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Abstract: The competing risk model based on Lindley distribution is discussed under the progressive
type-II censored sample data with binomial removals. The maximum likelihood estimation of the
unknown parameters of the distribution is established. Using the Lindley approximation method,
we also obtain the Bayesian estimation of the unknown parameters of the distribution under different
loss functions. The performance of different estimates is studied in this article. A real practical dataset
is analyzed for illustration.
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approximation; maximum likelihood estimation; bayes estimation

1. Introduction

1.1. Lindley Distribution

In order to better investigate the problem of product lifetime, Reference [1] proposed a new
distribution, known as the Lindley distribution. After being proposed, the Lindley distribution
has attracted the attention of many statisticians. In recent years, statisticians have done a lot of
research on the Lindley distribution. For example, Reference [2] explored the mathematical and
statistical properties of Lindley distribution. Reference [3] put forward an expanded form of the
Lindley distribution. A new two-parameter Lindley distribution was proposed and introduced
by Reference [4]. Considering the Lindley distribution, a new life data modeling distribution was
developed by Reference [5].

The Lindley distribution has a very wide application range in the fields of industry, medicine,
biology and so on. For instance, Reference [6] used the Lindley distribution to study the reliability of
application strength systems. Considering the generalized Lindley distribution, Reference [7] came
up with a new bounded domain probability density function, and introduced a distorted premium
principle based on the special category of this distribution.

If a random variable obeys the Lindley distribution, its probability density function (PDF) and
cumulative distribution function (CDF) are as follows:

f (x; θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0. (1)

F(x; θ) = 1− (1 +
θ

θ + 1
x)e−θx, x > 0, θ > 0. (2)
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θ is the shape parameter of the Lindley distribution and it is a positive real number.
Moreover, the density function of the Lindley distribution has a thin tail, because when x is large, its
density function decreases exponentially.

Reference [2] revealed that the Lindley distribution is a weighted distribution of Gamma
distribution and Exponential distribution. Therefore, in many cases, the Lindley distribution is
more flexible than these two distributions.

1.2. Progressive Type-II Censored Data with Binomial Removals

In many lifetime studies, it is common that the lifetime of test units might not be accurately
recorded. In practice, investigators have to process censored data because they frequently do not
have enough time to record and observe the lifetimes of all subjects in the experiment. There are
different types of censoring patterns. The most commonly used censoring schemes are type-I censoring
and type-II censoring, in which the former is censored at fixed time and the latter is censored
at a fixed number. In addition, for various reasons, some test units may have to be removed at
various stages of research. This will lead to progressive censoring. For example, in medical research,
reduced budgets or withdrawal of patients can lead to the progressive censoring of collected data.
At present, a lot of research has been done on how to deal with the problem of progressively censored
data. For example, Reference [8] considered the progressive censoring model, assuming that the
lifetime distribution of each cause is competing and independent, obtained the maximum likelihood
estimates and approximated maximum likelihood estimates of the unknown parameters of the Weibull
distribution. The data obtained from the joint progressive type-II censoring scheme with samples
from two production lines are studied by Reference [9]. Reference [10] investigated Bayesian interval
prediction under progressive stress accelerated life test based on progressive type-II censored data.

There are also differences in data removal in progressive type-II censoring. The number of sample
removals in each scenario obeys different distributions, including discrete uniform distribution and
binomial distribution. Binomial distribution is usually used to describe the number of events in n
experiments. Assuming that any single unit removed from the study is independent of other units
but has the same probability p, the number of removed units will follow a binomial distribution.
Reference [11] assumed that the censored units are random at every stage and follow a binomial
distribution and considered the analysis of competing risks data which obey the Weibull distribution
under the progressive type-II censoring model.

How to obtain progressive type-II censored data with binomial removals is described below.
Assume there are n units in the experiment first, when the first failure happens, R1 units are

removed from the rest n− 1 units at random. When the second failure happens, R2 units are removed
from the rest n−R1− 2 units at random and etc. In the end, when the m-th failure happens, all the other
surviving units (we denote it Rm) are removed from the experiment. The removal number of all removal
processes described above obeys binomial distribution. In the whole experiment, we get m complete
failure data, others are all removed from the experiment and thus, n = m + R1 + R2 + · · · + Rm.
We denote the progressive censoring scheme as a vector R = (R1, R2, · · · , Rm). Complete sample
and type-II right censoring are special situations of progressive type-II censoring. Let R1 = 0, R2 =

0, · · · , Rm = 0, we can get a series of complete sample, let R1 = 0, · · · , Rm−1 = 0, Rm 6= 0, we can get
the type-II censored sample.

1.3. Competing Risks

The competing risks model arises from reliability theory—it is widely applied in many fields such
as biomedical science and finance. In many situations, there are many risks leading to the failures
of units in a experiment, each one of them can make the unit fail, and we call them competing risks.
For instance, the light bulb may fail due to several factors such as voltage magnitude and temperature
level, researchers need to study the lifetime of the light bulbs considering all these factors.
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In recent years, many scholars have proposed different methods for exploring data with competing
risks. Reference [12] analyzed the competing risks data of missing failure causes under the accelerated
failure time model. Reference [13] introduced competing risks data and critically commented on
widely used statistical methods for estimating and modeling the amount of interest. Reference [14]
analyzed the data of competing risks, including the method of calculating the cumulative incidence
of events related to competing risks, comparing the cumulative incidence curves, and conducting
regression analysis of competing risks. Reference [10] studied and analyzed a set of survival data
at competing risks through a number of methodologies based on a study of cardiovascular diseases.
Reference [15] presented a Bayesian method for the combined analysis of longitudinal measurement
data and competing risk failure time data.

