
mathematics

Article

Dynamic Parallel Mining Algorithm of Association
Rules Based on Interval Concept Lattice

Yafeng Yang 1,2,3 , Ru Zhang 4 and Baoxiang Liu 1,2,*
1 College of Science, North China University of Science and Technology, 21 Bohai Road,

Tangshan 063210, China
2 Hebei Key Laboratory of Data Science and Application, 21 Bohai Road, Tangshan 063210, China
3 Tangshan Key Laboratory of Engineering Computing, 21 Bohai Road, Tangshan 063210, China
4 Department of mathematics and information sciences, Tangshan Normal University, No. 156 Jianshe North

Road, Tangshan 063009, China
* Correspondence: www1673@163.com

Received: 19 May 2019; Accepted: 17 July 2019; Published: 19 July 2019
����������
�������

Abstract: An interval concept lattice is an expansion form of a classical concept lattice and a rough
concept lattice. It is a conceptual hierarchy consisting of a set of objects with a certain number or
proportion of intent attributes. Interval concept lattices refine the proportion of intent containing
extent to get a certain degree of object set, and then mine association rules, so as to achieve minimal
cost and maximal return. Faced with massive data, the structure of an interval concept lattice is more
complex. Even if the lattice structures have been united first, the time complexity of mining interval
association rules is higher. In this paper, the principle of mining association rules with parameters
is studied, and the principle of a vertical union algorithm of interval association rules is proposed.
On this basis, a dynamic mining algorithm of interval association rules is designed to achieve rule
aggregation and maintain the diversity of interval association rules. Finally, the rationality and
efficiency of the algorithm are verified by a case study.
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1. Introduction

A concept lattice [1] is a conceptual hierarchy constructed according to the binary relationship
between objects and attributes in data sets. As an effective tool for knowledge representation, a concept
lattice is widely used in knowledge discovery, rule mining, information retrieval, and other fields
because of its accuracy and completeness [2–4].

Concept lattice theory mainly focuses on the following aspects: A concept lattice extent model [5–7],
concept lattice construction and rule extraction [8–10], concept lattice merging [11–15], concept lattice
reduction [16,17], concept lattice modification [18], etc.

In a classic concept lattice, the concept extents have all the attributes or only one attribute,
sometimes. Hence, the support and confidence degree of the extracted association rules would be
reduced greatly. To solve this problem, the authors have put forward a new concept lattice structure:
An interval concept lattice, and the construction methods, compression, and maintenance of lattice
structure were studied [19–22].

From the perspective of a concept lattice, the relationship between intents is association rules,
while the relationship between extents is its embodiment. A concept lattice is the unity of intent and
extent, and the relationship between its nodes also reflects the relationship between the generalization
and specialization of concepts. Therefore, a concept lattice is suitable for the application of a basic data
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structure in association rules mining. Many scholars have conducted in-depth research on rule mining
based on a concept lattice [23–28].

Previously, we studied the structure characteristics of an interval concept lattice and gave two
measurement standards of the uncertainty rule—precision and uncertainty. Then, a mining model of
interval association rule with parameters was constructed [29]. The algorithm can mine and optimize
rules according to the adjustment of parameters, which is of great significance to the mining of rules
with uncertainties. Next, the complex relationship between interval parameters and association
rules and the optimization algorithm of the rule base were given [30]. By adjusting the parameters,
the purpose of controlling and optimizing rules was achieved.

In the era of data explosion, people’s demand for data processing is getting higher and higher.
The real-time updating of data requires the efficient processing of dynamic data. For example, in the
supermarket shopping system, the massive transaction information generated every day can only
mine local association rules, but cannot provide a timely and accurate decision-making plan for
decision-makers as a whole. However, the time and space complexity of the process will increase
rapidly with the increase of the amount of data, and the mining association rules will be missing.
Therefore, it is necessary to study the dynamic mining of interval association rules in order to grasp
uncertain rules in real time.

