM-1:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · (1 + 2t− t2 + 6t3)
f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
(24)

Case 2: The second suggested form of the weight functions in which H(t) is constructed using
rational weight function satisfying the conditions in Equation (10) is given by:

H(t) =
1 + 8t + 11t2

1 + 6t
L(s, u) = s + 2u + 4su + s2 (25)

The corresponding iterative method in Equation (25) can be presented as:
SM-2:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · (1 + 8t + 11t2

1 + 6t
)

f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
(26)

Case 3: The third suggested form of the weight function in which H(t) is constructed using
trigonometric weight satisfying the conditions in Equation (10) is given by:

H(t) =
5 + 18t

5 + 8t− 11t2

L(s, u) = s + 2u + 4su + s2 (27)
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The corresponding iterative method obtained using Equation (27) is given by:
SM-3:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · ( 5 + 18t
5 + 8t− 11t2 )

f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
. (28)

4. Numerical Tests

In this section, we show the performance of the presented iterative family in Equation (9) by
carrying out some numerical tests and comparing the results with existing method for multiple roots.
All numerical computations were performed in Maple 16 programming package using 1000 significant
digits of precision. When µ was not exact, we preferred to take the accurate value which has larger
number of significant digits rather than the assigned precision. The test functions along with their
roots µ and multiplicity m are listed in Table 1 [22]. The proposed methods SM-1 (Equation (24)), SM-2
(Equation (26)) and SM-3 (Equation (28)) are compared with the methods of Geum et al. given in
Equations (2) and (4) denoted by GKM-1 and GKM-2 and with method of Bhel given in Equation (6)
denoted by BM and Zafar et al. method given in Equation (8) denoted by ZM. In Tables 1–8, the error
in first three iterations with reference to the sought zeros (|xn − µ|) is considered for different methods.
The notation E(−i) can be considered as E× 10−i. The test function along with their initial estimates
x0 and computational order of convergence (COC) is also included in these tables, which is computed
by the following expression [23]:

COC ≈ log |(xk+1 − µ)/(xk − µ)|
log |(xk − µ)/(xk−1 − µ)| .

Table 1. Test functions.

Test Functions Exact Root µ Multiplicity m

f1(x) = (cos(πx
2 ) + x2 − π)5 2.034724896... 5

f2(x) = (ex + x− 20)2 2.842438953... 2
f3(x) = (ln x +

√
(x4 + 1)− 2)9 1.222813963... 9

f4(x) = (cosx− x)3 0.7390851332... 3
f5(x) = ((x− 1)3 − 1)50 2.0 50
f6(x) = (x3 + 4x2 − 10)6 1.365230013... 6

f7(x) = (8xe−x2 − 2x− 3)8 −1.7903531791... 8

Table 2. Comparison of different methods for multiple roots.

f1(x), x0 = 2.5

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − µ| 6.83(−4) 1.11(−3) 2.15(−4) 1.87(−4) 2.03(−4) 1.52(−4) 1.84(−4)
|x2 − µ| 3.42(−14) 2.53(−18) 2.37(−29) 3.53(−30) 1.25(−29) 9.69(−31) 2.89(−30)
|x3 − µ| 2.13(−55) 3.58(−106) 5.28(−229) 5.71(−236) 2.53(−231) 2.56(−240) 1.05(−236)

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00
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Table 3. Comparison of different methods for multiple roots.

f2(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − µ| 1.18(−7) 5.27(−6) 2.33(−7) 1.21(−7) 1.90(−7) 1.40(−7) 1.16(−7)
|x2 − µ| 2.62(−37) 1.15(−32) 1.30(−53) 2.21(−56) 1.99(−54) 1.30(−55) 1.57(−56)
|x3 − µ| 3.07(−221) 1.25(−192) 1.19(−423) 2.67(−446) 2.87(−430) 7.37(−440) 1.73(−447)

COC 6.00 6.00 8.00 8.00 8.00 8.00 8.00

Table 4. Comparison of different methods for multiple roots.

f3(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − µ| 5.50(−1) 4.29(−2) 1.81(−2) 1.75(−2) 1.79(−2) D * D
|x2 − µ| 3.99(−7) 8.77(−10) 2.82(−15) 9.58(−16) 2.04(−15) D D
|x3 − µ| 1.13(−27) 7.51(−56) 2.06(−117) 8.21(−122) 6.49(−119) D D

COC 4.00 6.00 8.00 8.00 8.00 D D

* D stands for divergence.

Table 5. Comparison of different methods for multiple roots.

f4(x), x0 = 1.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − µ| 2.77(−4) 2.55(−5) 6.78(−8) 5.45(−8) 6.29(−8) 4.90(−8) 5.15(−8)
|x2 − µ| 3.28(−14) 6.83(−36) 7.95(−60) 8.55(−61) 3.83(−60) 4.06(−61) 4.91(−61)
|x3 − µ| 5.86(−49) 2.51(−213) 2.82(−475) 3.11(−483) 7.18(−478) 8.99(−486) 3.36(−485)

COC 3.50 6.00 8.00 8.00 8.00 7.99 7.99

Table 6. Comparison of different methods for multiple roots.