Without losing generality, assuming that there are two independent risks leading to unit failure,
we denote the i-th failure time as Xi:m:n and the failure times of the units depend on the first occurred
failure model.

Xi:m:n = min (X1
i:m:n, X2

i:m:n).

Assume that the product’s lifetime under a single risk obeys the Lindley distribution,
corresponding probability density function and survival function are

f j(x) =
θ2

j

θj + 1
(1 + x)e−θjx, x > 0, θj > 0, j = 1, 2. (3)

F̄j(x) = 1− Fj(x) = (1 +
θj

θj + 1
x)e−θjx, x > 0, θj > 0, j = 1, 2. (4)

Considering progressive type-II censored data, this paper will discuss the parameter estimation
of the Lindley distribution under this model.

This article is organized as follows. In Section 2, we will theoretically derive the maximum
likelihood estimation of the parameters of the model. And in Section 2, we will obtain the Bayesian
estimation of the parameters of the model considering three different loss functions. In Section 3,
we will use the results of Sections 2 to carry out simulation experiments. Moreover, we will analyze a
set of real data in Section 4. In Section 5, we summarize all the conclusions of this article.

2. Formatting of Mathematical Components

2.1. Maximum Likelihood Estimation

Maximum likelihood estimation is a classical and effective method for estimating unknown
parameters. In this part, we will theoretically discuss how to estimate unknown parameters in this
model by using maximum likelihood estimation method.

In reality, the sample data we collect are often arranged in chronological order. We can denote the
data as

~x0 = ((x0
1, S0

1, R0
1), · ··, (x0

n1
, S0

n1
, R0

n1
), (x0

(n1+1), S0
(n1+1), R0

(n1+1)),

· ··, (x0
m, S0

m, R0
m)).

(5)

where x0
i , S0

i and R0
i (1 ≤ i ≤ m)represent the i-th failure time, the cause of the i-th failure and the

number of products removed at the i-th failure respectively.
Next, we discuss the number of removals per censoring. Because at the stage of each removal,

the number of units removed obeys the binomial distribution with probability p, we can obtain

P(R0
1 = r0

1) = (n−m
r0

1
)pr0

1(1− p)n−m−r0
1 , 0 ≤ r0

1 ≤ n−m. (6)
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P(R0
i = r0

i |R
0
(i−1) = r0

(i−1), ..., R0
1 = r0

1) = (
n−m−∑i−1

l=1 r0
l

r0
i

)pr0
i (1− p)n−m−∑i

l=1 r0
l . (7)

where 0 ≤ r0
i ≤ n−m−∑i−1

l=1 r0
l , i = 2, 3, ..., m− 1.

P(R0 =r0) = P(R0
m = r0

m|R0
m−1 = r0

m−1, ..., R0
1 = r0

1) · · · P(R0
2 = r0

2|R0
1 = r0

1)

× P(R0
1 = r0

1) =
(n−m)!

∏m−1
i=1 r0

i !(n−m−∑m−1
i=1 r0

i )!
p∑m−1

i=1 r0
i (1− p)(m−1)(n−m)−∑m−1

i=1 (m−i)r0
i .

(8)

Then, the likelihood function is expressed as follows [16]

f (~x0|θ1, θ2) = h(~x0|~R0 =~r0)P(~R0 =~r0). (9)

h(~x0|~R0 =~r0) = C ∏m
i=1[ f1(x0

i )F̄2(x0
i )]

I(δ0
i =1)[ f2(x0

i )F̄1(x0
i )]

I(δ0
i =2)[F̄1(x0

i )F̄2(x0
i )]

r0
i . (10)

Substituting (8) and (10) into (9), we can get

f (x0|θ1, θ2) =C
m

∏
i=1

[ f1(x0
i )F̄2(x0

i )]
I(δ0

i =1)[ f2(x0
i )F̄1(x0

i )]
I(δ0

i =2)[F̄1(x0
i )F̄2(x0

i )]
r0

i

× (n−m)!

∏m−1
i=1 r0

i !(n−m−∑m−1
i=1 r0

i )!
p∑m−1

i=1 r0
i (1− p)(m−1)(n−m)−∑m−1

i=1 (m−i)r0
i .

(11)

where f j and F̄j(j = 1, 2) are given in (3) and (4).
In order to simplify the above expression, it is necessary to organize the data. We classify the data

according to the failure reasons of the units and the data within the class is still sorted according to the
failure time. Hence, the sorted data can be written as follows.

~x = ((x1, S1 = 1, R1), · · ·, (xn1 , Sn1 = 1, Rn1), (xn1+1, Sn1+1 = 2, Rn1+1),

· · ·, (xm, Sm = 2, Rm)). (12)

here n1 is the number of units which failed because of factor 1.
The two groups of data before and after collation constitute bijection, which can be determined

by each other. In other words, the data rearrangement only reorders the data but does not affect the
values of the data itself. Therefore,

h(x|R = r) = h(x0|R0 = r0)

= C1 ∏m
i=1[ f1(xi)F̄2(xi)]

I(δi=1)[ f2(xi)F̄1(xi)]
I(δi=2)[F̄1(xi)F̄2(xi)]

ri .
(13)

