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Abstract: This paper aims to resolve the issue of the ranking of the fuzzy numbers in decision
analysis, artificial intelligence, and optimization. In the literature, many ideas have been established
for the ranking of the fuzzy numbers, and those ideas have some restrictions and limitations. We
propose a method based on spherical fuzzy numbers (SFNs) for ranking to overcome the existing
restrictions. Further, we investigate the basic properties of SFNs, compare the idea of spherical
fuzzy set with the picture fuzzy set, and establish some distance operators, namely spherical
fuzzy distance-weighted averaging (SFDWA), spherical fuzzy distance order-weighted averaging
(SFDOWA), and spherical fuzzy distance order-weighted average weighted averaging (SFDOWA
WA) operators with the attribute weights’ information incompletely described. Further, we design an
algorithm to solve decision analysis problems. Finally, to validate the usage and applicability of the
established procedure, we assume the child development influence environmental factors problem as
a practical application.

Keywords: spherical distance measure; algorithm; decision-making problem

1. Introduction

In the actual decision-making environment, it is of great importance to derive exact assessment
information. However, due to the indeterminacy of the practical environment, we can not always
achieve this goal. Then, to overcome this limitation, the concept of the fuzzy set (FS) [1] was defined.
The FS is mainly characterized by the degree of membership and can provide more reasonable
decision-making information. After their prosperous and successful applications, Atanassov [2]
generalized this concept and improved the notion of FS as the intuitionistic fuzzy set (IFS), in which
each element can be written in the form of an ordered pair. Under this situation, many scholars have
paid more attention to IFSs to aggregate the different options using different methods and operators.
Yager [3] proposed the order-weighted averaging (OWA) operator to aggregate the IFNs. In [4], Xu
and Yager explored the idea of geometric and order geometric operators of IFNs and also developed
their application for selecting the best options in daily life problems. In [5], Xu explored the idea
of the weighed averaging operator based on IFNs. In [6,7], Wang and Liu explored the notion of
many operators such as the intuitionistic fuzzy Einstein weighted geometric operator, order weighted
geometric operator, weighted averaging operator, and order weighted averaging operator based on
the Einstein operations and applied these operators to decision-making problems.

After many applications of IFSs, Yager observed that there are many shortcomings in this theory
and introduced the notion of the Pythagorean fuzzy set (PyFS) [8] to generalize the concept of
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the Atanassov IFS. Many researchers contributed to PyFS by proposing different techniques for
decision-making problems to deal with uncertainties. Khan et al. [9] proposed the Pythagorean fuzzy
Dombi aggregation operators and discussed their applications. Zhang and Xu [10] proposed the
TOPSIS method for PyFS information to deal with uncertainty in the form of the Pythagorean fuzzy
set. Yager and Abbasov [11] established Pythagorean fuzzy aggregation operators and proposed
their application in multi-attribute decision-making problems. For more study of decision-making
techniques, we refer to [12–14].

The picture fuzzy set (PFS), as an extension of the intuitionistic fuzzy set, was firstly proposed by
Cuong [15]. After that, in order to solve multi-criteria group decision-making (MCGDM) problems,
it was proposed to use the picture fuzzy information. With regard to measurement, Singh et al.
developed the approach with picture fuzzy correlation coefficients [16], Wei et al. [17] introduced
a novel method to solve MCGDM voting problems using cross-entropy of the picture fuzzy set.
As for the aggregation operators, Wei et al. [18] used the picture two-tuple linguistic-based operators,
including the Bonferroni mean operator, the weighted averaging operator, and the ordered weighted
averaging operator. In [19], a series of aggregation operators was proposed to aggregate the picture
fuzzy information and to solve the MCGDM issues well. Ashraf et al. [20] developed the picture
linguistic fuzzy set and discussed its application in decision-making problems. For more study of the
decision-making techniques using picture fuzzy information, we refer to [21–25].

Cuong’s PFS possessed the same problem as IFS had, i.e., it bounds the sum of positive
membership, neutral membership, and negative membership grades between zero and one.
This restriction does not allow decision makers to select the values of the three characteristic functions.
Realizing this issue, Ashraf and Abdullah [26] developed a new model of the spherical fuzzy set (SFS).
It basically bounds the square sum of positive, neutral, and negative membership grades between zero
and one. Ashraf et al. [27] developed the aggregation operators to aggregate the uncertainty in the
form of spherical fuzzy information and proposed the GRAmethod [28] to deal the decision-making
problems. Ashraf et al. [29] developed the spherical fuzzy measure on the basis of the cosine and
tangent function and a proposed related application in decision making. Rafiq et al. [30] proposed
the spherical fuzz set representation on the basis of the t-norm and the t-conorm. Zeng et al. [31]
proposed the spherical fuzzy rough set model and discussed its application using the TOPSIS approach.
Ashraf et al. [32] introduced the spherical fuzzy Dombi aggregation operators and their applications.
Jin et al. [33] proposed the spherical fuzzy logarithmic aggregation operators based on entropy and
gave some applications related to decision support systems. In [34], Jin et al. proposed the linguistic
spherical fuzzy set and discussed its applications in decision making.

From the previous studies, we see that the use of spherical fuzzy set is growing well and that it is
effective in decision-making problems. In this paper, we propose the spherical distance measure on
the basis of distance operators. The main contributions of this paper are as follows:

Firstly, based on the concept of the spherical fuzzy set, a spherical fuzzy measure is defined.
Secondly, utilizing the concept of the proposed spherical distance measure, the spherical fuzzy

distance aggregation operators are introduced to deal the uncertainty and inaccurate information in
decision making problems in the form of a spherical fuzzy set.

Thirdly, we propose an algorithm using spherical distance measures to deal with
decision-making problems.

Fourthly, to show the effectiveness and reliability of the proposed technique, a real-life problem
of the child development influence environmental factors is demonstrated.

The rest of this study is organized as follows. Section 2 briefly introduces the basic knowledge
about the extension of fuzzy sets. In Section 3, the distance measure of SFSs is proposed. Four phases,
like calculating the overall criteria weights and establishing difference techniques, are included. In
Section 4, the detailed evaluation procedures of the proposed method are exemplified by a case study
after the evaluation criteria system is built. Section 5 gives some discussions on the application of the
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proposed method, and essential conclusions are drawn in Section 6. The paper structure is shown in
Figure 1.

Figure 1. Paper structure.

2. Preliminaries

We assume that the reader is familiar with the classical results of fuzzy algebras, but to make this
work more self-contained, we introduce the basic notations used in the text and briefly mention some
of the concepts and results employed in the rest of the work.

Definition 1 ([35]). A mapping OWA : Rn → R with weighted vectors τ = (τ1, τ2, ..., τn)
T such that:

OWA (E1, E2, ...En) =
n

∑
p=1

τpEp

where Ep is the pth largest distance of En with τp ∈ [0, 1] ,
n
∑

p=1
τp = 1. The OWA operator satisfies the

commutation, monotonicity, boundedness, and idempotency properties.
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Definition 2 ([35]). An order-weighted averaging distance mapping OWAD : Rn ×Rn → R with weighted
vectors τ = (τ1, τ2, ..., τn)

T such that:

OWAD (〈P1, Q1〉 , 〈P2, Q2〉 , ..., 〈Pn, Qn〉) =
n

∑
p=1

τpEp

where Ep is the pth largest distance of 〈Pn, Qn〉 with τp ∈ [0, 1] ,
n
∑

p=1
τp = 1. The OWAD operator satisfies the

commutation, monotonicity, boundedness, and idempotency properties.