The authors have studied the consistency of interval concept lattices, discussed the decision
theorem of the concept of consistent intent, and designed a vertical union algorithm of interval concept
lattices based on the breadth-first principle [31]. Furthermore, the sequential traversal method was
used to scan the lattice structure, and a union algorithm of interval concept lattices was proposed from
a transverse point of view [32]. Based on the research results of the union algorithm of interval concept
lattice, this paper carries out the dynamic mining of interval association rules.

2. Concepts and Methods

2.1. Interval Concept Lattice

Definition 1 ([33]). For the formal context (U, A, R), where U = {x1, x2, · · · , x3} is the object sets and each
xi(i ≤ n) denotes an object; A = {a1, a2, · · · , am} is the attribute set, and each a j( j ≤ m) denotes an attribute;
R is the binary relationship between U and A. R ⊆ U × a. If (x, a) ∈ R, then we record that x has the attribute a,
and write as xRa.

Definition 2 ([33]). For the formal context (U, A, R), operators f , g are defined as follows:

∀x ∈ U, f (x) =
{
y
∣∣∣∀y ∈ A, xRy

}
, i.e., f is the mapping between x and its attributes;

∀y ∈ a, g(y) =
{
x
∣∣∣∀x ∈ U, xRy

}
, i.e., g is the mapping between y and its objects.

Definition 3 ([33]). For the formal context (U, A, R), if f (X) = Y, g(Y) = X for X ⊆ U, Y ⊆ A, then the
sequence < X, Y > is called a formal concept, or concept for short. X is the extent and Y is the intent.

Rough concept lattice RL(U, A, R) based on rough set theory was studied in Reference [7],
where the upper approximation extent and lower approximation extent refer to the maximal concept
set and the minimal concept set respectively which have all the attributes in Y ⊆ A.

Definition 4 ([33]). For the formal context (U, A, R) and its rough concept lattice RL(U, A, R), (M, N, Y) is
the rough concept. Set an interval [α, β] (0 ≤ α ≤ β ≤ 1), then α upper bound extent Mα and β lower bound
extent Mβ are:

Mα =
{
x
∣∣∣x ∈M,

∣∣∣ f (x)∩Y
∣∣∣/|Y| ≥ α, 0 ≤ α ≤ 1

}
(1)

Mβ =
{
x
∣∣∣x ∈M,

∣∣∣ f (x)∩Y
∣∣∣/|Y| ≥ β, 0 ≤ α ≤ β ≤ 1

}
(2)
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Y is the concept intent and |Y| is the number of elements in Y, that is base number. Mα refers to the objects
which may be covered by α× |Y| attributes or more in Y. Mβ refers to the objects which may be covered by β× |Y|
attributes or more in Y.

Definition 5 ([33]). Let (U, A, R) be a formal context and (Mα, Mβ, Y) be an interval concept. Then, Y is the
intent; Mα is the α upper bound extent and Mβ is the β lower bound extent.

Definition 6. Suppose that (U, A, R) has two interval concepts, (Mα
1 , Mβ

1, Y1) and (Mα
2 , Mβ

2, Y2) . If the two

meet Y1 ⊆ Y2, |Y2| − |Y1| = 1, Mα
1 = Mα

2 and Mβ
1 = Mβ

2, then (Mα
1 , Mβ

1, Y1) is called the redundant concept.

Definition 7. Suppose that (U, A, R) has an interval concept, (Mα, Mβ, Y) . If it meets Mα = Mβ = ∅,
then (Mα, Mβ, Y) is called the empty concept.

Definition 8. Suppose (U, A, R) has an interval concept, C = (Mα, Mβ, Y) . If C is neither the redundant
concept nor the empty concept, then C is called the existence concept. Lβα(U, A, R) is a collection of all the
existence concepts.

Definition 9. Lβα(U, A, R) refers to all the [α, β] interval concepts, which include: Existence concepts, redundant
concepts, and empty concepts, that is:

(M1
α, M1

β, Y1) ≤ (M2
α, M2

β, Y2)⇔ Y1 ⊇ Y2, (3)

Then “≤”is called the partial order relationship of Lβα(U, A, R).