Further, we can get

h(x|R = r) = C1(
θ2

1
θ1+1 )

n1(
θ2

2
θ2+1 )

n2 ×∏m
i=1 e−(ri+1)(θ1+θ2)xi (1 + xi)(1 +

θ1
θ1+1 xi)

ri

(1 + θ2
θ2+1 xi)

ri ×∏n1
i=1(1 +

θ2
θ2+1 xi)×∏m

i=n1+1(1 +
θ1

θ1+1 xi).
(14)

Here, C1 is a constant.
For sorted data, the likelihood function can be expressed as

f (x|θ1, θ2) = f (x0|θ1, θ2) = h(x|R = r)P(R0 = r0). (15)

Combining (14) and (15), we can obtain the likelihood function of observed data, which is,
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L(θ1, θ2, p|~x, R) = f (x|θ1, θ2) ∝ (
θ2

1
θ1+1 )

n1(
θ2

2
θ2+1 )

n2 ×∏m
i=1 e−(ri+1)(θ1+θ2)xi (1 + xi)

(1 + θ1
θ1+1 xi)

ri (1 + θ2
θ2+1 xi)

ri ×∏n1
i=1(1 +

θ2
θ2+1 xi)

×∏m
i=n1+1(1 +

θ1
θ1+1 xi)× p∑m−1

i=1 r0
i (1− p)(m−1)(n−m)−∑m−1

i=1 (m−i)r0
i .

(16)

The log-likelihood function is as follows:

l(θ1, θ2, p|~x, R) = C2 + 2n1 log θ1 − n1 log(θ1 + 1) + 2n2 log θ2 − n2 log(θ2 + 1)
−(θ1 + θ2)∑m

i=1 xi(ri + 1) + ∑m
i=1 log(1 + xi) + ∑m

i=1 ri log(1 + θ1
θ1+1 xi)

+∑m
i=1 ri log(1 + θ2

θ2+1 xi) + ∑n1
i=1 log(1 + θ2

θ2+1 xi) + ∑m
i=n1+1 log(1 + θ1

θ1+1 xi)

+∑m−1
i=1 r0

i log p + (m− 1)(n−m)−∑m−1
i=1 (m− i)r0

i log(1− p).

(17)

where C2 is a constant.

Theorem 1. Suppose the competing risks failure times follow the Lindley distribution with different parameters
θ1 and θ2 under progressive type-II censoring with binomial removals (with parameter p), for θ1 > 0, θ2 > 0
and 0 < p < 1, the MLE of θj, j = 1, 2 exists and is unique which can be obtained by solving following
equations, respectively.

∂l(θ1, θ2, p|~x, R)
∂θ1

= 0. (18)

∂l(θ1, θ2, p|~x, R)
∂θ2

= 0. (19)

Proof of Theorem 1. If other parameters (θ2, p) are fixed, taking the partial derivative of (17),
we can obtain

l
′
1 = ∂l(θ1,θ2,p|~x,R)

∂θ1
= 2n1

θ1
− n1

θ1+1 −∑m
i=1 xi(ri + 1) + 1

θ1+1 ∑m
i=1

rixi
θ1+1+θ1xi

+ 1
θ1+1 ∑m

i=n1+1
xiri

θ1+1+θ1xi
. (20)

We can deduce that

lim
θ1→+∞

l
′
1 = −

m

∑
i=1

xi(ri + 1) < 0,

lim
θ1→0+

l
′
1 > lim

θ1→0+
(

2n1

θ1
− n1

θ1 + 1
) = +∞.

Take the derivative from l
′
1, and we get the second derivative

l
′′
1 = − 2n1

θ2
1
+ n1

(θ1+1)2 − 1
(θ1+1)2 ∑m

i=1
rixi

θ1+1+θ1xi
− 1

θ1+1 ∑m
i=1

rixi(1+xi)
(θ1+1+θ1xi)2

− 1
(θ1+1)2 ∑m

i=n1+1
rixi

θ1+1+θ1xi
− 1

θ1+1 ∑m
i=n1+1

rixi(1+xi)
(θ1+1+θ1xi)2

Because

l
′′
1 < −2n1

θ2
1

+
n1

(θ1 + 1)2 < − 2n1

(θ1 + 1)2 +
n1

(θ1 + 1)2 < 0.

Therefore, if θ2 and p are fixed, for θ1, l is a concave function. l
′
1 is a monotonic decreasing function.

Thus, under this condition, l
′
1 must have a unique root, and it will maximize (17).

Similarly, if θ1 and p are fixed, for θ2, we know

l
′
2 = ∂l(θ1,θ2,p|~x,R)

∂θ2
= 2n2

θ2
− n2

θ2+1 −∑m
i=1 xi(ri + 1) + 1

θ2+1 ∑m
i=1

rixi
θ2+1+θ2xi

+ 1
θ2+1 ∑n1

i=1
rixi

θ2+1+θ2xi
.

(21)
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Take similar steps, we can draw the conclusion that under this condition, l
′
2 must have a unique

root and it will maximize (17).

Theorem 2. Suppose the competing risks failure times follow the Lindley distribution with different parameters
θ1 and θ2 under progressive type-II censoring with binomial removals (with parameter p), for θ1 > 0, θ2 > 0
and 0 < p < 1, the MLE of p exists and is unique which can be obtained by solving from the following equation.