Definition 3 ([35]). An order weighted distance measure mapping OWDM : Rn ×Rn → R with weighted
vectors τ = (τ1, τ2, ..., τn)

T such that:

OWDM (〈P1, Q1〉 , 〈P2, Q2〉 , ..., 〈Pn, Qn〉) =
(

n

∑
p=1

τp

(
E
(

Pδ(p), Qδ(p)

))λ
) 1

λ

, λ > 0

where E (Pn, Qn) is the distance of 〈Pn, Qn〉 with τp ∈ [0, 1] ,
n
∑

p=1
τp = 1 and (δ (1) , δ (2) , ..., δ (n)) is any

permutation of (1, 2, ..., n), such that E
(

Pδ(p−1), Qδ(p−1)

)
≥ E

(
Pδ(p), Qδ(p)

)
, p = 2, 3, ..., n.

Definition 4 ([1]). A fuzzy set (FS) Ĕj on the universe of discourse R 6= φ is defined as:

Ĕj =
{〈

r, PĔj
(r)| r ∈ R

〉}
.

An FS in a set R is indicated by PĔj
: R→ [0, 1] . The function PĔj

(r) indicates the positive membership degree
of each r ∈ R.

Definition 5 ([2]). An intuitionistic fuzzy set (IFS) Ĕj on the universe of discourse R 6= φ is defined as:

Ĕj =
{〈

r, PĔj
(r), NĔj

(r)| r ∈ R
〉}

.

An IFS in a set R is indicated by PĔj
: R → [0, 1] and NĔj

: R → [0, 1] . The functions PĔj
(r) and NĔj

(r)
indicate the positive and the negative membership degrees of each r ∈ R, respectively. Furthermore, PĔj

and
NĔj

satisfy 0 ≤ PĔj
(r) + NĔj

(r) ≤ 1, for all r ∈ R.

Definition 6 ([3]). A Pythagorean fuzzy set (PyFS) Ĕj on the universe of discourse R 6= φ is defined as:

Ĕj =
{〈

r, PĔj
(r), NĔj

(r)| r ∈ R
〉}

.

A PyFS in a set R is indicated by PĔj
: R → [0, 1] and NĔj

: R → [0, 1] are the positive and negative

membership degrees of each r ∈ R, respectively. Furthermore, PĔj
and NĔj

satisfy 0 ≤ P2
Ĕj
(r) + N2

Ĕj
(r) ≤ 1 for

all r ∈ R.

Definition 7 ([15]). A PFS Ĕj on the universe of discourse R 6= φ is defined as:

Ĕj =
{〈

r, PĔj
(r), IĔj

(r), NĔj
(r)| r ∈ R

〉}
.
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A PFS in a set R is indicated by PĔj
: R → [0, 1], IĔj

: R → [0, 1], and NĔj
: R → [0, 1] are the positive,

neutral, and negative membership degrees of each r ∈ R, respectively. Furthermore, PĔj
, IĔj

and NĔj
satisfy

0 ≤ PĔj
(r) + IĔj

(r) + NĔj
(r) ≤ 1 for all r ∈ R.

Cuong in 2014 [15] introduced the distance of two picture fuzzy numbers (PFNs), which are
discussed here:

Definition 8 ([15]). For a set F and any two PFNs Ĕŭj , Ĕŭl in F. The normalized Hamming distance
dNHD(Ĕŭj , Ĕŭl ) is given as, for all rg ∈ F,

dNHD(Ĕŭj , Ĕŭl ) =
1
n

n

∑
p=1


∣∣∣∣Pěŭj

(rp)− Pěŭl
(rp)

∣∣∣∣+ ∣∣∣Iěŭj
(rp)− Iěŭl

(rp)
∣∣∣+∣∣∣Něŭj

(rp)− Něŭl
(rp)

∣∣∣
 .

Definition 9 ([15]). For a set F and any two PFNs Ĕŭj , Ĕŭl in F. The normalized Euclidean distance
dNED(Ĕŭj , Ĕŭl ) is given as, for all rg ∈ F,

dNED(Ĕŭj , Ĕŭl ) =

√√√√√√√ 1
n

n

∑
p=1


(

Pěŭj
(rp)− Pěŭl

(rp)

)2
+
(

Iěŭj
(rp)− Iěŭl

(rp)
)2

+(
Něŭj

(rp)− Něŭl
(rp)

)2

.

Definition 10 ([26]). A SFS Ĕj on the universe of discourse R 6= φ is defined as:

Ĕj =
{〈

r, PĔj
(r), IĔj

(r), NĔj
(r)| r ∈ R

〉}
.

An SFS in a set R is indicated by PĔj
: R → [0, 1], IĔj

: R → [0, 1], and NĔj
: R → [0, 1] are the positive,

neutral, and negative membership degrees of each r ∈ R, respectively. Furthermore, PĔj
, IĔj

and NĔj
satisfy

0 ≤ P2
Ĕj
(r) + I2

Ĕj
(r) + N2

Ĕj
(r) ≤ 1 for all r ∈ R.

χA (r) =

√
1−

(
P2

Ĕj
(r) + I2

Ĕj
(r) + N2

Ĕj
(r)
)

is said to be the refusal degree of r in R, for SFS{〈
r, PĔj

, IĔj
, NĔj
| r ∈ R

〉}
, for which triple components

〈
PĔj

, IĔj
, NĔj

〉
are said to be SFN, and each SFN can

be denoted by E = 〈Pe, Ie, Ne〉, where Pe, Ie and Ne ∈ [0, 1], with the condition that 0 ≤ P2
e + I2

e + N2
e ≤ 1.

Definition 11. Let Ĕj =
〈

PĔj
, IĔj

, NĔj

〉
and Ĕk =

〈
PĔk

, IĔk
, NĔk

〉
be two SFNs defined on the universe of

discourse R 6= φ; some operations on SFNs are defined as follows:

(1) Ĕj ⊆ Ĕk i f f ∀r ∈ R,
PĔj
≤ PĔk

, IĔj
≤ IĔk

andNĔj
≥ NĔk

;

(2) Ĕj = Ĕk i f f :
Ĕj ⊆ ĔkandEk ⊆ Ĕj;

(3) Union:
Ĕj ∪ Ĕk =

〈
max

(
PĔj

, PĔk

)
, min

(
IĔj

, IĔk

)
, min

(
NĔj

, NĔk

)〉
;

(4) Intersection:
Ĕj ∩ Ĕk =

〈
min

(
PĔj

, PĔk

)
, min

(
IĔj

, IĔk

)
, max

(
NĔj

, NĔk

)〉
;
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(5) Compliment:
Ĕc

j =
〈

NĔj
, IĔj

, PĔj

〉
.

Proposition 1. Assume that Ĕj, Ĕk, and Ĕl are any three SFNs on the universe of discourse R 6= φ. Then,
the following properties are satisfied:

(1) Associativity:

Ĕj ∩ (Ĕk ∩ Ĕk) =
(
Ĕj ∩ Ĕk

)
∩ Ĕk,

Ĕj ∪ (Ĕk ∪ Ĕk) =
(
Ĕj ∪ Ĕk

)
∪ Ĕk

(2) Commutativity: (
Ĕj ∩ Ĕk

)
=

(
Ĕk ∩ Ĕj

)
,(

Ĕj ∪ Ĕk
)

=
(
Ĕk ∪ Ĕj

)
(3) Distributivity:

Ĕj ∩ (Ĕk ∪ Ĕk) =
(
Ĕj ∩ Ĕk

)
∪
(
Ĕj ∩ Ĕk

)
,

Ĕj ∪ (Ĕk ∩ Ĕk) =
(
Ĕj ∪ Ĕk

)
∩
(
Ĕj ∪ Ĕk

)
(4) De Morgan laws:

(Ĕj ∩ Ĕk)
/ = Ĕj ∪ Ĕk,

(Ĕj ∪ Ĕk)
/ = Ĕj ∩ Ĕk.

Definition 12. Let Ĕj =
〈

PĔj
, IĔj

, NĔj

〉
and Ĕk =

〈
PĔk

, IĔk
, NĔk

〉
be two SFNs defined on the universe of

discourse R 6= φ; some operations on SFNs are defined as follows with τ ≥ 0.