Definition 10. If all the concepts in Lβα(U, A, R) meet “≤”, then Lβα(U, A, R) is called interval concept lattice
on the formal context (U, A, R).

Definition 11. In the interval concept lattice Lβα(U, A, R), if C = (Mα, Mβ, Y) ∈ Lβα(U, A, R), then the layer
of the Lattice Structure is |A|+ 1 and node C is at Layer |Y| . In particular, when Y = ∅, C was recorded on the
zeroth layer.

2.2. Interval Association Rules

Formal context (U, A, R) can describe a database, where U represents an object set; A represents
an attribute set. For x ∈ U, a ∈ A, xRa represents the item-set where a belongs to x.

Definition 12. Given the minimal support threshold θ, for any interval concept node C, if the number of objects
in the upper bound extent is not less than |U| × θ, then C is called the α-upper bound frequent node, and the
corresponding Y is called the α-upper bound frequent item-set; if the number of objects in the lower bound extent
is not less than |U| × θ, then C is called the β-lower bound frequent node, the corresponding Y is called the
β-lower bound frequent item-set.

The father and son concept in the interval concept lattice does not have a specific relationship in
frequency, which is different from the classical concept lattice.

If the association rule A⇒ B corresponds to the interval concept node (C1, C2)(C1 = (Mα
1 , Mβ

1, Y1),

C2 = (Mα
2 , Mβ

2, Y2)) and C1 ≥ C2, then rule A⇒ B is generated by node binary (C1, C2).
The α-upper bound association rules and the β-lower bound association rules can be extracted by

two lower bound extents of the interval concept. The calculation methods of confidence and support
are as follows:
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The α-upper bound rule A⇒ B :

Con f (A⇒ B) =
∣∣∣Mα

2

∣∣∣/∣∣∣Mα
1

∣∣∣ (4)

Support(A⇒ B) =
∣∣∣Mα

2

∣∣∣/|U| (5)

The β-lower bound A⇒ B :

Con f (A⇒ B) =
∣∣∣∣Mβ

2

∣∣∣∣/∣∣∣∣Mβ
1

∣∣∣∣ (6)

Support(A⇒ B) =
∣∣∣∣Mβ

2

∣∣∣∣/|U| (7)

Definition 13. Given the minimal support threshold θ and the minimal confidence threshold c.
Node binary (C1, C2) is called α-upper bound candidate binary which consists of two frequent concept nodes
C1 = (Mα

1 , Mβ
1, Y1) and C2 = (Mα

2 , Mβ
2, Y2), where Mα

2 ⊆ Mα
1 and

∣∣∣Mα
2

∣∣∣/∣∣∣Mα
1

∣∣∣ ≥ c. When (C1, C2) meets

Mβ
2 ⊆Mβ

1 and
∣∣∣∣Mβ

2

∣∣∣∣/∣∣∣∣Mβ
1

∣∣∣∣ ≥ c, it is called β-lower bound candidate binary.

Definition 14. For interval association rule A⇒ B, if A∪ B is frequent item-sets, Support(A⇒ B) ≥ θ and
Con f (A⇒ B) ≥ c , i.e.,

∣∣∣P(A∪ B)
∣∣∣/∣∣∣P(A)

∣∣∣ ≥ c, then it is called the strong association rule.

Definition 15. If A⇒ B is the strong association rule, then C⇒ D must be the strong association rule,
then we say “A⇒ B can derive C⇒ D”.

Theorem 1. If C ⊂ D, then A⇒ B can derive A⇒ C .

Proof. C ⊂ B⇒ |C| < |B| ⇒ |A∪C| < |A∪ B| ⇒ Support(A⇒ C) = |C| < |U| < Support(A⇒ B)=
|B|/|U| and Con f (A⇒ C) = |A∪C|/|A| < Con f (A⇒ B) = |A∪ B|/|A| . �

Theorem 2. In the interval concept lattice, if (C1, C2) and (C1, C3) are candidate binaries and C3 > C2,
then all the rules in Rules(C1, C3) can be derived from Rules(C1, C2).