∂l(θ1, θ2, p|~x, R)
∂p

= 0. (22)

Proof of Theorem 2. If other parameters (θ1, p) are fixed, taking the partial derivative of (17),
we can obtain

l
′
3 =

∂l(θ1, θ2, p|~x, R)
∂p

=
∑m−1

i=1 r0
i

p
−

(m− 1)(n−m)−∑m−1
i=1 (m− i)r0

i
1− p

. (23)

∑m−1
i=1 (m− i)r0

i < ∑m−1
i=1 (m− 1)r0

i = (m− 1)(n−m), so we know (m− 1)(n−m)−∑m−1
i=1 (m− i)r0

i > 0.
We can deduce that

lim
p→1−

l
′
3 = −∞,

lim
p→0+

l
′
3 = +∞

Besides, in this situation, the second derivative of (17) can be written as

l
′′
3 = −∑m−1

i=1 r0
i

p2 −
(m− 1)(n−m)−∑m−1

i=1 (m− i)r0
i

(1− p)2 < 0. (24)

Therefore, if θ1 and θ2 are fixed, for p, (17) is a concave function. l
′
3 is a monotonic decreasing

function. l
′
3 must have a unique root and it will maximize (17).

Hence, the maximum likelihood estimates of unknown parameters can be obtained by solving
the roots of (18), (19) and (22). Since (18) and (19) are non-linear, it is infeasible to obtain their explicit
solutions. In this situation, it is an effective method to obtain approximate solutions using a numerical
method such as the Newton-Raphson algorithm.

As for p, we can figure out the explicit solution p̂, which is:

p̂ =
∑m−1

i=1 r0
i

(m− 1)(n−m)−∑m−1
i=1 (m− i)r0

i + ∑m−1
i=1 r0

i

. (25)

2.2. Bayesian Estimation

Compared with maximum likelihood estimation, Bayesian estimation is a new but effective
estimation method. It takes both prior information and sample information into account and estimates
the unknown parameters of interest. Bayesian estimation is often better and more accurate than
maximum likelihood estimation. In this section, we will give the Bayesian estimation of the model
parameters θ1, θ2 and p.

According to the discussion in the previous section, we have obtained

f (x|R = r) = h(x|R = r)× C2 × p∑m−1
i=1 r0

i (1− p)(m−1)(n−m)−∑m−1
i=1 (m−i)r0

i . (26)
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Now, we need to give the prior distribution of these parameters. Suppose that the prior
distributions of θ1, θ2 and p are Gamma(a1, b1), Gamma(a2, b2) and Beta(c, d) respectively (a1 > 0,
b1 > 0, a2 > 0, b2 > 0, c > 0 and d > 0). The pdfs for the prior distributions are given by

π1(θ1) =
ba1

1
Γ(a1)

e−b1θ1 θa1−1
1 , θ1 > 0.

π2(θ2) =
ba2

2
Γ(a2)

e−b2θ2 θa2−1
2 , θ2 > 0.

π3(p) ∝ pc−1(1− p)d−1, 0 < p < 1.

Therefore, the joint posterior distributions of parameters θ1, θ2 and p are

π∗(θ1, θ2, p|~x) = f (~x|θ1, θ2)π1(θ1)π2(θ2)π3(p)∫
θ1

∫
θ2

∫
p f (~x|θ1, θ2)π1(θ1)π2(θ2)π3(p)dθ1dθ2dp

. (27)

Further, we can get

π∗(θ1, θ2, p|~x) ∝ e−b1θ1 θa1−1
1 e−b2θ2 θa2−1

2 (
θ2

1
θ1+1 )

n1(
θ2

2
θ2+1 )

n2 ∏m
i=1 e−(θ1+θ2)(ri+1)xi

(1 + θ1
θ1+1 xi)

ri (1 + θ2
θ2+1 xi)

ri ∏n1
i=1(1 +

θ2
θ2+1 xi)∏m

i=ni+1(1 +
θ1

θ1+1 xi)

p∑m−1
i=1 r0

i +c−1(1− p)(m−1)(n−m)−∑m−1
i=1 (m−i)r0

i +d−1.

(28)

Hence, we can deduce the conditional posterior distributions as follows.

π∗1 (θ1|θ2, p,~x) ∝ e−b1θ1 θa1−1
1 (

θ2
1

θ1 + 1
)n1

m

∏
i=1

e−(ri+1)θ1xi (1 +
θ1

θ1 + 1
xi)

ri
m

∏
i=ni+1

(1 +
θ1

θ1 + 1
xi). (29)

π∗2 (θ2|θ1, p,~x) ∝ e−b2θ2 θa2−1
2 (

θ2
2

θ2 + 1
)n2

m

∏
i=1

e−(ri+1)θ2xi (1 +
θ2

θ2 + 1
xi)

ri
n1

∏
i=1

(1 +
θ2

θ2 + 1
xi). (30)

π∗3 (p|θ1, θ2,~x) ∝ p∑m−1
i=1 r0

i +c−1(1− p)(m−1)(n−m)−∑m−1
i=1 (m−i)r0

i +d−1. (31)

In Bayesian estimation, loss function is a good method for judging the performance of parameter
estimation. There are many different loss functions, symmetric or asymmetric. In this article,
we consider three different loss functions. The first one is the squared error loss (SEL) function
L1, which is symmetric. It is defined as

L1(d(γ), d̂(γ)) = (d(γ)− d̂(γ))2.

The Bayes estimate of d(γ) for SEL can be written as

d̂SEL = Eγ(γ|x)

The second loss function we consider is the LINEX loss (LL) function, which is asymmetric, and its
definition is shown below.

L2(d(γ), d̂(γ)) = eh(d̂(γ)−d(γ)) − h(d̂(γ)− d(γ))− 1, h 6= 0.