(1) Ĕj ⊕ Ĕk =

{√
P2

Ĕj
+ P2

Ĕk
− P2

Ĕj
· P2

Ĕk
, IĔj
· IĔk

, NĔj
· NĔk

}
.

(2) τ · Ĕj =

{√
1− (1− P2

Ĕj
)τ , (IĔj

)τ , (NĔj
)τ

}
.

Definition 13. Let Ĕk =
〈

PĔk
, IĔk

, NĔk

〉
be any SFNs. Then:

(1) sco(Ĕk) =

(
PĔk

+1−IĔk
+1−NĔk

)
3 = 1

3 (2 + PĔk
− IĔk

− NĔk
), which is denoted as the score function.

(2) acu(Ĕk) = PĔk
− NĔk

, which is denoted as the accuracy function.

(3) cr(Ĕk) = PĔk
, which is denoted as the certainty function.

The idea taken from Definition 13 is the technique used for equating the SFNs and can be
described as:

Definition 14. Assume that Ĕj =
〈

PĔj
, IĔj

, NĔj

〉
and Ĕk =

〈
PĔk

, IĔk
, NĔk

〉
are any two SFNs on the universe

of discourse R 6= φ. Then, by using the Definition 13, the equating technique can be described as,

(1) If sco(Ĕj) � sco(Ĕj), then Ĕj � Ĕj.
(2) If sco(Ĕj) ≈ sco(Ĕj) and acu(Ĕj) � acu(Ĕj), then Ĕj � Ĕj.
(3) If sco(Ĕj) ≈ sco(Ĕj), acu(Ĕj) ≈ acu(Ĕj) and cr(Ĕj) � cr(Ĕj), then Ĕj � Ĕj.
(4) If sco(Ĕj) ≈ sco(Ĕj), acu(Ĕj) ≈ acu(Ĕj) and cr(Ĕj) ≈ cr(Ĕj), then Ĕj ≈ Ĕj.
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Definition 15. Let any collections Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N be the SFNs and SFWA : SFNn → SFN.

The SFWA operator is described as,

SFWA
(
Ĕ1, Ĕ2, ..., Ĕn

)
=

n

∑
p=1

τpĔp,

in which τ = {τ1, τ2, ..., τn} is the weight vector of Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N, with τp ≥ 0 and

∑n
p=1 τp = 1.

Theorem 1. Let any collections Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N be the SFNs. Then, by utilizing Definition 15

and the operational properties of SFNs, we can obtain the following outcome.

SFWA
(
Ĕ1, Ĕ2, ..., Ĕn

)
=


√

1−Πn
p=1(1− P2

Ĕp
)τp ,

Πn
p=1(IĔp

)τp ,

Πn
p=1(NĔp

)τp

 .

3. Spherical Fuzzy Distance Measure

Due to the motivation and inspiration of the concept discussed in Definitions 8 and 9, we introduce
the distance between any SFNs.

Definition 16. (1) For a set R 6= φ and any two SFNs Ĕŭj , Ĕŭl in R, then the maximum distance
dMax(Ĕŭj , Ĕŭl ) is given as for all rg ∈ R,

dMax(Ĕŭj , Ĕŭl ) =
1
n

n

∑
p=1

max


∣∣∣Pŭj

(rp)− Pŭl (rp)
∣∣∣+ ∣∣∣Iŭj(rp)− Iŭl (rp)

∣∣∣+∣∣∣Nŭj(rp)− Nŭl (rp)
∣∣∣


 .

(2) For a set R 6= φ and any two SFNs Ĕŭj , Ĕŭl in R, then the minimum distance dMin(Ĕŭj , Ĕŭl ) is given as for
all rg ∈ R,

dMin(Ĕŭj , Ĕŭl ) =
1
n

n

∑
p=1

min


∣∣∣Pŭj

(rp)− Pŭl (rp)
∣∣∣+ ∣∣∣Iŭj(rp)− Iŭl (rp)

∣∣∣+∣∣∣Nŭj(rp)− Nŭl (rp)
∣∣∣


 .

(3) For a set R 6= φ and any two SFNs Ĕŭj , Ĕŭl in R, then the normalized Hamming distance dNHD(Ĕŭj , Ĕŭl )

is given for all rg ∈ R as,

dNHD(Ĕŭj , Ĕŭl ) =
1
n

n

∑
p=1


∣∣∣Pŭj

(rp)− Pŭl (rp)
∣∣∣+ ∣∣∣Iŭj(rp)− Iŭl (rp)

∣∣∣+∣∣∣Nŭj(rp)− Nŭl (rp)
∣∣∣


 .

Definition 17. (1) For a set R 6= φ and any two SFNs Ĕŭj , Ĕŭl in R, then the normalized Euclidean distance
dNED(Ĕŭj , Ĕŭl ) is given for all rg ∈ R as,

dNED(Ĕŭj , Ĕŭl ) =

√√√√ 1
n

n

∑
p=1

(
(Pŭj

(rp)− Pŭl (rp))2 + (Iŭj(rp)− Iŭl (rp))2+

(Nŭj(rp)− Nŭl (rp))2

)
.
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(2) For a set R 6= φ and any two SFNs Ĕŭj , Ĕŭl in R, then the generalized normalized Euclidean distance
dGNHD(Ĕŭj , Ĕŭl ) is given for all rg ∈ R as,

dNGED(Ĕŭj , Ĕŭl ) =

[
1
n

n

∑
p=1

(
(Pŭj

(rp)− Pŭl (rp))λ + (Iŭj(rp)− Iŭl (rp))λ+

(Nŭj(rp)− Nŭl (rp))λ

)] 1
λ

.

Definition 18. The distance measure of any SFNs Ĕj and Ĕl is a mapping d : SFNn × SFNn → [0, 1] subject
to the following conditions:

(1) 0 ≤ d
(
Ĕj, Ĕl

)
≤ 1;

(2) d
(
Ĕj, Ĕl

)
= d

(
Ĕl , Ĕj

)
.

In order to measure the deviation between any two SFNs Ĕj =
〈

PĔj
, IĔj

, NĔj

〉
and Ĕl =

〈
PĔl

, IĔl
, NĔl

〉
,

we define the distance measure of Ĕj and Ĕl as follows:

dSFD
(
Ĕj, Ĕl

)
=

1
2

(∣∣∣PĔj
− PĔl

∣∣∣+ ∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣NĔj
− NĔl

∣∣∣) ,

so dSFD
(
Ĕj, Ĕl

)
is called the spherical fuzzy distance (SFD) measure between Ĕj and Ĕl .

Theorem 2. Assuming that Ĕj =
〈

PĔj
, IĔj

, NĔj

〉
, Ĕl =

〈
PĔl

, IĔl
, NĔl

〉
, and Ĕk =

〈
PĔk

, IĔk
, NĔk

〉
are any

three SFNs on the universe of discourse R 6= φ, we have:

(1) Non-negativity: dSFD
(
Ĕj, Ĕl

)
≥ 0;

(2) Commutativity: dSFD
(
Ĕj, Ĕl

)
= dPFD

(
Ĕl , Ĕj

)
;

(3) Reflexivity: dSFD
(
Ĕl , Ĕl

)
= 0;

(4) Triangle inequality: dSFD
(
Ĕj, Ĕl

)
+ dPFD(Ĕl , Ĕk) ≥ dPFD

(
Ĕj, Ĕk

)
.

Proof. (1) Non-negativity: dSFD
(
Ĕj, Ĕl

)
≥ 0. Since the distance measure of two spherical fuzzy sets is

denoted by,

dSFD
(
Ĕj, Ĕl

)
=

1
2

(∣∣∣PĔj
− PĔl

∣∣∣+ ∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣NĔj
− NĔl

∣∣∣) ,

thus we have
∣∣∣PĔj
− PĔl

∣∣∣ ≥ 0,
∣∣∣IĔj
− IĔl

∣∣∣ ≥ 0 and
∣∣∣NĔj

− NĔl

∣∣∣ ≥ 0, and this implies
∣∣∣PĔj
− PĔl

∣∣∣ +∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣NĔj
− NĔl

∣∣∣ ≥ 0. Therefore,

1
2

(∣∣∣PĔj
− PĔl

∣∣∣+ ∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣NĔj
− NĔl

∣∣∣) ≥ 0

dSFD
(
Ĕj, Ĕl

)
≥ 0.