Definition 16. Suppose A⇒ B is α-upper bound association rule derived from (C1, C2). The upper
bound extent of C1 is Mα

1 = {x1, x2, . . . , xm, }. The intent of C1 is Y1.The upper bound extent of C2 is
Mα

2 = {o1, o2, . . . , om, }. The intent of C2 is Y2. The precision of A⇒ B is

PDA⇒B = min
{

m
min
i=1

|xi.Y∩Y1|

|Y1|
,

n
min
i=1

|oi.Y∩Y2|

|Y2|

}
(8)

The uncertainty of A⇒ B is UDA⇒B = 1− PDA⇒B.

Definition 17. Let Ω = {Rule1, Rule2, · · · , Rulek} denotes to α -rules set, the uncertainty of Rulei is UDα−Ri,
then the uncertainty of α -rules sets is

UDα−Rluesset =
k

max
i=1

(UDα−Ri) (9)

Let Ω = {Rule1, Rule2, · · · , Rulem} denote to β -rules set, the uncertainty of Rulej is UDβ−Ri, then the
uncertainty of β -rules sets is

UDβ−Rluesset =
m

max
j=1

(UDβ−Ri) (10)

and the uncertainty of interval association rules is UD = max(UDα−Rluesset, UDβ−Rluesset).
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Theorem 3. Suppose the minimal support threshold θ and the minimal confidence threshold c . In the same
context, when one of the interval parameters α and β is unchanged and the other is larger, the process of extracting
association rules will change as follows:

(1) The number of frequent nodes generated does not increase;
(2) The node with the largest intent in frequent nodes does not increase in intent cardinality.
(3) The number of candidate binary arrays generated does not increase;
(4) The number of generated association rules does not increase.

3. Algorithm and Results

In the mining method of interval association rules, the lattice structure is united with the vertical
union algorithm first, and then the association rules are extracted by using the parametric association
rules mining algorithm. Because the structure of the interval concept lattice is complex, the memory
space required is large, and the time complexity of mining interval association rules after vertical
merging is high, this method does not meet the requirements of the current era of large data. In this
section, the principle of a vertical union algorithm of interval association rules is proposed, and on this
basis, a dynamic mining algorithm of interval association rules is designed.

3.1. Vertical Union Principle of Interval Association Rules

If the interval concept lattices Lβα(U1, A1, R1) and Lβα(U2, A2, R2) are consistent and A1 = A2 = A.

U1 ∩U2 = φ, then Lβα(U, A, R) can be gotten through the union of the two. Suppose the minimal
support threshold θ and the minimal confidence threshold c, we can extract the association rules of

Lβα(U1, A, R1) and Lβα(U2, A, R2). Here, α−Rluesset∗ is the upper bound association rules set derived

from Lβα(U1, A, R1). α−Rluesset∗∗ is the upper bound association rules set derived from Lβα(U2, A, R2);

α−Rluesset is the upper bound association rules set derived from Lβα(U, A, R).

C∗1 = (Mα∗
1 , Mβ∗

1 , Y1), C∗2 = (Mα∗
2 , Mβ∗

2 , Y2) and C∗1, C∗2 ∈L
β
α(U1, A, R1);

C∗∗1 = (Mα∗∗
1 , Mβ∗∗

1 , Y1), C∗∗2 = (Mα∗∗
2 , Mβ∗∗

2 , Y2) and C∗∗1 , C∗∗2 ∈L
β
α(U2, A, R2);

C1 = (Mα
1 , Mβ

1, Y1), C2 = (Mα
2 , Mβ

2, Y2) and C1, C2 ∈L
β
α(U, A, R).

