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Abstract

:

This paper is concerned with the existence of positive solutions to singular Dirichlet boundary value problems involving φ-Laplacian. For non-negative nonlinearity f=f(t,s) satisfying f(t,0)≢0, the existence of an unbounded solution component is shown. By investigating the shape of the component depending on the behavior of f at ∞, the existence, nonexistence and multiplicity of positive solutions are studied.
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1. Introduction


We are concerned with the existence, nonexistence and multiplicity of positive solutions to the following problem


(d(t)φ(c(t)u′))′+λh(t)f(t,u)=0,t∈(0,1),u(0)=u(1)=0,



(1)




where λ∈R+:=[0,∞) is a parameter, φ:R→R is an odd increasing homeomorphism, c,d∈C([0,1],(0,∞)), h∈C((0,1),(0,∞)) and f∈C([0,1]×R+,R+).



Problem (1) arises naturally in studying radial solutions to the following equation


div(w(|x|)A(|∇v|)∇v)+λk(|x|)g(|x|,v)=0inΩ,v=0on∂Ω,



(2)




where Ω={x∈RN:R0<|x|<R1} with N≥2 and 0<R0<R1<∞,w∈C([R0,R1],(0,∞)),k∈C((R0,R1),R+) and g∈C(R+,R+). Indeed, applying change of variables, v(|x|)=u(t) and |x|=(R1−R0)t+R0, we can transform (2) into (1) with φ(t)=A(|t|)t,d(t)=w((R1−R0)t+R0)((R1−R0)t+R0)N−1,c(t)=1R1−R0,h(t)=(R1−R0)((R1−R0)t+R0)N−1k((R1−R0)t+R0) and f(t,u)=g((R1−R0)t+R0,u) (see, e.g., [1]).



Throughout this paper, unless otherwise stated, we assume that φ satisfies the following hypothesis:




	(A)

	
there exist increasing homeomorphisms ψ1,ψ2:R+→R+ such that


φ(x)ψ1(y)≤φ(xy)≤φ(x)ψ2(y)forallx,y∈R+.

















Let ξ:R+→R+ be an increasing homeomorphism. We denote by Hξ the set


{g∈C((0,1),R+):∫012ξ−1∫s12g(τ)dτds+∫121ξ−1∫12sg(τ)dτds<∞}.











Remark 1.

Assume that (A) holds. Then it follows that


φ−1(x)ψ2−1(y)≤φ−1(xy)≤φ−1(x)ψ1−1(y)forallx,y∈R+.



(3)




Indeed, (A) implies φ−1(φ(x)ψ1(y))≤xy for all x,y∈R+. Replacing x and y with φ−1(x) and ψ1−1(y), respectively, one has φ−1(xy)≤φ−1(x)ψ1−1(y) for all x,y∈R+. Similarly, it can be proved that φ−1(x)ψ2−1(y)≤φ−1(xy).



Moreover, Hψ1⊆Hφ⊆Hψ2. Indeed, by (3),


φ−1(1)∫012ψ2−1∫s12g(τ)dτds≤∫012φ−1∫s12g(τ)dτds≤φ−1(1)∫012ψ1−1∫s12g(τ)dτds,








which implies Hψ1⊆Hφ⊆Hψ2.Clearly, L1(0,1)⊆Hψ1.





For f(t,s)=f(s), we make the following notations: f0:=lims→0+f(s)φ(s)andf∞:=lims→∞f(s)φ(s).



For φ(s)=|s|p−2s with p>1, the existence of positive solutions to problem (1) has been extensively studied in the literature for the past several decades (see References [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] and references therein). For example, when p=2,h is at most O(1/t2−δ) as t→0+ for some δ>0 and f(t,s)=es, in Reference [3], it was shown that there exists λ0>0 such that (1) has a positive solution for λ∈(0,λ0) and it has no positive solution for λ>λ0. The same result was obtained in Reference [4] under the assumption that h satisfies ∫01ta(1−t)bh(s)ds<∞ for some 0<a,b<1 and f(t,s)=f(s) is a nondecreasing function satisfying, for some c>0,f(s)≥cs for all s≥0. When p∈(1,∞), in Reference [5], under the assumption that h∈L1(0,1) and f0=f∞=∞, it was shown that there exist λ*≥λ*>0 such that (1) has at least two positive solutions for λ∈(0,λ*), one positive solution for λ∈[λ*,λ*] and no positive solution for λ>λ*. In Reference [6], when h∈Hφ and f(t,s)=f(s) satisfies f(0)>0 and f∞=∞, it was shown that λ*=λ*.