And the Bayes estimate of d(γ) for LL loss function is given by

d̂LL = −1
h

log Eγ(e−hγ|x).
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as long as Eγ(·) exists.
The last one is also asymmetric, it is the general entropy loss (EL) function which is defined as

L3(d(γ), d̂(γ)) = (
d̂(γ)
d(γ)

)q − q log
d̂(γ)
d(γ)

− 1, q 6= 0.

Also, we can get the Bayes estimate of d(γ), which is

d̂EL = (Eγ(γ
−q|x))−

1
q .

All d(γ) denotes the true value of the unknown parameter and d̂(γ) denotes its estimation.
Observing Formulas (29) and (30), these two formulas are nonlinear. So for θ1 and θ2, it is not

feasible to directly solve Bayesian estimates under different loss functions. Thus, we consider using
the Lindley approximation method to solve the corresponding numerical solution.

Taking the Bayes posteriori estimate under SEL as an example, the Bayes posteriori estimate we
require is

E(θj|x) =
∫

Θ
θj

f (x|θj)π(θj)∫
Θ f (x|θj)π(θj) dθj

dθj, j = 1, 2. (32)

It is not practicable to obtain the explicit solution of (32) which is in the form of the ratio of two
integrals. Reference [17] studied the method of approximating the ratio of two integrals.

Here is a brief introduction to Lindley’s approximation method. Assume that the integral ratio to
be calculated has the following form ∫

Θ ω(θ)el(θ) dθ∫
Θ v(θ)el(θ) dθ

. (33)

here θ = (θ1, θ2, · · · , θn). l(θ) is logarithmic form of likelihood function, ω(θ) and v(θ) refer to
arbitrary functions of parameters θ. Suppose v(θ) is a prior probability density function of parameter
θ, ω(θ) = u(θ)π(θ).

Further, we can see that the Bayes posteriori estimate is

E[u(θ)|x] =
∫

Θ u(θ)el(θ)+ρ(θ) dθ∫
Θ el(θ)+ρ(θ) dθ

. (34)

where ρ(θ) = ln π(θ). Then the approximate expression of the above equation is

ûBE = E[u(θ|x)] = ûMLE +
1
2 ∑(uij + 2uiρj)σij +

1
2 ∑ lijkulσijσkl . (35)

Here, lijk = ∂l
∂θi∂θj∂θk

, i, j, k = 0, 1, · · · , m, m is the dimension of θ. uij =
∂2u

∂θi∂θj
, i, j = 0, 1, · · · , m.

lij = ∂2l
∂θiθj

, i, j = 0, 1, · · · , m. σij is the inverse matrix element of matrix [−lij].

This is the approximate expression of E[u(θ)|x]. Here, we use Lindley approximation to solve
Bayes estimates of θ1 and θ2. The posterior estimation of parameter p obeys Gamma distribution and
we can directly solve its Bayesian estimate.
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3. Simulation Study

The first step in the simulation experiment is to generate the random numbers we need. In the third
chapter, Reference [18] introduced how to generate progressive Type-II censored data for continuous
distributions. Based on those previous studies and conclusions, we propose the procedures to generate
the corresponding random numbers and Algorithm 1 is given by

Algorithm 1 Generating the progressively type II censored samples with competing risks.

1: Generate a group of variables ri ∼ B(n−m−∑i−1
j=1 rj, p), i = 1, 2, ..., m− 1, rm = n−m−∑m−1

i=1 ri.

2: Generate m independent variables following standard uniform distribution.

3: Set Vi = W
1

i+rm+···+rm−1+i
i , i = 1, · · ·, m .

4: Set Ui = 1−VmVm−1 · · ·Vm−i+1, i = 1, · · ·, m, here, progressive type-II censored competing risks

data with binomial removals following standard uniform distribution is obtained.

5: Let xi = F−1(Ui), where F(x) = 1− F̄1(x)F̄2(x).

6: Generate the factors for failures δi, i = 1, ..., m. δi follows Bernoulli distribution with pi, and we can

get pi from the following equation:

pi =
f1(xi)F̄2(xi)

f1(xi)F̄2(xi) + f2(xi)F̄1(xi)
.

We set appropriate parameters to facilitate the next simulation experiment. We take the true
values of θ1 and θ2 as 1. Given prior information, we let hyper-parameters a1 = a2 = 2, b1 = b2 = 1.
When there is no prior information, we let hyper-parameters a1 = a2 = b1 = b2 = 0 . To study the
statistical regularity of these estimates, we make corresponding adjustments to the other parameters.
At the same time, In order to study the estimate performance of p, we set the true values of p to be 0.3,
θ1 and θ2 to be 1. For comparison, we consider two kinds of prior information of parameter p. In the
case of prior information informative-I, c = d = 0.5, in the case of prior information-II, c = d = 2.5,
and in the case of no prior information, c = d = 1. As for the parameter settings in the loss function,
for LL, we set h = 1, and for EL, we set q = 1.

At the same time, we choose absolute bias (Bias) and mean square error (MSE) to measure the
quality of the estimation. They are

Bias =
1
N

N

∑
i=1
|λ̂i − λ|.

MSE =
1
N

N

∑
i=1

(λ̂i − λ)2.

where λ̂ is the parameter estimate, λ refers to the true value of the parameter, N refers to
simulation times.

After the simulation experiment, the results are shown below, Tables 1–3 are obtained.
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Table 1. Bias and mean square error (MSE) of the Bayes estimates and maximum likelihood estimates of θ1.