Now, taking the upper bound extent as an example (the union principle of lower bound extent
and upper bound extent), the vertical union of interval association rules α−Rluesset∗ and α−Rluesset∗∗

is carried out as follows:

Theorem 4. If C∗1, C∗2 constitutes the association rule, and Rules(C∗1, C∗2)∈α−Rluesset∗; C∗∗1 , C∗∗2 the constitutes
association rule, and Rules(C∗∗1 , C∗∗2 )∈α−Rluesset∗∗, then Rules(C1, C2)∈α−Rluesset.

Proof. Rules(C∗1, C∗2)∈α−Rluesset∗ and Rules(C∗∗1 , C∗∗2 )∈α−Rluesset∗∗, so:
Relation 1: Mα∗

2 ⊆Mα∗
1 and Mα∗∗

2 ⊆Mα∗∗
1 , then Mα∗

2 ∪Mα∗∗
2 ⊆Mα∗

1 ∪Mα∗∗
1 , i.e., Mα

2 ⊆Mα
1 .

Relation 2:
∣∣∣Mα∗

2

∣∣∣∣∣∣Mα∗
1

∣∣∣ ≥ c and
∣∣∣Mα∗∗

2

∣∣∣∣∣∣Mα∗∗
1

∣∣∣ ≥ c, then

∣∣∣Mα∗
2

∣∣∣+ ∣∣∣Mα∗∗
2

∣∣∣ ≥ c
(∣∣∣Mα∗

1

∣∣∣+ ∣∣∣Mα∗∗
1

∣∣∣), ∣∣∣Mα∗
2

∣∣∣+ ∣∣∣Mα∗∗
2

∣∣∣∣∣∣Mα∗
1

∣∣∣+ ∣∣∣Mα∗∗
1

∣∣∣ ≥ c, i.e.,

∣∣∣Mα
2

∣∣∣∣∣∣Mα
1

∣∣∣ ≥ c.

Then Rules(C1, C2)∈α−Rluesset can be derived from two relations. �
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Theorem 5. If at least one of the two association rules Rules(C∗1, C∗2) and Rules(C∗∗1 , C∗∗2 ) in Lβα(U1, A, R1) and

Lβα(U2, A, R2) does not exist, then there must be no Rules(C1, C2) in α−Rluesset.

Because the vertical union of interval association rules is based on the objects set with certain
proportion attributes, it is necessary to introduce support, confidence, accuracy, and uncertainty to
measure accurately.

The upper bound frequencies of C∗1, C∗2 are θ∗1 and θ∗2, respectively.
The upper bound frequencies of C∗∗1 , C∗∗2 are θ∗∗1 and θ∗∗2 , respectively.
The upper bound frequencies of C1, C2 are θ1 and θ2, respectively.
The support degree, confidence degree, accuracy, and uncertainty of Rules(C1, C2) obtained by

vertical union of association rules Rules(C∗1, C∗2) and Rules(C∗∗1 , C∗∗2 ) can be deduced from frequency to
its solution formula, as follows.

Theorem 6. The support degree of Rules(C1, C2) is:

Support(C1 ⇒ C2) =
|U1|θ∗2 + |U2|θ∗∗2
|U1|+ |U2|

(11)

Theorem 7. The confidence degree of Rules(C1, C2) is

Con f (C1 ⇒ C2) =
|U1|θ∗2 + |U2|θ∗∗2
|U1|θ∗1 + |U2|θ∗∗1

(12)

Theorem 8. Rules(C1, C2) = Min
{
Rules(C∗1, C∗2), Rules(C∗∗1 , C∗∗2 )

}
.

3.2. Dynamic Mining Algorithms for Interval Association Rules

3.2.1. Algorithm Design

According to Theorems 4 and 5, the result of the vertical union of interval association rules only
occurs in the data with the same interval association rules and adjacent data. In order to ensure that
the mined interval association rules are not lost, the algorithm retains the non-united rules on the basis
of a vertical union of the same rules, which facilitates the mining of interval association rules later,
and measures the occurrence frequency and frequency of the same rules with frequency. The basic
idea of the algorithm is that whenever an interval association rule is generated, it is transformed into
an array representation, and it is mined with the set of interval rules that have been united and retain
the non-united rules, so that the interval rules can be aggregated again and again.