In Reference [19], for an increasing homeomorphism φ satisfying



(A)′ there exist an increasing homeomorphism ψ1:R+→R+ and a function χ:R+→R+ such that


φ(x)ψ1(y)≤φ(xy)≤φ(x)χ(y)forallx,y∈R+,








the same result as Reference [5] was obtained when c≡d≡1,h∈Hψ1 and f0=f∞=∞. Moreover, if f(0)>0 is assumed, it was shown that λ*=λ*. Thus the result of Reference [19] extends the previous results of References [3,4,5,6] for p-Laplacian problem to singularly weighted φ-Laplacian one.



It looks like the assumption (A)′ is more general than the assumption (A), but it is not true. We point out that the assumption (A) is equivalent to the assumption (A)′. Indeed, let ψ1 be an increasing homeomorphism satisfying the first inequality in the assumption (A). Define ψ2:R+→R+ by ψ2(0)=0 and ψ2(y)=1/(ψ1(y−1)) for y>0. Then ψ2 is an increasing homeomorphism on R+. For x,y>0,0<φ(xy)ψ1(y−1)≤φ(x), and consequently φ(xy)≤φ(x)/ψ1(y−1)=φ(x)ψ2(y). Since the homeomorphism ψ2 satisfying the second inequality in the assumption (A) can be easily defined from ψ1, the assumption (A)′ is no longer useful.



For more general φ which does not satisfy (A), in Reference [20], when c≡d≡1 and 0≤h∈L1(0,1) with h≢0, it was shown that (1) has a positive solution uλ for all λ>0 satisfying limλ→0+uλ=0 in C1[0,1] under some assumptions on f which induces the sublinear nonlinearity if φ(s)=|s|p−1s with p>1. For other interesting results, we refer the reader to References [21,22,23] and the references therein.



The concavity of solutions plays a crucial role in defining operators on a cone and using fixed point theorems (see, e.g., References [2,6,19] and the references therein). It is well known that solutions to problem (1) with c≡d≡1 are concave functions on [0,1]. However, if c≢1 and d≢1, it is not obvious that the solutions to problem (1) are concave functions on [0,1]. In Reference [1], under the assumption that d is nondecreasing on [0,1], a lemma ([1], Lemma 2.4) was proved from which a suitable positive cone was defined and various results for positive solutions to problem (1) were proved.



However, the proof of the lemma ([1], Lemma 2.4) is not clear. In the proof of it, the fact c(t)u′(t) is non-increasing on (0,1) is used. However it may not be true, since the fact d(t)φ(c(t)u′(t)) is nonincreasing on (0,1) does not imply that φ(c(t)u′(t)) is nonincreasing on (0,1), even though d(t) is non-decreasing on [0,1] (see Remark 2(1)). Consequently, c(t)u′(t) may not be nonincreasing on (0,1).



In this paper, we show the existence of an unbounded solution component and prove the existence and nonexistence of positive solutions to problem (1) under suitable assumptions on nonlinearity f(t,s). Among other main results, we extend a result of Reference [6] for p-Laplacian problem to general φ-Laplacian one (see Theorem 4 below). For that purpose, we prove a similar result to that of Reference [1] (Lemma 2.4) under the weaker hypotheses to functions g and d (see Lemma 2 below). Also, the result (Theorem 4) extends that of Reference [19] in some way, since we assume that c≢1, d≢1 and h∈Hφ in it.



The rest of this paper is organized as follows. In Section 2, a solution operator related to problem (1) is introduced and some preliminaries are given. In Section 3, the main results (Theorems 2–4) are proved and a few examples to illustrate the assumptions in the main results are given.




2. Preliminaries


First we give some notations which will be used in this paper.



The usual maximum norm in a Banach space C[0,1] is denoted by ∥u∥∞:=maxt∈[0,1]|u(t)| for u∈C[0,1], and let c0:=mint∈[0,1]c(t)>0, d0:=mint∈[0,1]d(t)>0 and ρ1:=c0∥c∥∞ψ2−11∥d∥∞ψ1−11d0∈(0,1].



Define K to be a cone in C[0,1] by


K:={u∈C([0,1],R+):u(t)≥ρ14∥u∥∞fort∈[14,34]}.











Now we introduce a solution operator related to problem (1). Let g∈Hφ∖{0} be fixed, and define a function νg:(0,1)→R by νg(t)=νg1(t)−νg2(t) for t∈(0,1). Here νg1 and νg2 are functions defined by


νg1(t)=∫0t1c(s)φ−11d(s)∫stg(τ)dτds and νg2(t)=∫t11c(s)φ−11d(s)∫tsg(τ)dτds.








We claim that νg1 is a non-decreasing continuous function on (0,1) satisfying limt→0+νg1(t)=0 and limt→1−νg1(t)∈(0,∞]. Indeed, from the nonnegativity of g(≢0), it follows that νg1 is non-decreasing on (0,1) and limt→1−νg1(t)∈(0,∞]. By (3),


0≤νg1(t)≤1c0ψ1−11d0∫0tφ−1∫s12g(τ)dτdsfort∈(0,12).