(2) Commutativity: dSFD
(
Ĕj, Ĕl

)
= dPFD

(
Ĕl , Ĕj

)
. Since the distance measure of two spherical fuzzy

sets is denoted by,

dSFD
(
Ĕj, Ĕl

)
=

1
2

(∣∣∣PĔj
− PĔl

∣∣∣+ ∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣NĔj
− NĔl

∣∣∣) ,

if we have,
∣∣∣PĔj
− PĔl

∣∣∣ = ∣∣∣PĔl
− PĔj

∣∣∣ ,
∣∣∣IĔj
− IĔl

∣∣∣ = ∣∣∣IĔl
− IĔj

∣∣∣ and
∣∣∣NĔj

− NĔl

∣∣∣ = ∣∣∣NĔl
− NĔj

∣∣∣, therefore,

1
2


∣∣∣PĔj
− PĔl

∣∣∣+∣∣∣IĔj
− IĔl

∣∣∣+∣∣∣NĔj
− NĔl

∣∣∣

 =
1
2


∣∣∣PĔl
− PĔj

∣∣∣+∣∣∣IĔl
− IĔj

∣∣∣+∣∣∣NĔl
− NĔj

∣∣∣


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dSFD
(
Ĕj, Ĕl

)
= dSFD

(
Ĕl , Ĕj

)
(3) Reflexivity: dSFD

(
Ĕl , Ĕl

)
= 0. Since,

1
2


∣∣∣PĔl
− PĔl

∣∣∣+∣∣∣IĔl
− IĔl

∣∣∣+∣∣∣NĔl
− NĔl

∣∣∣

 = 0 + 0 + 0 = 0

⇒ dSFD
(
Ĕl , Ĕl

)
= 0.

(4) Triangular inequality: dSFD
(
Ĕj, Ĕl

)
+ dPFD(Ĕl , Ĕk) ≥ dPFD

(
Ĕj, Ĕk

)
. Thus, we have,∣∣∣PĔj

− PĔk

∣∣∣ =
∣∣∣PĔj
− PĔl

+ PĔl
− PĔk

∣∣∣
≤

∣∣∣PĔj
− PĔl

∣∣∣+ ∣∣∣PĔl
− PĔk

∣∣∣ ,∣∣∣IĔj
− IĔk

∣∣∣ =
∣∣∣IĔj
− IĔl

+ IĔl
− IĔk

∣∣∣
≤

∣∣∣IĔj
− IĔl

∣∣∣+ ∣∣∣IĔl
− IĔk

∣∣∣ and∣∣∣NĔj
− NĔk

∣∣∣ =
∣∣∣NĔj

− NĔl
+ NĔl

− NĔk

∣∣∣
≤

∣∣∣NĔj
− NĔl

∣∣∣+ ∣∣∣NĔl
− NĔk

∣∣∣ .

Therefore,

1
2

(∣∣∣PĔj
− PĔk

∣∣∣+ ∣∣∣IĔj
− IĔk

∣∣∣+ ∣∣∣NĔj
− NĔk

∣∣∣)

≤ 1
2


∣∣∣PĔj
− PĔl

∣∣∣+∣∣∣IĔj
− IĔl

∣∣∣+∣∣∣NĔj
− NĔl

∣∣∣

+
1
2


∣∣∣PĔl
− PĔk

∣∣∣+∣∣∣IĔl
− IĔk

∣∣∣+∣∣∣NĔl
− NĔk

∣∣∣


which implies that dSFD

(
Ĕj, Ĕl

)
+ dPFD(Ĕl , Ĕk) ≥ dPFD

(
Ĕj, Ĕk

)
.

Spherical Fuzzy Distance Aggregation Operators

Definition 19. Let any collections Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N of SFNs, SFDWA : SFNn × SFNn →

SFN. The SFDWA operator is describe as,

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0.

In which the weight vector τ = {τ1, τ2, ..., τn} of Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N, with τp ≥ 0 and ∑n

p=1 τp = 1

and d
(
Qp, Lp

)
(p ∈ N) represents the distances of

〈
Qp, Lp

〉
p ∈ N.
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Example 1. Let Q1 = 〈0.5, 0.6, 0.4〉 , Q2 = 〈0.5, 0.8, 0.3〉 , Q3 = 〈0.3, 0.4, 0.8〉, Q4 = 〈0.7, 0.5, 0.4〉 , L1 =

〈0.7, 0.6, 0.2〉 , L2 = 〈0.1, 0.9, 0.3〉 , L3 = 〈0.4, 0.8, 0.4〉, and L4 = 〈0.5, 0.8, 0.2〉 be spherical fuzzy values on
the universe of discourse R 6= φ. The weighted weight vectors are (0.2, 0.3, 0.1, 0.4)T . Then,

dSFN (Q1, L1) =
1
2
(|0.5− 0.7|+ |0.6− 0.6|+ |0.4− 0.2|) = 0.20

dSFN (Q2, L2) =
1
2
(|0.5− 0.1|+ |0.8− 0.9|+ |0.3− 0.3|) = 0.25

dSFN (Q3, L3) =
1
2
(|0.3− 0.4|+ |0.4− 0.8|+ |0.8− 0.4|) = 0.45

dSFN (Q4, L4) =
1
2
(|0.7− 0.5|+ |0.5− 0.8|+ |0.4− 0.2|) = 0.35

Now, use the SFDWA operator to aggregate the information as:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , 〈Q3, L3〉 , 〈Q4, L4〉)

=

(
4

∑
p=1

τp
(
d
(
Qp, Lp

))2
) 1

2

, λ = 2 > 0

=
(

0.2 (0.20)2 + 0.3 (0.25)2 + 0.1 (0.45)2 + 0.4 (0.35)2
) 1

2

= 0.3098

The SFDWA operator is commutative, monotonic, bounded, idempotent, non-negative, and
reflexive, but it cannot always achieve the triangle inequality. These properties can be proven with the
following lemma:

Lemma 1 (Commutativity). Assume that the SFDWA operator satisfies the commutativity, i.e.,

SFDWA


〈Q1, L1〉 ,
〈Q2, L2〉 ,

...,
〈Qn, Ln〉

 = SFDWA


〈L1, Q1〉 ,
〈L2, Q2〉 ,

...,
〈Ln, Qn〉

 ,

where Ql (l ∈ N) and Ll (l ∈ N) are the collections of SFNs.

Proof.

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =

(
n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0,

SFDWA (〈L1, Q1〉 , 〈L2, Q2〉 , ..., 〈Ln, Qn〉) =

(
n

∑
p=1

τp
(
d
(

Lp, Qp
))λ

) 1
λ

, λ > 0.

Since the distance satisfies the commutativity, we have dSFD
(
Qp, Lp

)
= dSFD

(
Lp, Qp

)
for all p. Thus,

SFDWA


〈Q1, L1〉 ,
〈Q2, L2〉 ,

...,
〈Qn, Ln〉

 = SFDWA


〈L1, Q1〉 ,
〈L2, Q2〉 ,

...,
〈Ln, Qn〉

 .
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Lemma 2 (Monotonicity). Assume that the SFDWA operator satisfies the monotonicity, i.e.,

SFDWA


〈Q1, L1〉 ,
〈Q2, L2〉 ,

...,
〈Qn, Ln〉

 ≥ SFDWA


〈L1, K1〉 ,
〈L2, K2〉 ,

...,
〈Ln, Kn〉


where Qp (p ∈ N), Lp (p ∈ N), and Kp (p ∈ N) are the collections of SFNs.

Proof.