θ1

p n m
SEL EL LL ML

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Informative-I Non-Informative Informative-I Non-Informative Informative-I Non-Informative

0.3 30 20 0.1896 0.0573 0.2022 0.0653 0.1976 0.0628 0.2051 0.0656 0.1868 0.0565 0.1950 0.0579 0.1977 0.0655
25 0.1687 0.0453 0.1780 0.0511 0.1774 0.0484 0.1876 0.0529 0.1678 0.0452 0.1761 0.0496 0.1808 0.0515

50 30 0.1586 0.0404 0.1655 0.0425 0.1562 0.0373 0.1726 0.0458 0.1605 0.0416 0.1678 0.0433 0.1608 0.0405
40 0.1425 0.0316 0.1454 0.0329 0.1451 0.0323 0.1487 0.0342 0.1460 0.0331 0.1484 0.0333 0.1429 0.0314

60 40 0.1375 0.0294 0.1509 0.0355 0.1481 0.0333 0.1435 0.0320 0.1406 0.0306 0.1509 0.0352 0.1466 0.0331
50 0.1289 0.0254 0.1315 0.0261 0.1292 0.0254 0.1394 0.0295 0.1292 0.0256 0.1366 0.0287 0.1313 0.0260

0.6 30 20 0.2011 0.0664 0.2102 0.0712 0.1857 0.0541 0.2049 0.0653 0.1886 0.0569 0.2076 0.0650 0.2094 0.0727
25 0.1694 0.0459 0.1788 0.0482 0.1818 0.0501 0.1858 0.0526 0.1699 0.0463 0.1940 0.0590 0.1808 0.0503

50 30 0.1620 0.0411 0.1664 0.0436 0.1615 0.0405 0.1703 0.0443 0.1655 0.0417 0.1716 0.0451 0.1663 0.0435
40 0.1442 0.0322 0.1437 0.0320 0.1463 0.0324 0.1621 0.0389 0.1410 0.0307 0.1454 0.0316 0.1512 0.0352

60 40 0.1364 0.0296 0.1465 0.0341 0.1503 0.0339 0.1472 0.0335 0.1388 0.0294 0.1464 0.0325 0.1521 0.0347
50 0.1294 0.0261 0.1331 0.0269 0.1313 0.0268 0.1351 0.0279 0.1299 0.0252 0.1374 0.0292 0.1323 0.0261

0.9 30 20 0.2011 0.0656 0.1999 0.0635 0.1955 0.0613 0.1977 0.0622 0.1886 0.0575 0.2101 0.0696 0.2097 0.0686
25 0.1813 0.0511 0.1870 0.0546 0.1837 0.0515 0.1923 0.0578 0.1673 0.0447 0.1794 0.0496 0.1814 0.0498

50 30 0.1592 0.0390 0.1619 0.0403 0.1639 0.0411 0.1800 0.0496 0.1583 0.0398 0.1673 0.0440 0.1755 0.0471
40 0.1389 0.0300 0.1438 0.0315 0.1457 0.0323 0.1529 0.0349 0.1400 0.0304 0.1485 0.0342 0.1488 0.0337

60 40 0.1418 0.0329 0.1484 0.0332 0.1476 0.0335 0.1468 0.0322 0.1439 0.0318 0.1484 0.0339 0.1433 0.0326
50 0.1358 0.0276 0.1370 0.0279 0.1316 0.0267 0.1414 0.0301 0.1301 0.0259 0.1393 0.0290 0.1323 0.0267
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Table 2. Bias and MSE of the Bayes estimates and maximum likelihood estimates of θ2.

θ2

p n m
SEL EL LL ML

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Informative-I Non-Informative Informative-I Non-Informative Informative-I Non-Informative

0.3 30 20 0.2011 0.0653 0.2036 0.0646 0.2086 0.0687 0.2121 0.0697 0.1917 0.0595 0.2004 0.0616 0.1986 0.0619
25 0.1707 0.0461 0.1877 0.0552 0.1945 0.0602 0.1908 0.0565 0.1765 0.0497 0.1857 0.0540 0.1841 0.0528

50 30 0.1599 0.0408 0.1654 0.0431 0.1659 0.0439 0.1677 0.0448 0.1624 0.0411 0.1718 0.0459 0.1680 0.0429
40 0.1407 0.0304 0.1523 0.0356 0.1465 0.0327 0.1532 0.0358 0.1415 0.0308 0.1479 0.0342 0.1450 0.0327

60 40 0.1412 0.0318 0.1447 0.0329 0.1515 0.0358 0.1568 0.0372 0.1475 0.0334 0.1481 0.0331 0.1468 0.0329
50 0.1309 0.0265 0.1313 0.0263 0.1308 0.0267 0.1444 0.0302 0.1349 0.0275 0.1326 0.0266 0.1331 0.0265

0.6 30 20 0.1958 0.0650 0.1985 0.0608 0.2147 0.0745 0.2141 0.0744 0.1902 0.0595 0.2102 0.0703 0.2094 0.0687
25 0.1809 0.0525 0.1819 0.0530 0.1877 0.0536 0.1977 0.0604 0.1811 0.0525 0.1880 0.0558 0.1833 0.0521

50 30 0.1631 0.0413 0.1700 0.0443 0.1760 0.0480 0.1813 0.0528 0.1666 0.0433 0.1703 0.0431 0.1703 0.0445
40 0.1395 0.0308 0.1526 0.0350 0.1459 0.0329 0.1575 0.0372 0.1389 0.0297 0.1480 0.0334 0.1450 0.0319