Consequently, since g∈Hφ,limt→0+νg1(t)=0. Finally, we prove the continuity of νg1 on (0,1). Let x0∈(0,1) be fixed and let ϵ be chosen so that [x0−ϵ,x0+ϵ]⊆(0,1). Assume that {xn} is a sequence in [x0−ϵ,x0+ϵ] satisfying limn→∞xn=x0. Let


Gn(s)=K[0,xn](s)1c(s)φ−11d(s)∫sxng(τ)dτ and G0(s)=K[0,x0](s)1c(s)φ−11d(s)∫sx0g(τ)dτ








for s∈(0,1). Here KI is the characteristic function of I, that is, KI(x)=1 for x∈I and KI(x)=0 for x∈(0,1)∖I. Then limn→∞Gn(s)=G0(s) for each s∈(0,1) and for all n,


0≤Gn(s)≤K[0,x0+ϵ](s)1c(s)φ−11d(s)∫sx0+ϵg(τ)dτds≤K[0,x0+ϵ](s)1c0ψ1−11d0φ−1∫sx0+ϵg(τ)dτds∈L1(0,1).








By Lebesgue’s dominated convergence theorem, νg1 is continuous at x=x0. Thus, the claim is proved.



Similarly, it can be shown that νg2 is a non-increasing continuous function on (0,1) satisfying limt→0+νg2(t)∈(0,∞] and limt→1−νg2(t)=0. Then there exists an interval [σg1,σg2]⊊(0,1) satisfying νg(σ)=0 for all σ∈[σg1,σg2].



Define a function T:Hφ→C[0,1] by T(0)=0 and, for g∈Hφ∖{0},


T(g)(t)=∫0t1c(s)φ−11d(s)∫sσg(τ)dτds,if0≤t≤σ,∫t11c(s)φ−11d(s)∫σsg(τ)dτds,ifσ≤t≤1,



(4)




where σ=σ(g) is a zero of νg in (0,1), that is,


∫0σ1c(s)φ−11d(s)∫sσg(τ)dτds=∫σ11c(s)φ−11d(s)∫σsg(τ)dτds.



(5)







We notice that, although σ=σ(g) is not necessarily unique, the operator T is well defined. Indeed, if σ1 and σ2 are zeroes of νg in (0,1), then g(t)=0 for t∈[σ1,σ2], in view of the monotonicity of ν1 and ν2. Consequently, T(g) is independent of the choice of σ∈[σ1,σ2] (see, e.g., Reference [1]).



For g∈Hφ, consider the following problem


(d(t)φ(c(t)u′))′+g(t)=0,t∈(0,1),u(0)=u(1)=0.



(6)




For g=0, (6) has a unique zero solution due to the boundary conditions.



Lemma 1.

Assume that (A) holds, and let u be a solution to problem (6) with g∈Hφ∖{0}. Then there exists a subinterval [σ1,σ2] of (0,1) such that u′(t)>0,t∈(0,σ1), u′(t)=0 for t∈[σ1,σ2] and u′(t)<0,t∈(σ2,1). Moreover, T(g) is a unique solution to problem (6) and T(g)>0 on (0,1).





Proof. 

Since g≠0, 0 is not a solution to problem (6). From the fact (d(t)φ(c(t)u′(t)))′=−g(t)≤0 for t∈(0,1), it follows that d(t)φ(c(t)u′(t)) is continuous and non-increasing in (0,1). By the monotonicity of φ, since u(0)=u(1)=0 and c,d>0 on [0,1],


limt→0+d(t)φ(c(t)u′(t))∈(0,∞]andlimt→1−d(t)φ(c(t)u′(t))∈[−∞,0).








Consequently, there exists a subinterval [σ1,σ2] of (0,1) such that (dφ(cu′))(t)>0,t∈(0,σ1),(dφ(cu′))(t)=0 for t∈[σ1,σ2] and (dφ(cu′))(t)<0,t∈(σ2,1). Then, by the hypotheses on c,d and φ,u′(t)>0,t∈(0,σ1), u′(t)=0 for t∈[σ1,σ2] and u′(t)<0,t∈(σ2,1). Clearly, T(g) is a solution to problem (6) and T(g)>0 on (0,1). By directly integrating (6), it can be shown that T(g) is a unique solution to problem (6). ☐





Remark 2.






	(1)

	
It is easy to show that if g1>0,g2>0, g1g2 is non-increasing and g1 is non-decreasing on (a,b), then g2 is non-increasing on (a,b). However, if g2 is a sign-changing function on (a,b), it is not true that g2 is non-decreasing on (a,b). For example, g1(x)=x3 and g2(x)=(x−a)(x−b) with 0<a<b<1. Let x1 and x2 be a local maximum point and a local minimum point of g1g2, respectively. Note that 0<x1<a<a+b2<x2<b, since g2′(a+b2)=0 and (g1g2)′(a+b2)<0. Then g1 is a positive increasing function on (0,1) and g1g2 is decreasing on (x1,x2). However, g2 is decreasing on (x1,a+b2) and is increasing on (a+b2,x2).