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =

(
n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0,

SFDWA (〈L1, K1〉 , 〈L2, K2〉 , ..., 〈Ln, Kn〉) =

(
n

∑
p=1

τp
(
d
(

Lp, Kp
))λ

) 1
λ

, λ > 0.

Since the distance satisfies the monotonicity, so we have dSFD
(
Qp, Lp

)
≥ dSFD

(
Lp, Kp

)
for all p. Thus,

SFDWA


〈Q1, L1〉 ,
〈Q2, L2〉 ,

...,
〈Qn, Ln〉

 ≥ SFDWA


〈L1, K1〉 ,
〈L2, K2〉 ,

...,
〈Ln, Kn〉



Lemma 3 (Boundary). Assume that the SFDWA operator satisfies the following:

min
p

∣∣Qp, Lp
∣∣ ≤ SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) ≤ max

p

∣∣Qp, Lp
∣∣ .

Proof. Assuming that maxp
∣∣Qp, Lp

∣∣ = ď and minp
∣∣Qp, Lp

∣∣ = ğ with weight vector τ = {τ1, τ2, ..., τn},
τp ≥ 0, and ∑n

p=1 τp = 1, then,

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0,

≤
(

n

∑
p=1

τpďλ

) 1
λ

=

(
ďλ

n

∑
p=1

τp

) 1
λ

= ď

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0,

≥
(

n

∑
p=1

τp ğλ

) 1
λ

=

(
ğλ

n

∑
p=1

τp

) 1
λ

= ğ.

Hence,
min

p

∣∣Qp, Lp
∣∣ ≤ SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) ≤ max

p

∣∣Qp, Lp
∣∣ .
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Lemma 4 (Idempotency). Assume that the SFDWA operator satisfies that
∣∣Qp, Lp

∣∣ = I for all p. Then:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) = I.

Proof. Since,

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

, λ > 0,

because dSFD
(
Qp, Lp

)
=
∣∣Qp, Lp

∣∣ = I for all p, then also:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp
(
d
(
Qp, Lp

))λ

) 1
λ

= I

Hence, we get the required results.

Lemma 5 (Non-negativity). Assume that the SFDWA operator satisfies the following:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) ≥ 0.

Proof. Since, as dSFD (Q1, L1) = |Q1, L1| ≥ 0, similarly, we have:

dSFD
(
Qp, Lp

)
=
∣∣Qp, Lp

∣∣ ≥ 0 for all p ∈ N

Therefore, we use the above information and gain:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) ≥ 0

Lemma 6 (Reflexivity). Assume that the SFDWA operator satisfies the following:

SFDWA (〈L1, L1〉 , 〈L2, L2〉 , ..., 〈Ln, Ln〉) = 0.

Proof. Since, as dSFD (L1, L1) = |L1, L1| = 0, similarly, we have:

dSFD
(

Lp, Lp
)
=
∣∣Lp, Lp

∣∣ = 0 for all p ∈ N

Therefore, we use the above information and gain:

SFDWA (〈L1, L1〉 , 〈L2, L2〉 , ..., 〈Ln, Ln〉) = 0.

Definition 20. Let any collections Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N of SFNs, SFODWA : SFNn × SFNn →

SFN. The SFODWA operator is described as,

SFODWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τp

(
d
(

Qη(p), Lη(p)

))λ
) 1

λ

, λ > 0.
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In which the weight vector τ = {τ1, τ2, ..., τn}, τp ≥ 0, and ∑n
p=1 τp = 1. Where d

(
Qη(p), Lη(p)

)
is the

pth largest distance of
〈

Qp, Lp
〉
, consequently by total order, d

(
Qη(1), Lη(1)

)
≥ d

(
Qη(2), Lη(2)

)
≥ ... ≥

d
(

Qη(n), Lη(n)

)
.

Example 2. Let Q1 = 〈0.5, 0.6, 0.4〉 , Q2 = 〈0.5, 0.8, 0.3〉 , Q3 = 〈0.3, 0.4, 0.8〉, Q4 = 〈0.7, 0.5, 0.4〉 , L1 =

〈0.7, 0.6, 0.2〉 , L2 = 〈0.1, 0.9, 0.3〉 , L3 = 〈0.4, 0.8, 0.4〉, and L4 = 〈0.5, 0.8, 0.2〉 be spherical fuzzy values on
the universe of discourse R 6= φ. The weighted weight vectors are (0.2, 0.3, 0.1, 0.4)T . Use Definition 13 to
calculate the score functions as:

Sco (Q1) =
1
3 (2 + 0.5− 0.6− 0.4) = 0.50 Sco (L1) =

1
3 (2 + 0.7− 0.6− 0.2) = 0.63

Sco (Q2) =
1
3 (2 + 0.5− 0.8− 0.3) = 0.46 Sco (L2) =

1
3 (2 + 0.1− 0.9− 0.3) = 0.30

Sco (Q3) =
1
3 (2 + 0.3− 0.4− 0.8) = 0.36 Sco (L3) =

1
3 (2 + 0.4− 0.8− 0.4) = 0.40

Sco (Q4) =
1
3 (2 + 0.7− 0.5− 0.4) = 0.60 Sco (L4) =

1
3 (2 + 0.5− 0.8− 0.2) = 0.50

Now, use the comparison technique in Definition 14 to rank the spherical fuzzy numbers as:

Sco (Q4) > Sco (Q1) > Sco (Q2) > Sco (Q3)

and:
Sco (L1) > Sco (L4) > Sco (L3) > Sco (L2)

Then, we obtain,

Q4 > Q1 > Q2 > Q3

L1 > L4 > L3 > L2

and hence, Qη(1) = Q4 = 〈0.7, 0.5, 0.4〉 , Qη(2) = Q1 = 〈0.5, 0.6, 0.4〉 , Qη(3) = Q2 = 〈0.5, 0.8, 0.3〉, and
Qη(4) = Q3 = 〈0.3, 0.4, 0.8〉 . Similarly, Lη(1) = L1 = 〈0.7, 0.6, 0.2〉 , Lη(2) = L4 = 〈0.5, 0.8, 0.2〉 , Lη(3) =

L3 = 〈0.4, 0.8, 0.4〉, and Lη(4) = L2 = 〈0.1, 0.9, 0.3〉 . Then:

dSFN

(
Qη(1), Lη(1)

)
=

1
2
(|0.7− 0.7|+ |0.5− 0.6|+ |0.4− 0.2|) = 0.15

dSFN

(
Qη(2), Lη(2)

)
=

1
2
(|0.5− 0.5|+ |0.6− 0.8|+ |0.4− 0.2|) = 0.20

dSFN

(
Qη(3), Lη(3)

)
=

1
2
(|0.5− 0.4|+ |0.8− 0.8|+ |0.3− 0.4|) = 0.10

dSFN

(
Qη(4), Lη(4)

)
=

1
2
(|0.3− 0.1|+ |0.4− 0.9|+ |0.8− 0.3|) = 0.60

Now, use the SFODWA operator to aggregate the information as:

SFDWA
(〈

Qη(1), Lη(1)

〉
,
〈

Qη(2), Lη(2)

〉
,
〈

Qη(3), Lη(3)

〉
,
〈

Qη(4), Lη(4)

〉)
=

(
n

∑
p=1

τp

(
d
(

Qη(p), Lη(p)

))2
) 1

2

, λ = 2 > 0

=
(

0.2 (0.15)2 + 0.3 (0.20)2 + 0.1 (0.10)2 + 0.4 (0.60)2
) 1

2

= 0.4018

The SFODWA operator is commutative, monotonic, bounded, idempotent, non-negative, and
reflexive, but it cannot always achieve the triangle inequality. These properties can be proven similarly
as defined above, so we omit them here.
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Definition 21. Let any collections Ĕp =
〈

PĔp
, IĔp

, NĔp

〉
, p ∈ N of SFNs, SFDOWAWA : SFNn ×

SFNn → SFN. The SFDOWAWA operator is described with the associated weights τ = {τ1, τ2, ..., τn},
τp ≥ 0 and ∑n

p=1 τp = 1.