60 40 0.1387 0.0301 0.1485 0.0339 0.1462 0.0334 0.1520 0.0358 0.1448 0.0325 0.1510 0.0349 0.1442 0.0320
50 0.1274 0.0256 0.1359 0.0285 0.1326 0.0269 0.1422 0.0310 0.1310 0.0262 0.1402 0.0293 0.1374 0.0286

0.9 30 20 0.1871 0.0581 0.1998 0.0644 0.2113 0.0705 0.2205 0.0747 0.2013 0.0633 0.2047 0.0641 0.2066 0.0695
25 0.1744 0.0492 0.1793 0.0526 0.1830 0.0515 0.1984 0.0611 0.1868 0.0552 0.1914 0.0563 0.1830 0.0518

50 30 0.1703 0.0451 0.1651 0.0419 0.1738 0.0462 0.1833 0.0519 0.1631 0.0414 0.1709 0.0458 0.1710 0.0451
40 0.1436 0.0320 0.1468 0.0338 0.1498 0.0346 0.1548 0.0364 0.1447 0.0323 0.1517 0.0349 0.1523 0.0347

60 40 0.1401 0.0312 0.1486 0.0340 0.1456 0.0338 0.1511 0.0356 0.1428 0.0312 0.1450 0.0325 0.1462 0.0317
50 0.1241 0.0243 0.1335 0.0272 0.1365 0.0282 0.1409 0.0299 0.1289 0.0253 0.1402 0.0293 0.1294 0.0259

Table 3. Bias and MSE of Bayes estimates and the maximum likelihood estimates of p.

p

n m
SEL EL LL ML

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Non-Informative Informative-I Informative-II Non-Informative Informative-I Informative-II Non-Informative Informative-I Informative-II

30 20 0.1000 0.0164 0.0970 0.0157 0.1040 0.0176 0.1712 0.0313 0.1764 0.0334 0.1553 0.0259 0.0931 0.0145 0.1043 0.0178 0.0788 0.0100 0.0917 0.0136
25 0.1453 0.0359 0.1370 0.0317 0.1609 0.0414 0.1763 0.0346 0.1880 0.0388 0.1497 0.0253 0.1266 0.0265 0.1548 0.0430 0.0960 0.0142 0.1328 0.0303

50 30 0.0667 0.0076 0.0650 0.0069 0.0710 0.0082 0.1698 0.0300 0.1736 0.0312 0.1616 0.0271 0.0629 0.0066 0.0676 0.0075 0.0586 0.0054 0.0640 0.0067
40 0.0984 0.0160 0.0921 0.0142 0.1119 0.0201 0.1704 0.0312 0.1759 0.0331 0.1584 0.0270 0.0936 0.0141 0.0963 0.0154 0.0788 0.0099 0.0941 0.0151

60 40 0.0653 0.0073 0.0636 0.0066 0.0675 0.0077 0.1690 0.0297 0.1712 0.0305 0.1612 0.0271 0.0614 0.0061 0.0671 0.0073 0.0599 0.0059 0.0651 0.0067
50 0.0974 0.0157 0.0934 0.0138 0.1022 0.0175 0.1720 0.0317 0.1771 0.0335 0.1564 0.0262 0.0904 0.0137 0.0935 0.0150 0.0768 0.0094 0.0915 0.0137
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From Tables 1 and 2, one can observe that

(1) Under the same loss function measure, the Bias and MSE of the informative Bayesian estimates
tend to be smaller than the Bias and MSE of the non-informative Bayesian estimates.

(2) If n is fixed, the other parameters are also fixed, adjusting the value of m, m increases, and the Bias
and MSE of the estimation get smaller. In general, n increases and the Bias and MSE are smaller.

(3) The Bias and MSE of Bayesian estimates are smaller than the Bias and MSE of maximum likelihood
estimates based on SEL loss function and LL loss function with prior information, while EL loss
function estimates do not have such an obvious trend.

From Table 3, one can observe that

(1) The selection of prior information is very important. Under different loss function measures,
the selection of optimal prior distribution is different. Under SEL, the estimation is optimal
for given information-I priori information, while the estimation error is the largest for given
information-II priori information. Under EL, the estimation is optimal for given prior information
of informative-II, and the estimation error is maximum for given prior information of informative-I.
Under LL, given prior information of informative-II, the estimation is optimal.

(2) If n is fixed, the other parameters are also fixed, with the increase of m, the Bias and MSE of the
estimates of parameter p become larger in most cases. Only when given the prior information of
Informative-II, under EL loss function, the Bias and MSE get smaller with the increase of m if n
and other variables are fixed.

(3) As a whole, the Bias and MSE is getting smaller with the increase of n, but this is not evident
under EL loss function.

(4) Under LL, The Bias and MSE of the Bayesian estimates are smaller than maximum likelihood
estimation under given prior information Informative-II. In other cases, the Bias and MSE of
Bayesian estimation and maximum likelihood estimation are similar.

4. Data Analysis

To illustrate the validity of the previous estimates, an example in Reference [19] is taken into
account. This set of data consists of test failure time and failure mode or test truncation time for small
electrical appliances. There are 18 different failure modes in the sample of small electrical appliances,
but only 7 failure modes appear in the test, and only failure modes 6 and 9 have more than two times
of failure. Failure mode 9 is the main concern. Therefore, failure mode 9 is considered to be one
failure mode δ = 1, and the other failure modes are another failure mode δ = 2. The following is the
specific data.