	(2)

	
We notice that if we assume that c and d are non-decreasing on [0,1], by Remark 2(1), it is easy to check that, for any solution u to problem (6), u′ is non-increasing on (0,σ2], which implies that u is a concave function on [0,σ2]. However, in general, u may not be a concave function on [0,1].











Without the monotonicity of d, we prove a result which is analogous to Reference [1] (Lemma 2.4).



Lemma 2.

Assume that (A) hold and let g∈Hφ be given. Then



T(g)(t)≥min{t,1−t}ρ1∥T(g)∥∞ for t∈[0,1].





Proof. 

For g=0, 0 is a unique solution to problem (6) and there is nothing to prove.



Let g∈Hφ∖{0} and σ∈(0,1) be a constant satisfying (5), i.e., ∥T(g)∥∞=T(g)(σ). By (3), for t∈(0,σ],


T(g)(t)=∫0t1c(s)φ−11d(s)∫sσg(τ)dτds≥1∥c∥∞∫0tφ−11∥d∥∞∫sσg(τ)dτds≥1∥c∥∞ψ2−11∥d∥∞∫0tφ−1∫sσg(τ)dτds.








Similarly, ∥T(g)∥∞≤1c0ψ1−11d0∫0σφ−1∫sσg(τ)dτds. Recall that c0=mint∈[0,1]c(t)>0 and d0=mint∈[0,1]d(t)>0. Let w1(t):=∫0tφ−1∫sσg(τ)dτds for t∈[0,σ]. Since g≥0 on (0,1),w1′ is non-increasing on (0,σ], so that w1 is a concave function on (0,σ]. Consequently w1(t)≥tw1(σ) for t∈(0,σ], and T(g)(t)≥ρ1t∥T(g)∥∞ for t∈[0,σ]. Similarly, T(g)(t)≥ρ1(1−t)∥T(g)∥∞ for t∈[σ,1], and thus the proof is complete. ☐





By Lemmas 1 and 2, for each g∈Hφ,T(g)∈K, and (T(g))′(σ)=0 if and only if T(g)(σ)=∥T(g)∥∞.



From now on, we assume h∈Hφ. Define a function F:R+×K→C(0,1) by F(λ,u)(t)=λh(t)f(t,u(t)) for (λ,u)∈R+×K and t∈(0,1). Clearly, F(λ,u)∈Hφ for any (λ,u)∈R+×K.



Define an operator H:R+×K→K by H(λ,u)=T(F(λ,u)) for (λ,u)∈R+×K, i.e., for (λ,u)∈R+×K,


H(λ,u)(t)=∫0t1c(s)φ−11d(s)∫sσF(λ,u)(τ)dτds,if0≤t≤σ,∫t11c(s)φ−11d(s)∫σsF(λ,u)(τ)dτds,ifσ≤t≤1,



(7)




where σ=σ(λ,u) is a constant satisfying


∫0σ1c(s)φ−11d(s)∫sσF(λ,u)(τ)dτds=∫σ11c(s)φ−11d(s)∫σsF(λ,u)(τ)dτds.



(8)







To prove the complete continuity of H, the following lemma is needed.



Lemma 3.

Assume that (A) and h∈Hφ hold. Let M>0 be given and let {(λn,un)} be a bounded sequence in R+×K with λn+∥un∥∞≤M. If σn→0 or 1 as n→∞, then ∥H(λn,un)∥∞→0 and F(λn,un)(t)→0 as n→∞ for each t∈(0,1). Here, σn=σ(λn,un) is a constant satisfying (8) with λ=λn and u=un.





Proof. 

We only prove the case σn→0 as n→∞, since the other case can be dealt in a similar manner. Since there exists N>0 such that λf(t,u(t))≤N for all (t,λ,u)∈[0,1]×[0,M]×[0,M], by (3),


∥H(λn,un)∥∞=H(λn,un)(σn)=∫0σn1c(s)φ−11d(s)∫sσnλnh(τ)f(τ,un(τ))dτds≤1c0ψ1−1(Nd0)∫0σnφ−1∫sσnh(τ)dτds.








Consequently, it follows from h∈Hφ that ∥H(λn,un)∥∞→0asn→∞.



Since σn is a constant satisfying (8) with λ=λn and u=un,


limn→∞∫σn11c(s)φ−1(1d(s)∫σnsF(λn,un)(τ)dτ)ds=0,








which implies that, for all t∈(0,1), F(λn,un)(t)→0 as n→∞. ☐





With Lemma 3, by the argument similar to those in the proof of [2] (Lemma 3), it can be proved that H:R+×K→K is completely continuous (see also Reference [24], Lemma 3.3). So we omit the proof of it.