f5(x), x0 = 2.1

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − µ| 7.68(−5) 1.12(−5) 7.58(−7) 4.85(−7) 6.52(−7) 4.77(−7) 4.65(−7)
|x2 − µ| 3.49(−17) 5.33(−29) 3.70(−47) 4.10(−49) 8.82(−48) 5.66(−49) 2.72(−49)
|x3 − µ| 1.46(−66) 6.11(−169) 1.19(−369) 1.06(−385) 9.93(−375) 2.22(−384) 3.79(−387)

COC 3.99 6.00 8.00 8.00 8.00 7.99 7.99

Table 7. Comparison of different methods for multiple roots.

f6(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − µ| 5.44(−2) 1.01(−1) 5.40(−2) 5.30(−2) 5.36(−2) 4.36(−2) 5.39(−2)
|x2 − µ| 7.40(−7) 5.37(−7) 1.10(−10) 4.72(−11) 8.60(−11) 1.36(−11) 4.92(−11)
|x3 − µ| 3.54(−26) 1.86(−38) 5.28(−80) 2.43(−83) 5.76(−81) 1.80(−87) 3.14(−83)

COC 3.97 5.96 8.00 7.98 7.97 7.97 7.97

Table 8. Comparison of different methods for multiple roots.

f7(x), x0 = −1.2

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − µ| 2.65(−3) 2.15(−3) 4.38(−4) 4.24(−4) 4.32(−4) 3.41(−4) 4.26(−4)
|x2 − µ| 7.24(−12) 9.63(−17) 4.44(−27) 1.11(−27) 3.11(−27) 3.58(−28) 1.14(−27)
|x3 − µ| 4.05(−46) 7.81(−97) 4.97(−211) 2.55(−216) 2.28(−212) 5.27(−220) 3.06(−216)

COC 4.00 6.00 8.00 8.00 8.00 7.99 7.99
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It is observed that the performance of the new method SM-2 is the same as BM for the function f1

and better than ZM for the function f2. The newly developed schemes SM-1, SM-2 and SM-3 are not
only convergent but also their speed of convergence is better than GKM-1 and GKM-2 while ZM and
BM show divergence for the function f3. For functions f4, f5, f6 and f7, the newly developed schemes
SM-1, SM-2 and SM-3 are comparable with ZM and BM. Hence, we conclude that the proposed family
is comparable and robust among existing methods for multiple roots.

5. Dynamical Analysis

For the sake of stability comparison, we plot the dynamical planes corresponding to each scheme
(SM-1, SM-2, SM-3, BM and ZM) for the nonlinear functions f1, f2, f3, f4, f5, f6, f7 by using the procedure
described in [24]. We draw a mesh of 400 × 400 points such that each point of the mesh is an
initial-approximation of the required root of corresponding nonlinear function. The point is orange if
the sequence of iteration method converges to the multiple root (with tolerance 10−3) in fewer than 80
iterations and the point is black if the sequence does not converges to the multiple root. The multiple
zero is represented by a white star in the figures. Figures 1–14 show that the basin of attraction drawn
in orange is of the multiple zero only (i.e., a set of initial guesses converging to the multiple roots fills
all the plotted regions of the complex plane). In general, convergence to other zeros or divergence
can appear (referred to as strange stationary points). SM-1 has wider regions of convergence for f1 as
compared to ZM and BM in Figures 1 and 2; SM-1 and SM-3 have wider regions of convergence for
f2 as compared to ZM and BM in Figures 3 and 4. The convergence region of SM-2 for functions f3,
f4 and f6 is comparable with ZM and BM, as shown in Figures 5–8, 11 and 12. For function f5 in
Figures 9 and 10, the convergence region of SM-3 is better than ZM and BM. For function f7, SM-1 and
SM-3 have better convergence regions than ZM and BM, as shown in Figures 13 and 14. Figures 1–14
show that the region in orange is comparable or bigger for the presented methods SM-1, SM-2 and
SM-3 than the regions obtained by schemes BM and ZM, which confirms the fast convergence and
stability of the proposed schemes.

Figure 1. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f1(x).

Figure 2. Basins of attraction of BM (Left) and ZM (Right) for f1(x).
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Figure 3. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f2(x).

Figure 4. Basins of attraction of BM (Left) and ZM (Right) for f2(x).

Figure 5. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f3(x).

Figure 6. Basins of attraction of BM (Left) and ZM (Right) for f3(x).

Figure 7. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f4(x).
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Figure 8. Basins of attraction of BM (Left) and ZM (Right) for f4(x).

Figure 9. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f5(x).

Figure 10. Basins of attraction of BM (Left) and ZM (Right) for f5(x).

Figure 11. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f6(x).

Figure 12. Basins of attraction of BM (Left) and ZM (Right) for f6(x).
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Figure 13. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f7(x).

Figure 14. Basins of attraction of BM (Left) and ZM (Right) for f7(x).

6. Conclusions

In this paper, we present a new family of optimal eighth-order schemes to find multiple roots of
nonlinear equations. An extensive convergence analysis is done, which verifies that the new family
is optimal eighth-order convergent. The presented family required four functional evaluations to
get optimal eighth-order convergence, having efficiency index 8

1
4 = 1.6817, which is higher than the

efficiency index of the methods for multiple roots and of the families of Geum et al. [9,10]. Finally,
numerical and dynamical tests confirmed the theoretical results and showed that the three members
SM-1, SM-2 and SM-3 of the new family are better than existing methods for multiple roots. Hence,
the proposed family is efficient among the domain of multiple root finding methods.
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