SFDOWAWA (〈Q1, L1〉 , 〈Q2, L2〉 , ..., 〈Qn, Ln〉) =
(

n

∑
p=1

τ̂p

(
d
(

Qη(p), Lη(p)

))λ
) 1

λ

, λ > 0

where d
(

Qη(p), Lη(p)

)
is p the largest distance of

〈
Qp, Lp

〉
, consequently by total order, d

(
Qη(1), Lη(1)

)
≥

d
(

Qη(2), Lη(2)

)
≥ ... ≥ d

(
Qη(n), Lη(n)

)
, in which the weighted weight vector v = {v1, v2, ..., vn}, vp ≥ 0

and ∑n
p=1 vp = 1, τ̂p = ξτp + (1− ξ) vp with ξ ∈ [0, 1] .

As we can see, if ξ = 1, we get the SFDOWA operator and if ξ = 0 the SFDWA. The SFDOWAWA
operator accomplishes similar properties as the usual distance aggregation operators. Note that we can
distinguish between descending and ascending orders, extend it by using mixture operators, and so on.

Example 3. Let Q1 = 〈0.5, 0.6, 0.4〉 , Q2 = 〈0.5, 0.8, 0.3〉 , Q3 = 〈0.3, 0.4, 0.8〉, Q4 = 〈0.7, 0.5, 0.4〉 , L1 =

〈0.7, 0.6, 0.2〉 , L2 = 〈0.1, 0.9, 0.3〉 , L3 = 〈0.4, 0.8, 0.4〉, and L4 = 〈0.5, 0.8, 0.2〉 be spherical fuzzy values on
the universe of discourse R 6= φ. The associated weight vectors are (0.2, 0.3, 0.1, 0.4)T , and assume that the
weighted weight vectors are (0.2, 0.3, 0.2, 0.3)T . Use Definition 13 to calculate the score functions as:

Sco (Q1) =
1
3 (2 + 0.5− 0.6− 0.4) = 0.50 Sco (L1) =

1
3 (2 + 0.7− 0.6− 0.2) = 0.63

Sco (Q2) =
1
3 (2 + 0.5− 0.8− 0.3) = 0.46 Sco (L2) =

1
3 (2 + 0.1− 0.9− 0.3) = 0.30

Sco (Q3) =
1
3 (2 + 0.3− 0.4− 0.8) = 0.36 Sco (L3) =

1
3 (2 + 0.4− 0.8− 0.4) = 0.40

Sco (Q4) =
1
3 (2 + 0.7− 0.5− 0.4) = 0.60 Sco (L4) =

1
3 (2 + 0.5− 0.8− 0.2) = 0.50

Now, use the comparison technique in Definition 14 to rank the spherical fuzzy numbers as:

Sco (Q4) > Sco (Q1) > Sco (Q2) > Sco (Q3)

and:
Sco (L1) > Sco (L4) > Sco (L3) > Sco (L2)

Then, we obtain,

Q4 > Q1 > Q2 > Q3

L1 > L4 > L3 > L2

and hence, Qη(1) = Q4 = 〈0.7, 0.5, 0.4〉 , Qη(2) = Q1 = 〈0.5, 0.6, 0.4〉 , Qη(3) = Q2 = 〈0.5, 0.8, 0.3〉, and
Qη(4) = Q3 = 〈0.3, 0.4, 0.8〉 . Similarly, Lη(1) = L1 = 〈0.7, 0.6, 0.2〉 , Lη(2) = L4 = 〈0.5, 0.8, 0.2〉 , Lη(3) =

L3 = 〈0.4, 0.8, 0.4〉, and Lη(4) = L2 = 〈0.1, 0.9, 0.3〉 . Then:

dSFN

(
Qη(1), Lη(1)

)
=

1
2
(|0.7− 0.7|+ |0.5− 0.6|+ |0.4− 0.2|) = 0.15

dSFN

(
Qη(2), Lη(2)

)
=

1
2
(|0.5− 0.5|+ |0.6− 0.8|+ |0.4− 0.2|) = 0.20

dSFN

(
Qη(3), Lη(3)

)
=

1
2
(|0.5− 0.4|+ |0.8− 0.8|+ |0.3− 0.4|) = 0.10

dSFN

(
Qη(4), Lη(4)

)
=

1
2
(|0.3− 0.1|+ |0.4− 0.9|+ |0.8− 0.3|) = 0.60
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Now, we calculate the weights as:

τ̂1 = 0.4× 0.2 + (1− 0.4) 0.2 = 0.20

τ̂2 = 0.4× 0.3 + (1− 0.4) 0.3 = 0.30

τ̂3 = 0.4× 0.1 + (1− 0.4) 0.2 = 0.16

τ̂4 = 0.4× 0.4 + (1− 0.4) 0.3 = 0.34

Now, use the SFDOWAWA operator to aggregate the information as:

SFDOWAWA (〈Q1, L1〉 , 〈Q2, L2〉 , 〈Q3, L3〉 , 〈Q4, L4〉)

=

(
4

∑
p=1

τ̂p ·
(

d
(

Qη(p), Lη(p)

))2
) 1

2

, λ = 2 > 0.

=
(

0.20 (0.15)2 + 0.30 (0.20)2 + 0.16 (0.10)2 + 0.34 (0.60)2
) 1

2

= 0.3748

The SFDOWAWA operator is commutative, monotonic, bounded, idempotent, non-negative, and
reflexive, but it cannot always achieve the triangle inequality. These properties can be proven similarly
as defined above, so we omit them here.

Without weights, we cannot aggregate the spherical fuzzy information. If the weights are given,
then we use the given weights to aggregate our spherical fuzzy information straightforwardly. If
the weights are unknown, then firstly, we find the weights. Here, we introduce the mean-squared
deviation models to determine the weights, which are as follows:

1. Assume that:

τp =
dSFD

(
Qη(p), Lη(p)

)
n
∑

p=1
dSFD

(
Qη(p), Lη(p)

) , p = 1, 2, ...n. (1)

such that τp+1 ≥ τp ≥ 0, p = 1, 2, ...n− 1, and
n
∑

p=1
τp = 1.

2. Assume that:

τp =
e−dSFD(Qη(p),Lη(p))

n
∑

p=1
e−dSFD(Qη(p),Lη(p))

, p = 1, 2, ..., n. (2)

where 0 ≤ τp+1 ≤ τp, p = 1, 2, ...n− 1 and
n
∑

p=1
τp = 1.

3. Assume that:

d/
SFD

(
Qη(p), Lη(p)

)
=

1
n

n

∑
p=1

dSFD

(
Qη(p), Lη(p)

)
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and d//
(

dSFD

(
Qη(p), Lη(p)

)
, d/

SFD

(
Qη(p), Lη(p)

))
=
∣∣∣dSFD

(
Qη(p), Lη(p)

)
− d/

SFD

(
Qη(p), Lη(p)

)∣∣∣ ,
then we can find,

τp =
1− d//

(
dSFD

(
Qη(p), Lη(p)

)
, d/

SFD

(
Qη(p), Lη(p)

))
n
∑

p=1

(
1− d//

(
dSFD

(
Qη(p), Lη(p)

)
, d/

SFD

(
Qη(p), Lη(p)

))) (3)

=

1−
∣∣∣∣∣dSFD

(
Qη(p), Lη(p)

)
− 1

n

n
∑

p=1
dSFD

(
Qη(p), Lη(p)

)∣∣∣∣∣
n
∑

p=1

(
1−

∣∣∣∣∣dSFD

(
Qη(p), Lη(p)

)
− 1

n

n
∑

p=1
dSFD

(
Qη(p), Lη(p)

)∣∣∣∣∣
) (4)

in which τ = {τ1, τ2, ..., τn}, τp ≥ 0, and ∑n
p=1 τp = 1.

