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1. Introduction

The notion of majorization was introduced in the celebrated monograph [1] by Hardy, Littlewood
and Pólya, which was used as a measure of the diversity of the components of an n-dimensional vector.

Let ν = (ν1, ν2, . . . , νn) and ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples. The n-tuple ν is said to be
majorized by ϑ (in symbols ν ≺ ϑ) if ∑k

i=1 ν[i] ≤ ∑k
i=1 ϑ[i] for k = 1, 2, . . . , n− 1 and ∑n

i=1 νi = ∑n
i=1 ϑi,

where ν[1] ≥ ν[2] ≥ · · · ≥ ν[n] and ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[n] are rearrangements of ν and ϑ in a
descending order.

The majorization has been found many applications in different fields of mathematics. A survey
of the applications of majorization and relevant results can be found in the monograph of Marshall
and Olkin [2]. Recently, the authors have given considerable attention to the generalizations and
applications of the majorization and related inequalities, for details, we refer the reader to our
papers [3–13].

In this paper we focus on a type of majorization inequality involving convex functions, which
reveals the correlations among majorization, convex functions and inequalities. Now, let us recall
briefly this type of majorization inequality.

The following classical majorization inequality can be found in the monographs of Marshall and
Olkin [2] and Pečarić et al. [14].

Theorem 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ I (i = 1, 2, . . . , n), I is
an interval. Then

n

∑
i=1

Ψ(νi) ≤
n

∑
i=1

Ψ(ϑi) (1)

holds for every continuous convex function Ψ : I → R if and only if ν ≺ ϑ holds.

Fuchs [15] gave a weighted generalization of the majorization theorem, as follows:
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Theorem 2. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two decreasing n-tuples, νi, ϑi ∈ I (i =

1, 2, . . . , n), I is an interval. Suppose `1, `2, . . . , `n are real numbers such that ∑k
i=1 `iνi ≤ ∑k

i=1 `iϑi for
k = 1, 2, . . . , n− 1 and ∑n

i=1 `iνi = ∑n
i=1 `iϑi. Then

n

∑
i=1

`iΨ(νi) ≤
n

∑
i=1

`iΨ(ϑi) (2)

holds for any continuous convex function Ψ : I → R.

Bullen, Vasić, and Stanković [16] presented a result similar to the above result, in which the
condition of the tuples ν, ϑ is relaxed and the condition of the function Ψ is intensified.

Theorem 3. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two decreasing n-tuples, νi, ϑi ∈ I (i =

1, 2, . . . , n), I is an interval. Suppose `1, `2, . . . , `n are real numbers such that ∑k
i=1 `iνi ≤ ∑k

i=1 `iϑi for
k = 1, 2, . . . , n. If Ψ : I → R is a continuous increasing convex function, then

n

∑
i=1

`iΨ(νi) ≤
n

∑
i=1

`iΨ(ϑi). (3)

The aim of this paper is to establish the refinements of majorization inequalities of Theorems 1–3.
To achieve this, we will first establish an equality by using Taylor theorem with mean-value form
of the remainder, which enables us to deduce the refined versions of majorization inequalities
mentioned above.

2. Lemma

Lemma 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
and let `1, `2, . . . , `n be real numbers. If Ψ : [a, b]→ R is a function such that Ψ

′ ∈ C[a, b] and Ψ
′′

exists on
(a, b), then there exists τi between νi and ϑi satisfying

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2. (4)

Proof. Using the Taylor’s formula with the Lagrange remainder (mean-value form of the
remainder) gives

Ψ(ϑi) = Ψ(νi) +
Ψ
′
(νi)

1!
(ϑi − νi) +

Ψ
′′
(τi)

2!
(ϑi − νi)

2, (5)

where νi, ϑi ∈ (a, b), τi is a real number between νi and ϑi (i = 1, 2, . . . , n).
Multiplying both sides of (5) by `i and taking summation over i (i = 1, 2, . . . , n), we get

n

∑
i=1

`iΨ(ϑi) =
n

∑
i=1

`iΨ(νi) +
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2,

which is the desired equality (4). The proof of Lemma 1 is complete.

3. Main Results

In this section, we establish some refinements of the majorization inequality.
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Theorem 4. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n).
If ν ≺ ϑ and Ψ : [a, b]→ R is a twice differentiable convex function, then there exists a real number τi between
ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

Ψ(ϑi)−
n

∑
i=1

Ψ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2. (6)

where ν[1] ≥ ν[2] ≥ · · · ≥ ν[n] and ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[n] are rearrangements of ν and ϑ in a
descending order.

Proof. Using Lemma 1 with `i = 1, νi = ν[i], ϑi = ϑ[i] (i = 1, 2, . . . , n), one has

n

∑
i=1

Ψ(ϑ[i])−
n

∑
i=1

Ψ(ν[i]) =
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) +

n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2,

that is
n

∑
i=1

Ψ(ϑi)−
n

∑
i=1

Ψ(νi) =
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) +

n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2, (7)

where νi, ϑi ∈ (a, b), τi is a real number between ν[i] and ϑ[i] (i = 1, 2, . . . , n).
Let

Ak =
k

∑
i=1

ϑ[i], Bk =
k

∑
i=1

ν[i] (k = 1, 2, . . . , n), A0 = B0 = 0.