In order to distinguish different rules, association rules mined from interval concept lattices are
stored in the form of arrays RS[i] =

{
Rule, FN1, FN2, U, Support, Con f , PD, UD, Flag, Num

}
.

RS[i] represents the ith association rule in the interval association rules set RS;
Rule represents the interval association rules Rule(Cx, Cy);
FN1, FN2 represents the frequency degree of frequency nodes Cx and Cy in Rule(Cx, Cy);
U represents the number of objects in the context;
Support, Con f , PD and UD represents the support, confidence, accuracy, and uncertainty degree

of Rule(Cx, Cy);
Flag marked according to whether rules have been merged or not. Flag = 0 denotes that rules are

not united vertically; Flag = 1 indicates that the rules have been vertically united; Num denotes the
number of occurrences of rule Rule(Cx, Cy) in previously united rule sets.

Based on the above algorithm principle and analysis, we design a dynamic extraction and union
algorithm of interval association rules, DMA (Dynamic Mining Algorithm). See Algorithm 1.
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Algorithm 1. DMA (Dynamic Mining Algorithm)

Input: Association rule sets RS1, RS2, . . .RSk . . .

Output: Association rule set RS
Step1 RS = RS1;
Step2 The interval association rules in the rule set RSk is stored in the form of arrays. Set RS∗ and initialize.
Comparing the Rule of rule set RS and RSk, we unit interval association rules vertically according to Theorems
4 and 5. For the rules that have been united in RS and RSk, let Flag = 1 and put the united rule number in RS∗.
According to Theorems 6–8, calculate the frequency,Support, Con f , PD, and UD of Cx and Cy in RS∗. Flag=1,
Num = Num + 1. Delete the rules of Flag = 1 in RS and RSk, and renumbering. Let rules number in RS∗ add
the renumbering number in RS. Putting the remain rules of RS into RS∗; then renumbering in RSk, and putting
the remain rules of RSk into RS∗.
Rule Vertical Union (RS, RSk)

1 {
2 g = 0;

3 RS[g]∗ =
{
Rule, FN1, FN2, U, Support, Con f , PD, UD, Flag, Num

}
4 { Rule = ∅;
5 FN1 = FN2 = 0;

6 U = RS[1].U + RSk[1].U;
7 Support = Con f = PD = UD = Flag = 0;
8 Num = 1;
9 }
10 For ( i=1;|RS|; i++)
11 {For (j=1;|RSk|; j++)
12 If(RS[i].Flag = RSk[ j].Flag = 0|| RS[i].Rule = RSk[ j].Rule)
13 { g + 1;
14 Num + 1;
15 RS[i].Flag = 1;
16 RSk[ j].Flag = 1;

17 RS[g]∗.FN1 =
RS[i].U∗RS[i].FN1+RSk [ j].U∗RSk [ j].FN1

RS[i].U+RSk [ j].U

18 RS[g]∗.FN2 =
RS[i].U∗RS[i].FN2+RSk [ j].U∗RSk [ j].FN2

RS[i].U+RSk [ j].U

19 RS[g]∗.Support = RS[g]∗.FN2

20 RS[g]∗.Con f =RS[i].U∗RS[i].FN2+RSk [ j].U∗RSk [ j].FN2

RS[i].U∗RS[i].FN1+RSk [ j].U∗RSk [ j].FN1

21 RS[g]∗.PD =min
{
RS[i].PD, RSk[ j].PD

}
;

22 RS[g]∗.UD =1−RS[g]∗.PD;
23 }
24 }
25 For each RS[i] in RS;
26 {If RS[i].Flag = 0;
27 g + 1;
28 RS∗[g] = RS[i];}
29 For each RSk[ j] in RSk;
30 {If RSk[ j].Flag = 0;
31 g + 1;
32 RS∗[g] = RSk[ j];}
33 }