Lemma 4.

Assume that (A) and h∈Hφ hold. Then the operator H:R+×K→K is completely continuous.





Finally, we present a well-known theorem for the existence of an unbounded solution component by Leray and Schauder [25]:



Theorem 1.

(see, e.g., Reference [26], Corollary 14.12) Let X be a Banach space with X≠{0} and let K be a cone in X. Consider


x=H(λ,x),



(9)




where λ∈R+ and x∈K. If H:R+×K→K is completely continuous and H(0,x)=0 for all x∈K, then there exists an unbounded solution component C of (9) in R+×K emanating from (0,0).






3. Main Results


First, we make a list of assumptions on f(t,s) which will be used in this section.




	(F0)

	
f(t0,0)>0 for some t0∈(0,1).




	(F0)′

	
for any M>0, there exists a non-empty interval (αM,βM)⊊(0,1) such that



f(t,s)>0 for (t,s)∈[αM,βM]×[0,M].




	(F1)

	
lims→∞maxt∈[0,1]f(t,s)φ(s)=0.




	(F1)′

	
lims→∞maxt∈[0,1]f(t,s)ψ1(s)=0. Here ψ1 is the homeomorphism in the assumption (A).




	(F2)

	
there exist C^>0 and a non-empty interval (α,β)⊆(0,1) such that



f(t,s)≥C^φ(s) for (t,s)∈[α,β]×R+.




	(F3)

	
f(t,s)>0 for all (t,s)∈[0,1]×R+ and lims→∞mint∈[0,1]f(t,s)φ(s)=∞.









Remark 3.






	(1)

	
It is easy to see that (1) has a solution if and only if H(λ,·) has a fixed point in K. Since H(0,u)=0 for all u∈K, 0 is a unique solution to problem (1) with λ=0.




	(2)

	
Assume that f(t,0)=0 for all t∈[0,1]. Then 0 is a solution to problem (1) for any λ∈R+.




	(3)

	
Assume that (F0) holds. Then 0 is not a solution to problem (1) with λ>0. Let u be a solution to problem (1) with λ>0. Then, by Lemma 1, u is a positive solution, i.e., u(t)>0 for all t∈(0,1).











By Lemma 4, Theorem 1 and Remark 3, one has the following proposition.



Proposition 1.

Assume that (A),(F0) and h∈Hφ hold. Then there exists an unbounded solution component C emanating from (0,0) in R+×K such that (i)C∩({0}×K)={(0,0)} and (ii) for any (λ,u)∈C∖{(0,0)}, u is a positive solution to problem (1) with λ>0.





Now we give a lemma which provides useful information about the solution component C defined in Proposition 1.



Lemma 5.

Assume that (A),(F0),(F1) and h∈Hψ1 hold. Let J=[0,l] be a compact interval with l>0. Then there exists MJ>0 such that ∥u∥∞≤MJ for any positive solutions u to problem (1) with λ∈J.





Proof. 

Let m=(4l)−1ψ1(h*−1)>0. Here



h*=max1c0∫012ψ1−11d0∫s12h(τ)dτds,1c0∫121ψ1−11d0∫12sh(τ)dτds>0. By (F1), there exists sm>0 such that f(t,s)≤mφ(s) for (t,s)∈[0,1]×[sm,∞). Set Cm=max{f(t,s):(t,s)∈[0,1]×[0,sm]}>0. Assume to the contrary that there exists a sequence {(λn,un)} such that un is a positive solution to problem (1) with λ=λn∈J and ∥un∥∞→∞ as n→∞. Then, for sufficiently large N>0,Cm≤mφ(∥uN∥∞).



Let σN be a constant satisfying ∥uN∥∞=uN(σN). Assume σN≤12, since the case σN>12 can be dealt in a similar manner. Then, by (3),


∥uN∥∞=∫0σN1c(s)φ−11d(s)∫sσNλNh(τ)f(τ,uN(τ))dτds≤1c0∫012φ−11d0∫s12h(τ)dτl(Cm+mφ(∥uN∥∞))ds≤1c0∫012φ−11d0∫s12h(τ)dτ2lmφ(∥uN∥∞)ds≤h*φ−1(2lmφ(∥uN∥∞))≤h*ψ1−1(2lm)∥uN∥∞,








which implies m≥(2l)−1ψ1((h*)−1). This contradicts the choice of m. ☐





By similar arguments used to prove Lemma 5, one can prove the following result which shows the same property for the solution component C. For the convenience of readers, we give the proof of it.



Lemma 6.