Considering the first term in the right hand side of (7), we have

n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) =

n

∑
i=1

Ψ
′
(ν[i])(Ai − Ai−1 − Bi + Bi−1)

=
n

∑
i=1

Ψ
′
(ν[i])(Ai − Bi)−

n

∑
i=1

Ψ
′
(ν[i])(Ai−1 − Bi−1)

= Ψ
′
(ν[n])(An − Bn) +

n−1

∑
i=1

(Ψ
′
(ν[i])−Ψ

′
(ν[i+1]))(Ai − Bi).

It follows from ν ≺ ϑ that An − Bn = 0 and Ai − Bi ≥ 0 for i = 1, 2, . . . , n− 1.
Additionally, since Ψ is a continuous convex function on [a, b], we deduce from ν[i] ≥ ν[i+1]

(i = 1, 2, . . . , n− 1) that

Ψ
′
(ν[i])−Ψ

′
(ν[i+1]) ≥ 0 for i = 1, 2, . . . , n− 1.

Hence
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) ≥ 0,

which, along with the equality (7), leads to the required inequality (6). This completes the proof of
Theorem 4.

Remark 1. The inequality of Theorem 4 is a refinement of the inequality of Theorem 1, since the term

∑n
i=1

Ψ
′′
(τi)
2 (ϑ[i] − ν[i])

2 in inequality (6) is nonnegative.

In the following, we provide two refinements of majorization inequality by keeping one of the
tuples decreasing (increasing).
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Theorem 5. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable convex function, and let `1, `2, . . . , `n be real numbers such that
∑k

i=1 `iνi ≤ ∑k
i=1 `iϑi for k = 1, 2, . . . , n− 1 and ∑n

i=1 `iνi = ∑n
i=1 `iϑi.

(i) If ν is a decreasing n-tuple, then there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2. (8)

(ii) If ϑ is a increasing n-tuple, then there exists another real number σi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

`iΨ(νi)−
n

∑
i=1

`iΨ(ϑi) ≥
n

∑
i=1

Ψ
′′
(σi)

2
`i(ϑi − νi)

2. (9)

Proof. (i) It follows from Lemma 1 that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2, (10)

where νi, ϑi ∈ (a, b), τi is a real number between νi and ϑi (i = 1, 2, . . . , n). Let

Ak =
k

∑
i=1

`iϑi, Bk =
k

∑
i=1

`iνi (k = 1, 2, . . . , n), A0 = B0 = 0.

Then, we have Ai ≥ Bi (i = 1, 2, . . . , n− 1), An = Bn, and

n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) =

n

∑
i=1

Ψ
′
(νi)(Ai − Ai−1 − Bi + Bi−1)

= Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)−Ψ

′
(νi+1))(Ai − Bi).

=
n−1

∑
i=1

(Ψ
′
(νi)−Ψ

′
(νi+1))(Ai − Bi).

Noting that Ψ is a continuous convex function on [a, b], and ν is a decreasing n-tuple, we obtain
Ψ
′
(νi)−Ψ

′
(νi+1) ≥ 0 for i = 1, 2, . . . , n− 1.

Hence
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) ≥ 0,

which, together with inequality (10), leads to the required inequality (8).
(ii) Similarly, we can prove the inequality (9) under the condition that ϑ is an increasing n-tuple.

The proof of Theorem 5 is complete.

Remark 2. The inequality (8) of Theorem 5 is a refinement of the inequality (2) of Theorem 2 in the case when
`1, `2, . . . , `n are positive numbers.

Theorem 6. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b]→ R be a twice differentiable and increasing convex function, and let `1, `2, . . . , `n be real numbers
such that ∑k

i=1 `iνi ≤ ∑k
i=1 `iϑi for k = 1, 2, . . . , n. If ν is a decreasing n-tuple, then there exists a real number

τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2. (11)
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Proof. Let

Ak =
k

∑
i=1

`iϑi, Bk =
k

∑
i=1

`iνi (k = 1, 2, . . . , n), A0 = B0 = 0.

By Lemma 1, for any νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n), there exists a real number between νi and ϑi
such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2

=
n

∑
i=1

Ψ
′
(νi)(Ai − Ai−1 − Bi + Bi−1) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2

= Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)−Ψ

′
(νi+1))(Ai − Bi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2.

Since Ψ is a continuous convex function on [a, b], and ν is a decreasing n-tuple, we obtain
Ψ
′
(νi)− Ψ

′
(νi+1) ≥ 0 for i = 1, 2, . . . , n− 1. In addition, since Ψ is an increasing function on [a, b],

we get Ψ
′
(νn) ≥ 0. Now, by using the assumption conditions Ai ≥ Bi (k = 1, 2, . . . , n), we conclude that

Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)−Ψ

′
(νi+1))(Ai − Bi) ≥ 0.