Step3 RS = RS∗
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3.2.2. Algorithm Analysis

The main content of DMA is embodied in the function Rule Vertical Union (RS, RSk). Lines 1 to 9
implement the initialization of parallel rule set RS∗. Lines 10–12 nested for loop implements searching
for interval association rules in RS and RSk that correspond to the same rules and are not united. Lines
13 to 16 number the interval association rules found in RS∗. Num+1 is used to count the rule, and the
corresponding rule Flag in united RS, RSk is recorded as 1. Lines 17 to 25 implement the assignment of
interval association rule RS∗[g]. In lines 26–34, the unconsolidated rules in RS, RSk are put into RS∗ to
maintain the diversity of the united rule set.

Compared with Step 2, the algorithm achieves the step requirements, and the assignment of Step
1 and Step 3 make the DMA algorithm dynamic, so that the algorithm has integrity and correctness.
Compared with the general method, the algorithm realizes the merging of rules to rules, eliminating
the process of vertical merging of interval concept lattices, thus greatly reducing the time complexity
and space complexity of the implementation process.

If the number of association rules in two sub lattices is n and m respectively, the time complexity
of the algorithm is less than O(n×m) + O(n) + O(m). Compared with the interval association rule
mining algorithm with parameters, the algorithm is more efficient.

3.3. Example Study

Set the formal contexts as shown in Tables 1 and 2:

Table 1. Formal context FC1.

a b c d e

1 1 1 1 0 0
2 0 0 0 1 0
3 1 1 0 1 0
4 1 0 1 0 1

Table 2. Formal context FC2.

a b c d e

(1) 1 0 1 1 0
(2) 1 1 0 1 0
(3) 0 1 0 1 1

Set α = 0.6, β = 0.7, θ = 50%, c = 60%.
The DMA algorithm is used to mine interval association rules in parallel. Take the upper bound

interval association rules as an example (the mining of lower bound association rules is similar).
Among them, the upper bound frequent nodes from FC1 and FC2 are shown in Tables 3

and 4 respectively, and the corresponding upper bound association rules are shown in Tables 5
and 6 respectively.

Table 3. The frequent nodes of FC1.

Frequent Node Frequent Degree Frequent Node Frequent Degree

a 75% acd 100%
b 50% ace 50%
c 75% ade 50%
d 50% bcd 75%
ab 50% bce 50%
ac 50% cde 50%

abc 75% abcd 50%
abd 50% abce 50%
abe 75% abcde 75%
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Table 4. The frequent nodes of FC2.

Frequent Node Frequent Degree Frequent Node Frequent Degree

a 67% acd 67%
b 67% ade 100%
d 100% bcd 100%
ad 67% bde 67%
bd 67% cde 67%
abc 67% abcd 67%
abd 100% abde 67%
abe 67% abcde 100%

Table 5. The previous rules and its measurement results on FC1.

Rule Support Confidence Accuracy Uncertainty Frequent Number

a⇒ bcde 75% 100% 60% 40% 1
abc⇒ de 75% 100% 60% 40% 1
abe⇒ cd 75% 100% 60% 40% 1
acd⇒ be 75% 75% 60% 40% 1
a⇒ bce 50% 67% 75% 25% 1
c⇒ abe 50% 67% 75% 25% 1
ac⇒ be 50% 100% 75% 25% 1
abc⇒ e 50% 67% 67% 33% 1
abe⇒ c 50% 67% 67% 33% 1
ace⇒ b 50% 100% 67% 33% 1
a⇒ bcd 50% 67% 75% 25% 1
b⇒ acd 50% 100% 75% 25% 1
ab⇒ cd 50% 100% 75% 25% 1
abc⇒ d 50% 67% 67% 33% 1
abd⇒ c 50% 100% 67% 33% 1
bcd⇒ a 50% 67% 67% 33% 1
c⇒ de 50% 67% 67% 33% 1
c⇒ be 50% 67% 67% 33% 1
a⇒ de 50% 67% 67% 33% 1
a⇒ ce 50% 67% 67% 33% 1
c⇒ ae 50% 67% 67% 33% 1
ac⇒ e 50% 100% 67% 33% 1
a⇒ be 75% 100% 67% 33% 1
a⇒ bd 50% 67% 67% 33% 1
b⇒ ae 50% 100% 67% 33% 1
ab⇒ e 50% 100% 67% 33% 1
a⇒ bc 75% 100% 67% 33% 1
a⇒ c 50% 67% 100% 0% 1
c⇒ a 50% 67% 100% 0% 1
a⇒ b 50% 67% 100% 0% 1
b⇒ a 50% 100% 100% 0% 1