Example 4. Let Q1 = 〈0.5, 0.6, 0.4〉 , Q2 = 〈0.5, 0.8, 0.3〉 , Q3 = 〈0.3, 0.4, 0.8〉, Q4 = 〈0.7, 0.5, 0.4〉 ,
L1 = 〈0.7, 0.6, 0.2〉 , L2 = 〈0.1, 0.9, 0.3〉 , L3 = 〈0.4, 0.8, 0.4〉, and L4 = 〈0.5, 0.8, 0.2〉 be spherical fuzzy
values on the universe of discourse R 6= φ. The weighted weight vectors are unknown. Then, firstly, we find the
weights by using any one of their technique. Therefore,

dSFN (Q1, L1) =
1
2
(|0.5− 0.7|+ |0.6− 0.6|+ |0.4− 0.2|) = 0.20

dSFN (Q2, L2) =
1
2
(|0.5− 0.1|+ |0.8− 0.9|+ |0.3− 0.3|) = 0.25

dSFN (Q3, L3) =
1
2
(|0.3− 0.4|+ |0.4− 0.8|+ |0.8− 0.4|) = 0.45

dSFN (Q4, L4) =
1
2
(|0.7− 0.5|+ |0.5− 0.8|+ |0.4− 0.2|) = 0.35

Now, use the technique (1) to determine that the weight are (0.16, 0.20, 0.36, 0.28)T . Now, use the SFDWA
operator to aggregate the information as:

SFDWA (〈Q1, L1〉 , 〈Q2, L2〉 , 〈Q3, L3〉 , 〈Q4, L4〉)

=

(
4

∑
p=1

τp
(
d
(
Qp, Lp

))2
) 1

2

, λ = 2 > 0

=
(

0.16 (0.20)2 + 0.20 (0.25)2 + 0.36 (0.45)2 + 0.28 (0.35)2
) 1

2

= 0.3551

Similarly, us the other techniques (2) and (3) to determine the unknown weights, and after that,
use the aggregation operator to aggregate the spherical fuzzy information.

4. Algorithm

In this section, we develop an application of spherical fuzzy distance-weighted aggregation
operators for multiple criteria decision-making problems. Let G = {G1, G2, ..., Gm} be the finite set of
m alternatives, A = {A1, A2, ..., An} be the set of n attributes, and D = {D1, D2, ..., Dk} be the set of k
decision makers. Let τ = (τ1, τ2, ...τn)

T be the weighted vector of the attributes Ap (p = 1, 2, ..., n) such

that wp ∈ [0, 1] and
n
∑

p=1
wp = 1, and let ω = (ω1, ω2, ..., ωk)

T be the weighted vector of the decision

makers Ds (s = 1, 2, 3, ..., k) , such that ωs ∈ [0, 1] and
k
∑

s=1
ωs = 1. This method has the following steps.
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Step 1: In this step, we construct the spherical fuzzy decision making matrices, Ds =[
E(s)

ip

]
m×n

(s = 1, 2, ..., k), for the decision. It is noted that the criteria are of two types,

benefit criteria and cost criteria. If the spherical fuzzy decision matrices, Ds =
[

Es
ip

]
m×n

,

have cost criteria, then they will be converted into the normalized spherical fuzzy decision

matrices, Rs =
[
r(s)ip

]
m×n

, where rs
ip =

{
Es

ip, for benefit criteria Ap

Es
ip, for cost criteria Ap,

j = 1, 2, ..., n, and Es
ip

is the complement of Es
ip. If all the criteria have the same type, then there is no need for

normalization.
Step 2: Use the details of the ideal levels of each criterion to construct the ideal strategy.
Step 3: Use the family of the SFDWA operator to aggregate the spherical fuzzy decision matrix with

the constructed ideal strategy.
Step 4: Arrange the values of the all alternatives in ascending order, and select that alternative that

has the highest value. The alternative that has the highest value will be our best result or a
suitable alternative according to decision makers.

5. An Application to the Child Development Influence Environmental Factors

In this section, the proposed ranking method is applied to deal with the child development
influence environmental factors. Consider a committee of decision makers performing an evaluation
and selecting the environmental factor that influences the child development process, among three
countries G1(Pakistan), G2(China), and G3(Japan), with DM weights (0.4, 0.2, 0.4). The decision maker
evaluates this according to five criteria, which are given as follows:

(1) Housing (C1) : Does the child have space to play and explore? Is the child safe from injury or
contaminants such as lead?

(2) Income (C2) : Does the child receive adequate nutrition, fresh fruits, and vegetables? Does the
child have adequate clothing, e.g., snow coat and boots in winter weather?

(3) Employment (C3): Does the child have quality child care, when the parents are working?
(4) Education (C4) : Does someone read and play with the child? Does the child have access to

books and toys that stimulate literacy development?
(5) Environment (C5) : The environment plays a critical role in the development of children, and it

represents the sum total of the physical and psychological stimulation that the child receives.

Step 1: We construct the decision matrices as shown in Tables 1–3.

Table 1. Child development influence of environmental factors’ information D1.

Housing Income Employment Education Environment

G1 〈0.3, 0.8, 0.5〉 〈0.8, 0.4, 0.3〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.4〉 〈0.8, 0.3, 0.5〉
G2 〈0.2, 0.6, 0.7〉 〈0.3, 0.9, 0.1〉 〈0.5, 0.3, 0.7〉 〈0.5, 0.4, 0.2〉 〈0.5, 0.4, 0.2〉
G3 〈0.4, 0.8, 0.4〉 〈0.5, 0.8, 0.2〉 〈0.2, 0.3, 0.7〉 〈0.6, 0.6, 0.1〉 〈0.4, 0.2, 0.3〉

Table 2. Child development influence of environmental factors’ information D2.

Housing Income Employment Education Environment

G1 〈0.1, 0.5, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.3, 0.8, 0.6〉 〈0.6, 0.3, 0.2〉 〈0.8, 0.4, 0.3〉
G2 〈0.4, 0.4, 0.8〉 〈0.5, 0.7, 0.1〉 〈0.4, 0.2, 0.7〉 〈0.6, 0.1, 0.6〉 〈0.5, 0.6, 0.4〉
G3 〈0.2, 0.9, 0.3〉 〈0.7, 0.1, 0.4〉 〈0.3, 0.6, 0.4〉 〈0.6, 0.2, 0.4〉 〈0.8, 0.1, 0.4〉
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Table 3. Child development influence of environmental factors’ information D3.

Housing Income Employment Education Environment

G1 〈0.4, 0.2, 0.8〉 〈0.4, 0.4, 0.3〉 〈0.5, 0.4, 0.6〉 〈0.5, 0.1, 0.4〉 〈0.7, 0.3, 0.5〉
G2 〈0.2, 0.5, 0.7〉 〈0.6, 0.5, 0.4〉 〈0.2, 0.5, 0.8〉 〈0.7, 0.2, 0.4〉 〈0.8, 0.5, 0.2〉
G3 〈0.6, 0.4, 0.5〉 〈0.9, 0.3, 0.1〉 〈0.3, 0.1, 0.9〉 〈0.6, 0.2, 0.6〉 〈0.4, 0.4, 0.4〉

Since C1 and C3 are cost-type criteria and C2, C4, and C5 are benefit-type criteria, we need to
normalized the decision matrices. The normalized decision matrices are shown in Tables 4–6.

Table 4. Child development influence of environmental factors’ information R1.

Housing Income Employment Education Environment

G1 〈0.5, 0.8, 0.3〉 〈0.8, 0.4, 0.3〉 〈0.7, 0.5, 0.4〉 〈0.3, 0.3, 0.4〉 〈0.8, 0.3, 0.5〉
G2 〈0.7, 0.6, 0.2〉 〈0.3, 0.9, 0.1〉 〈0.7, 0.3, 0.5〉 〈0.5, 0.4, 0.2〉 〈0.5, 0.4, 0.2〉
G3 〈0.4, 0.8, 0.4〉 〈0.5, 0.8, 0.2〉 〈0.7, 0.3, 0.2〉 〈0.6, 0.6, 0.1〉 〈0.4, 0.2, 0.3〉

Table 5. Child development influence of environmental factors’ information R2.