Assume that (A),(F0),(F1)′ and h∈Hφ hold. Let J=[0,l] be a compact interval with l>0. Then there exists MJ>0 such that ∥u∥∞≤MJ for any positive solutions u to problem (1) with λ∈J.





Proof. 

Let m′=(4l)−1ψ1(h**−1)>0. Here


h**=max1c0∫012φ−11d0∫s12h(τ)dτds,1c0∫121φ−11d0∫12sh(τ)dτds.








By (F1)′, there exists sm′>0 such that f(t,s)≤m′ψ1(s) for (t,s)∈[0,1]×[sm′,∞). Set Cm′=max{f(t,s):(t,s)∈[0,1]×[0,sm′]}>0. Assume to the contrary that there exists a sequence {(λn,un)} such that un is a positive solution to problem (1) with λ=λn∈J and ∥un∥∞→∞ as n→∞. Then, for sufficiently large N>0,Cm′≤m′ψ1(∥uN∥∞).



Let σN be a constant satisfying ∥uN∥∞=uN(σN). Assume σN≤12, since the case σN>12 can be dealt in a similar manner. Then


∥uN∥∞≤1c0∫012φ−11d0∫s12h(τ)dτl(Cm′+m′ψ1(∥uN∥∞))ds≤1c0∫012φ−11d0∫s12h(τ)dτ2lm′ψ1(∥uN∥∞)ds≤1c0∫012φ−11d0∫s12h(τ)dτψ1(∥uN∥∞)dsψ1−1(2lm′)≤h**ψ1−1(2lm′)∥uN∥∞,








which contradicts the choice of m′. ☐





We remark that the assumptions in Lemma 5 are different from ones in Lemma 6. Indeed, let φ(s)=s+s2 and ψ1(s)=min{s,s2} for s∈R+. Then the first inequality in the assumption (A2) is satisfied. Clearly, (F1)′ implies (F1), since φ(1)ψ1(s)≤φ(s) for all s∈R+. For f(t,s)=s,lims→∞sφ(s)=0, but lims→∞sψ1(s)=1. Consequently, (F1) does not imply (F1)′. Since Hψ1⊆Hφ, we give an example of h satisfying h∈Hφ∖Hψ1. Let h(t)=t−2 for t>0. Note that ψ1−1(s)=max{s,s} and φ−1(s)=−1+1+4s2 for s∈R+. Then h∈Hφ, but h∉Hψ1, since


φ−1∫s12τ−2dτ=φ−1s−1−2=−1+1+4(s−1−2)2∈L10,12








and


ψ1−1∫s12τ−2dτ=ψ1−1s−1−2=s−1−2fors∈(0,13).











Now we give the first main result in this paper.



Theorem 2.

Assume that (A),(F0) and either (F1) and h∈Hψ1 or (F1)′ and h∈Hφ hold. Then for any λ∈(0,∞), there exists a positive solution uλ to problem (1) such that (λ,uλ)∈C and ∥uλ∥∞→0 as λ→0+. Moreover, if (F0)′ is assumed instead of (F0), then ∥uλ∥∞→∞ as λ→∞. Here, C is the solution component defined in Proposition 1.





Proof. 

Let λ*=sup{λ:(λ,uλ)∈C}. Since C is unbounded in R+×K, by Lemma 5 or Lemma 6, λ*=∞, so that for any λ∈(0,∞), there exists a positive solution uλ to problem (1) such that (λ,uλ)∈C and ∥uλ∥∞→0 as λ→0+.



Next, we show that if (F0)′ is assumed instead of (F0), then ∥uλ∥∞→∞ as λ→∞. Assume to the contrary that there exists a sequence {(λn,un)} in C such that λn→∞ as n→∞, but there exists M>0 such that ∥un∥∞≤M for all n. Then, by (F0)′, there exists δM>0 such that f(t,un(t))≥δM for all n and all t∈[αM,βM]. For each n, let σn be a constant satisfying un(σn)=∥un∥∞ and let γM=αM+βM2. Suppose that σn≥γM (the case σn<γM is similar). Then


∥un∥∞≥un(αM)=∫0αM1c(s)φ−11d(s)∫sσnλnh(τ)f(τ,un(τ))dτds≥∫0αM1c(s)φ−11d(s)∫αMγMh(τ)dτλnδMds≥γM*φ−1(hM*λn)→∞asn→∞,








which contradicts the fact that ∥un∥∞≤M for all n. Here,


γM*:=1∥c∥∞min{αM,1−βM}>0andhM*=δM∥d∥∞min∫αMγMh(τ)dτ,∫γMβMh(τ)dτ>0.








Thus, the proof is complete. ☐





Next we give a lemma about the λ-direction block for positive solutions to problem (1).



Lemma 7.

Assume that (A),(F2) and h∈Hφ hold. Then there exists λ¯>0 such that (1) has no positive solution for λ>λ¯.