The DMA algorithm is used to mine the previous association rules of FC1 and FC2 in parallel.
The parallel results of the different association rules are the same part of the combined association
rules deleted in Tables 5 and 6, respectively.

The parallel results of the same association rules are shown in Table 7.
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Table 6. The previous rules and its measurement results on FC2.

Rule Support Confidence Accuracy Uncertainty Frequent Number

d⇒ abce 100% 100% 60% 40% 1
abd⇒ ce 100% 100% 60% 40% 1
ade⇒ bc 100% 100% 60% 40% 1
bcd⇒ ae 100% 100% 60% 40% 1
b⇒ ade 67% 100% 75% 25% 1
d⇒ abe 67% 67% 75% 25% 1
bd⇒ ae 67% 100% 75% 25% 1
abd⇒ e 67% 67% 67% 33% 1
abe⇒ d 67% 100% 67% 33% 1
ade⇒ b 67% 67% 67% 33% 1
bde⇒ a 67% 100% 67% 33% 1
a⇒ bcd 67% 100% 75% 25% 1
d⇒ abc 67% 67% 75% 25% 1
ad⇒ bc 67% 100% 75% 25% 1
abc⇒ d 67% 100% 67% 33% 1
abd⇒ c 67% 67% 67% 33% 1
acd⇒ b 67% 100% 67% 33% 1
bcd⇒ a 67% 67% 67% 33% 1
d⇒ ce 50% 67% 67% 33% 1
b⇒ de 67% 100% 67% 33% 1
d⇒ be 67% 67% 67% 33% 1
bd⇒ e 67% 100% 67% 33% 1
d⇒ bc 100% 100% 67% 33% 1
d⇒ ae 100% 100% 67% 33% 1
a⇒ cd 67% 100% 67% 33% 1
d⇒ ac 67% 67% 67% 33% 1
ad⇒ c 67% 100% 67% 33% 1
b⇒ ae 67% 100% 67% 33% 1
d⇒ ab 100% 100% 67% 33% 1
a⇒ bc 67% 100% 67% 33% 1

Table 7. The previous rules set and its measurement results after vertical union.

Rule Support Confidence Accuracy Uncertainty Frequent Number

a⇒ bcd 57% 80% 75% 25% 2
abc⇒ d 57% 80% 67% 33% 2
abd⇒ c 57% 80% 67% 33% 2
bcd⇒ a 57% 67% 67% 33% 2
a⇒ bc 71% 100% 67% 33% 2

4. Discussion

Considering the characteristics of interval concept lattices, the vertical union method of interval
concept lattices and the principle of mining association rules with parameters were studied in this
paper. Considering the intrinsic relationship between interval association rules, this paper presents
some metrics, such as the confidence and credibility of united rules, and proposes a dynamic mining
algorithm for interval association rules, which realizes rule aggregation and keeps the diversity of
interval association rules. The rationality and efficiency of the algorithm are proved by algorithm
analysis and case study, which provides timely, effective and abundant decision information for
decision makers in data analysis. The next step is to optimize the algorithm for incomplete information
systems in the context of large data. In the mining process, the stability and timing choice of the rule
union is another problem to be studied in depth.
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