Therefore, we have

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2.

The Theorem 6 is proved.

Remark 3. The inequality (11) of Theorem 6 is a refinement of the inequality (3) of Theorem 3 in the case when
`1, `2, . . . , `n are positive numbers.

Theorem 7. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b]→ R be a twice differentiable convex function, and let `1, `2, . . . , `n be positive numbers. If ν and
ϑ − ν are monotonic in the same sense, then there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
1

`1 + `2 + · · ·+ `n

n

∑
i=1

`iΨ′(νi)
n

∑
i=1

`i(ϑi − νi)

+
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2. (12)

Proof. Since Ψ is convex function, and tuple ν and tuple ϑ − ν are monotonic in the same sense, we
conclude that Ψ′(ν) and ϑ − ν are monotonic in the same sense.

Using the Chebyshev’s inequality for weights `1, `2, . . . , `n, we obtain

(
n

∑
i=1

`i)
n

∑
i=1

`iΨ′(νi)(ϑi − νi) ≥
n

∑
i=1

`iΨ′(νi)
n

∑
i=1

`i(ϑi − νi).

On the other hand, by Lemma 1, for any νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n), there exists a real number
τi between νi and ϑi such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)`i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2.
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Hence, we get

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
1

`1 + `2 + · · ·+ `n

n

∑
i=1

`iΨ′(νi)
n

∑
i=1

`i(ϑi − νi)

+
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2.

This proves the required inequality (12) in Theorem 7.

Applying an additional condition ∑n
i=1 `iνi ≤ ∑n

i=1 `iϑi to inequality (12), we obtain the
following result.

Corollary 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable and increasing convex function, and let `1, `2, . . . , `n be positive
numbers. If ν and ϑ − ν are monotonic in the same sense, and ∑n

i=1 `iνi ≤ ∑n
i=1 `iϑi, then there exists a real

number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

`iΨ(ϑi)−
n

∑
i=1

`iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
`i(ϑi − νi)

2. (13)

4. An Application

In this section we establish a new fractional inequality to illustrate the application of our results.

Theorem 8. Let ξ1, ξ2, ξ3 be positive numbers and ξ1 ≥ ξ2 ≥ ξ3. Then we have the inequality

1
2ξ1

+
1

2ξ2
+

1
2ξ3
− 1

ξ1 + ξ2
− 1

ξ1 + ξ3
− 1

ξ2 + ξ3

≥ (ξ1 − ξ2)
2

2ξ1(ξ1 + ξ2)2 +
(2ξ2 − ξ1 − ξ3)

2

2ξ2(ξ1 + ξ3)2 +
(ξ2 − ξ3)

2

2ξ3(ξ2 + ξ3)2 . (14)

Proof. From the given condition ξ1 ≥ ξ2 ≥ ξ3, it is easy to check that

ξ1 + ξ2 ≥ ξ1 + ξ3 ≥ ξ2 + ξ3, 2ξ1 ≥ 2ξ2 ≥ 2ξ3

and
(ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3) ≺ (2ξ1, 2ξ2, 2ξ3).

Using Theorem 4 and taking ν = (ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3), ϑ = (2ξ1, 2ξ2, 2ξ3), Ψ(x) = 1
x , x ∈

(0,+∞) in (6), we obtain that there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, 3) such that

1
2ξ1

+
1

2ξ2
+

1
2ξ3
− 1

ξ1 + ξ2
− 1

ξ1 + ξ3
− 1

ξ2 + ξ3

≥ 1
τ3

1
(ξ1 − ξ2)

2 +
1
τ3

2
(2ξ2 − ξ1 − ξ3)

2 +
1
τ3

3
(ξ2 − ξ3)

2. (15)

Further, by (5) we find that τ1, τ2, τ3 satisfy

1
2ξ1
− 1

ξ1 + ξ2
= − ξ1 − ξ2

(ξ1 + ξ2)
2 +

1
τ3

1
(ξ1 − ξ2)

2,

1
2ξ2
− 1

ξ1 + ξ3
= −2ξ2 − ξ1 − ξ3

(ξ1 + ξ3)
2 +

1
τ3

2
(2ξ2 − ξ1 − ξ3)

2,
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1
2ξ3
− 1

ξ2 + ξ3
= − ξ3 − ξ2

(ξ2 + ξ3)
2 +

1
τ3

3
(ξ3 − ξ2)

2.

From the above equations, we have

τ3
1 = 2ξ1(ξ1 + ξ2)

2, τ3
2 = 2ξ2(ξ1 + ξ3)

2, τ3
3 = 2ξ3(ξ3 + ξ2)

2. (16)

Combining (15) and (16) leads to the desired inequality (14). The proof of Theorem 8 is complete.
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