Proof. 

Let u be a positive solution to problem (1) with λ>0 and u(σ)=∥u∥∞. By (F2), f(t,s)>C^φ(s) for (t,s)∈[α,β]×R+. Let γ=α+β2. We only consider the case σ≥γ, since the case σ<γ can be dealt in a similar manner. By Lemma 1, u(t)≥u(α) for t∈[α,γ], and consequently, f(t,u(t))≥C^φ(u(α)) for t∈[α,γ]. Then, by (3),


u(α)=∫0α1c(s)φ−11d(s)∫sσλh(τ)f(τ,u(τ))dτds≥1∥c∥∞∫0αφ−1∫αγh(τ)dτ∥d∥∞−1λC^φ(u(α))ds≥h*φ−1(∥d∥∞−1λC^φ(u(α)))≥h*ψ2−1(∥d∥∞−1λC^)u(α).








Here h*=1∥c∥∞min∫0αψ2−1∫αγh(τ)dτds,∫β1ψ2−1∫γβh(τ)dτds>0. Consequently,


λ≤∥d∥∞C^ψ21h*=:λ¯,








which completes the proof. ☐





Now we give the second main result in this paper.



Theorem 3.

Assume that (A),(F2) and h∈Hφ hold. Then there exists λ*>0 such that (1) has at least one positive solution for λ∈(0,λ*) and no positive solution for λ>λ*.





Proof. 

By Proposition 1, there exists at least one positive solution to problem (1) for all small λ>0. Let λ1 be a positive number such that (1) has a positive solution u1 for λ=λ1. To complete the proof of Theorem 3, by Lemma 7, it suffices to show that (1) has a positive solution for all λ∈(0,λ1).



Let λ∈(0,λ1) be fixed, and consider the following modified problem


(d(t)φ(c(t)u′))′+λh(t)f¯(t,u)=0,t∈(0,1),u(0)=u(1)=0,



(10)




where f¯(t,u)=f(t,γ(t,u)) and γ:[0,1]×R→R is defined by


γ(t,u)=u1(t),ifu≥u1(t),u,if0<u<u1(t),0,ifu≤0.








Define Tλ:C[0,1]→C[0,1] by Tλ(u)=T(F^(u)) for u∈C[0,1], where F^(u)(t)=λh(t)f¯(t,u(t)) for u∈C[0,1] and t∈(0,1). Then it is easy to see that u is a solution to problem (10) if and only if u=Tλu, and Tλ is completely continuous on C[0,1]. From the definition of γ and the continuity of f, it follows that there exists N1>0 such that ||Tλu||∞<N1 for all u∈C[0,1]. Then, by Schauder fixed point theorem, there exists uλ∈C[0,1] such that Tλuλ=uλ. Consequently, by Lemma 1, uλ is a positive solution to problem (10). We claim that uλ(t)≤u1(t) for all t∈[0,1]. If the claim is not true, since uλ(0)=uλ(1)=u1(0)=u1(0)=0, there exists an interval (t1,t2)⊆(0,1) such that uλ(t)>u1(t) for all t∈(t1,t2),uλ(t1)=u1(t1) and uλ(t2)=u1(t2). Then there exists t^∈(t1,t2) such that


(uλ−u1)(t^)=max{(uλ−u1)(t):t∈[t1,t2]}>0,



(11)




i.e., uλ′(t^)=u1′(t^). By the definition of γ and the fact λ<λ1,


−(d(t)φ(c(t)uλ′(t)))′≤−(d(t)φ(c(t)u1′(t)))′fort∈(t1,t2).



(12)




For t∈(t1,t^], integrating (12) from t to t^, we have uλ′(t)≤u1′(t). Integrating it from t1 and t^ again, uλ(t^)≤u1(t^), which contradicts (11). Consequently, the claim is proved and uλ is a positive solution to problem (1) by the definition of γ. Thus, the proof is complete. ☐





Next we give a lemma about a priori estimates for solutions to problem (1).



Lemma 8.

Assume that (A),(F3) and h∈Hφ hold. Let I=[l1,∞) with l1>0 be given. Then there exists MI>0 such that ∥u∥∞≤MI for any positive solutions u to problem (1) with λ∈I.





Proof. 

Suppose to the contrary that there exists a sequence {(λn,un)} such that un is a positive solution to problem (1) with λ=λn∈I and ||un||∞→∞ as n→∞.



Take C*=4∥d∥∞(h0l1)−1ψ2(4∥c∥∞)+1, where h0=min{h(t):t∈[14,34]}>0. By (F3), there exists K>0 such that f(t,s)≥C*φ(s) for (t,s)∈[0,1]×(K,∞). Since un∈K for all n,


un(t)≥ρ14∥un∥∞fort∈[14,34].