Housing Income Employment Education Environment

G1 〈0.7, 0.5, 0.1〉 〈0.6, 0.3, 0.4〉 〈0.6, 0.8, 0.3〉 〈0.6, 0.3, 0.2〉 〈0.8, 0.4, 0.3〉
G2 〈0.8, 0.4, 0.4〉 〈0.5, 0.7, 0.1〉 〈0.7, 0.2, 0.4〉 〈0.6, 0.1, 0.6〉 〈0.5, 0.6, 0.4〉
G3 〈0.3, 0.9, 0.2〉 〈0.7, 0.1, 0.4〉 〈0.4, 0.6, 0.3〉 〈0.6, 0.2, 0.4〉 〈0.8, 0.1, 0.4〉

Table 6. Child development influence of environmental factors’ information R3.

Housing Income Employment Education Environment

G1 〈0.8, 0.2, 0.4〉 〈0.4, 0.4, 0.3〉 〈0.6, 0.4, 0.5〉 〈0.5, 0.1, 0.4〉 〈0.7, 0.3, 0.5〉
G2 〈0.7, 0.5, 0.2〉 〈0.6, 0.5, 0.4〉 〈0.8, 0.5, 0.2〉 〈0.7, 0.2, 0.4〉 〈0.8, 0.5, 0.2〉
G3 〈0.5, 0.4, 0.6〉 〈0.9, 0.3, 0.1〉 〈0.9, 0.1, 0.3〉 〈0.6, 0.2, 0.6〉 〈0.4, 0.4, 0.4〉

Step 2: The ideal strategy for choosing the best results is given in Table 7 and graphical representation
is shown in Figure 2.

Table 7. Ideal strategy.

Housing Income Employment Education Environment

ideal levels 〈0.9, 0.3, 0.1〉 〈0.9, 0.2, 0.1〉 〈0.9, 0.1, 0.2〉 〈0.9, 0.1, 0.1〉 〈0.9, 0.1, 0.2〉

Figure 2. Ideal strategy.
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Step 3: Use the SFWA aggregation operator defined in Theorem 1 to aggregate all the individual
normalized spherical fuzzy decision matrices. The aggregated spherical fuzzy decision matrix
is shown in Table 8:

Table 8. Collective spherical fuzzy decision information matrix R.

Housing Income Employment Education Environment

G1 〈0.69, 0.42, 0.22〉 〈0.64, 0.36, 0.33〉 〈0.63, 0.54, 0.38〉 〈0.49, 0.20, 0.31〉 〈0.77, 0.33, 0.41〉
G2 〈0.74, 0.48, 0.25〉 〈0.49, 0.67, 0.15〉 〈0.73, 0.30, 0.34〉 〈0.61, 0.19, 0.37〉 〈0.66, 0.56, 0.29〉
G3 〈0.40, 0.66, 0.35〉 〈0.76, 0.27, 0.20〉 〈0.74, 0.26, 0.26〉 〈0.60, 0.28, 0.29〉 〈0.61, 0.19, 0.36〉

The graphical representation for each alternatives is shown in Figures 3–5.

Figure 3. G1 representation.

Figure 4. G2 representation.
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Figure 5. G3 representation.

Step 4: Use the family of the SFDWA operator to aggregate the spherical individual fuzzy decision
matrix with the constructed ideal strategy. Here, the weight information is unknown. Therefore,
firstly, we utilize the above defined techniques (1)–(3) to calculate the associated weights.
The weights using the technique (1) are calculated as τ = (0.124, 0.216, 0.274, 0.154, 0.232)T .
Furthermore, the given weighted weights are (0.2, 0.3, 0.2, 0.1, 0.2)T . Use the associated and
weighted weights to find the weighted averaging weights as:

τ̂1 0.3× 0.124 + (1− 0.3) 0.2 = 0.1772
τ̂2 0.3× 0.216 + (1− 0.3) 0.3 = 0.2748
τ̂3 0.3× 0.274 + (1− 0.3) 0.2 = 0.2222
τ̂4 0.3× 0.154 + (1− 0.3) 0.1 = 0.1162
τ̂5 0.3× 0.232 + (1− 0.3) 0.2 = 0.2096

Now, use the SFDWA operator to find the distances form the ideal Strategy shown in
Tables 9 and 10.

Table 9. Aggregated distance information matrix.

Normalized Hamming Distance

Max Distance Min. Distance SFDWA SFDOWA SFDOWAWA

G1 0.4505 0.2265 0.3524 0.2354 0.2281
G2 0.4710 0.2515 0.3552 0.2922 0.2922
G3 0.5555 0.1575 0.2977 0.4452 0.4568

Table 10. Aggregated distance information matrix.

Normalized Euclidean Distance

Max Distance Min. Distance SFDWA SFDOWA SFDOWAWA

G1 0.3913 0.1903 0.3044 0.2053 0.1981
G2 0.4452 0.2061 0.3246 0.2433 0.2430
G3 0.4684 0.1320 0.2542 0.4016 0.4116

The graphical representation of the distance from each alternative using the normalized Hamming
distance is shown in Figure 6.
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Figure 6. Distance of alternative using the normalized Hamming distance.

The graphical representation of the distance from each alternative using the normalized Euclidean
distance is shown in Figure 7.

Figure 7. Distance of alternative using Normalized Euclidean Distance.

Step 5: The ranking is shown in Tables 11 and 12.

Table 11. Final ranking.

Ranking

Normalized Hamming Distance

Max Distance G3 > G2 > G1
Min. Distance G2 > G1 > G3

SFDWA G2 > G1 > G3
SFDOWA G3 > G2 > G1

SFDOWAWA G3 > G2 > G1

The graphical representation of the final ranking for each alternative using the normalized
Hamming distance is shown in Figure 8.
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Figure 8. Final ranking for each alternative using the normalized Hamming distance.

Table 12. Final ranking.

Ranking

Normalized Euclidean Distance

Max Distance G3 > G2 > G1
Min. Distance G2 > G1 > G3

SFDWA G2 > G1 > G3
SFDOWA G3 > G2 > G1

SFDOWAWA G3 > G2 > G1

The graphical representation of the final ranking for each alternative using the normalized
Euclidean distance is shown in Figure 9.

Figure 9. Final Ranking for each alternative using the normalized Euclidean distance.

Then, the ranking order of the alternative is G3 > G2 > G1, and the best outcome is G3.

6. Conclusions

The distance-weighted averaging operators are generally suitable for dealing with the MCGDM
problems in which the information takes the form of numerical values, yet they will fail when dealing
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with MCGDM problems in which the information takes the form of spherical fuzzy information.
In this paper, we establish the multiple objective optimization models based on the distance-weighted
averaging operators. Since in decision making, distance aggregation operators play a vital role,
therefore, in this paper, we developed distance aggregation operators, namely spherical fuzzy
distance-weighted averaging (SFDWA), spherical fuzzy distance order-weighted averaging (SFDOWA),
and spherical fuzzy weighted averaging order-weighted averaging (SFDOWAWA) operators with
information about attribute weights incompletely known. We also saw that how the SFDWA operator
provided a parametric family of aggregation operator and distance measures. To determine the
attribute, we proposed the optimization models based on these distance aggregated operators. Finally,
we designed an algorithm to solve MCGDM problems based on these distance-weighted averaging
operators under spherical fuzzy information with unknown information about the weights. The
child development influence environmental factors problem was given as a practical application to
demonstrate the usage and applicability of the proposed ranking approach. We saw graphically how
aggregated information of an attribute is similar to the ideal strategy, the calculated distance of each
attribute to the ideal strategy, and the ranking of the attributes.
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