For sufficiently large N>0,


F(λN,uN)(t)=λNh(t)f(t,uN(t))≥l1C*h(t)φ(uN(t))for allt∈[14,34].








Let σN be a constant satisfying uN(σN)=∥uN∥∞. We only consider the case σN≥12, since the case σN<12 can be proved similarly. Since uN(t)≥uN(14) for t∈[14,σN],


uN14=∫0141c(s)φ−11d(s)∫sσF(λN,uN)(τ)dτds≥1∥c∥∞∫014φ−1∫1412h(τ)dτ∥d∥∞−1l1C*φ(uN14)ds≥14∥c∥∞ψ2−1h0l1C*4∥d∥∞uN14,








which contradicts the choice of C*, and thus the proof is complete. ☐





Remark 4.

Assume that (F3) holds. Since lims→∞mint∈[0,1]f(t,s)φ(s)=∞, there exists M>0 such that f(t,s)>φ(s) for all (t,s)∈[0,1]×[M,∞). By the positivity of f(t,s), there exists C^∈(0,1) such that


f(t,s)≥C^φ(s)forall(t,s)∈[0,1]×[0,M].








Consequently, f(t,s)≥C^φ(s) for all (t,s)∈[0,1]×R+. Thus (F3) implies (F2).





Now we give the third main result in this paper.



Theorem 4.

Assume that (A),(F3) and h∈Hφ hold. Then there exists λ*>0 such that (1) has two positive solutions for λ∈(0,λ*), at least one positive solution for λ=λ* and no positive solution for λ>λ*. Moreover, for λ∈(0,λ*), two positive solutions uλ1 and uλ2 can be chosen so that ∥uλ1∥∞→0 and ∥uλ2∥∞→∞ as λ→0+.





Proof. 

Let λ*:=sup{λ^>0: (1) has two positive solutions for all λ∈(0,λ^)}. Then, by Proposition 1, Lemmas 7 and 8, λ*∈(0,∞) is well-defined. Indeed, let {(λn,un)} be a sequence in the unbounded solution component C defined in Proposition 1 satisfying λn+∥un∥∞→∞ as n→∞. By Lemma 7, λn≤λ¯, and ∥un∥∞→∞ as n→∞. Then, by Lemma 8, λn→0 as n→∞. Thus the shape of the continuum of C is determined. Consequently, (1) has two positive solutions uλ1,uλ2 for all small λ>0 such that ∥uλ1∥∞→0 and ∥uλ2∥∞→∞ as λ→0+, and it has no positive solution for all large λ>0. Thus λ*∈(0,∞) is well-defined.



By the choice of λ*, (1) has at least two positive solutions for λ∈(0,λ*), and, by the complete continuity of H and Lemma 8, it has at least one positive solution for λ=λ*. By the same argument as in the proof of Reference [6] (Theorem 1.1), (1) has no positive solution for λ>λ*, and thus the proof is complete. ☐





Finally, we give a few examples which illustrates the assumptions in the main results.



Example 1.

Let φ be an odd function satisfying φ(x)=x+x2 for x∈R+. It is easy to check that (A) is satisfied for ψ1(y)=min{y,y2} and ψ2(y)=max{y,y2}. Let h:(0,1)→(0,∞) be a function defined by h(t)=t−a(1−t)−b for t∈(0,1). It is easy to see that h∈Hψ1∖L1(0,1) for any a,b∈[1,2) and h∈Hφ∖L1(0,1) for any a,b∈[1,3).



Finally, we give some examples of f=f(t,s) satisfying the assumptions in the main results.




	(1)

	
Let f(t,s)=max{0,s(1−s)} for (t,s)∈[0,1]×R+. Clearly, (F0) and (F1)′ are satisfied.




	(2)

	
Let f(t,s) be any nonnegative continuous function satisfying


f(t,s)=1 for (t,s)∈s+1s+2,s+2s+3×R+








and


f(t,s)≤[φ(s)]12+1 (resp., f(t,s)≤[φ(s)]13+1) for (t,s)∈[0,1]×R+.











Then (F0)′ is satisfied for (αM,βM)=s+1s+2,s+2s+3 and (F1) (resp., (F1)′) is satisfied.




	(3)

	
Let f(t,s) be any nonnegative continuous function satisfying


f(t,s)=(1+t)φ(s)+1 for (t,s)∈14,34×R+ and f(t,s)≤2φ(s)+1 for (t,s)∈[0,1]×R+.











Then (F2) is satisfied for C^=54 and (α,β)=(14,34), but (F3) does not hold, since lims→∞mint∈[0,1]f(t,s)φ(s)≤2.




	(4)

	
Let f(t,s)=es or f(t,s)=1+(sint+2+s)φ(s) for (t,s)∈[0,1]×R+. Then (F3) is satisfied.
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