Data Set
(11, 2), (35, 2), (49, 2), (170, 2), (329, 2), (35, 2), (381, 2), (708, 2), (958, 2), (1062, 2), (1167, 1), (1594, 2),
(1925, 1), (1990, 2), (2223, 1), (2327, 2), (2400, 1), (2551, 2), (2565, 0), (2568, 1), (2694, 1), (2702, 2), (2761, 2),
(2831, 2), (3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1), (6976, 1), (7846, 1).

We use the Formulas (18), (19), (25), (29)–(31) and (35) which have been derived above to estimate
the parameters of this set of real data. To illustrate the reasonableness and superiority of the fitting, we
test the data by way of the Kolmogorov-Smirnov (K-S) test. The corresponding maximum distance D
and p-value are 0.16546 and 0.263 respectively. Because the p-value is very high, we accept the null
hypothesis that the data comes from the Lindley distribution. Then, we consider the censoring schemes
and get the sample data (Table 4). The maximum likelihood estimates of θ1, θ2 and p and the Bayes
estimates under three loss function measures are obtained by substituting them into Formulas (18),
(19), (25), (29)–(31) and (35). These estimates are listed in Table 5.
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Table 4. Progressive type-II censored data with binomial removals.

Scheme 1 (p = 0.3,m = 25)
R0

i [3,3,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (329, 2), (1062, 2), (1594, 2), (1925, 1), (1990, 1), (2327, 2), (2400, 1), (2451, 2),

(2471, 1), (2551, 1), (2568, 1), (2694, 1), (2702, 2), (2761, 2), (2831, 2), (3034, 1),(3059, 2),
(3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1), (6976, 1), (7846, 1)

Scheme 2 (p = 0.3,m = 25)
R0

i [2,5,2,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (170, 2), (1167, 1),(1990, 1), (2327, 2), (2451, 2), (2471, 1), (2568, 1), (2694, 1),

(2702, 2),(2831, 2),(3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1),
(6976, 1), (7846, 1)

Scheme 3 (p = 0.3,m = 15)
R0

i [6,4,2,2,0,1,2,0,0,0,0,0,1,0,0]
Data (11, 2), (958, 2), (1990, 1),(2400, 1), (2551, 1), (2568, 1), (2702, 2), (3034, 1), (3059, 2),

(3112, 1), (3214, 1), (3478, 1), (3504, 1),(6976, 1), (7846, 1)

Scheme 4 (p = 0.6,m = 25)
R0

i [7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (1062, 2), (1167, 1), (1925, 1), (1990, 1), (2223, 1), (2327, 2), (2400, 1), (2451, 2),

(2471, 1), (2551, 1), (2568, 1), (2694, 1), (2702, 2), (2761, 2), (2831, 2), (3034, 1), (3059, 2),
(3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1), (6976, 1), (7846, 1)

Scheme 5 (p = 0.6,m = 20)
R0

i [5,5,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (708, 2), (1990, 1),(2400, 1), (2451, 2), (2471, 1), (2568, 1), (2694, 1), (2702, 2),

(2761, 2), (2831, 2),(3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1),
(6976, 1), (7846, 1)

Scheme 6 (p = 0.6,m = 15)
R0

i [13,3,0,2,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (2327, 2), (2551, 1), (2568, 1), (2761, 2), (2831, 2), (3034, 1), (3059, 2), (3112, 1),

(3214, 1), (3478, 1),(3504, 1), (4329, 1), (6976, 1), (7846, 1)

Scheme 7 (p = 0.9,m = 25)
R0

i [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2),(1167, 1), (1594, 2), (1925, 1), (1990, 1), (2223, 1), (2327, 2), (2400, 1), (2451, 2),

(2471, 1), (2551, 1), (2568, 1), (2694, 1), (2702, 2), (2761, 2), (2831, 2), (3034, 1), (3059, 2),
(3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1), (6976, 1), (7846, 1)

Scheme 8 (p = 0.9,m = 20)
R0

i [12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2), (2223, 1), (2400, 1), (2451, 2), (2471, 1), (2551, 1), (2568, 1), (2694, 1), (2702, 2),

(2761, 2), (2831, 2), (3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1),
(6976, 1), (7846, 1)

Scheme 9 (p = 0.9,m = 15)
R0

i [17,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
Data (11, 2),(2551, 1),(2694, 1), (2702, 2), (2761, 2), (2831, 2), (3034, 1), (3059, 2), (3112, 1),

(3214, 1),(3478, 1),(3504, 1), (4329, 1), (6976, 1), (7846, 1)
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Table 5. Maximum Likelihood Estimates and Bayes estimates of θ1, θ2 and p.

SEL EL

Schemes θ1(10−4) θ2(10−4) p θ1(10−4) θ2(10−4) p

1 4.7627 3.1069 0.4737 4.6212 2.8987 0.2963
2 4.1513 2.3775 0.3111 4.0113 2.1496 0.2241
3 4.1476 2.3738 0.3065 3.9891 2.1182 0.2250
4 4.7648 2.3806 0.8182 4.6366 2.1436 0.4211
5 4.1516 2.3777 0.5000 4.0106 2.1483 0.3171
6 4.0876 2.3748 0.6786 3.9130 2.0987 0.3913
7 4.7650 2.3808 1.0000 4.6365 2.1435 0.4706
8 4.7640 2.3798 0.9333 4.6098 2.0993 0.4643
9 4.1219 2.3782 0.9500 3.9384 2.0870 0.4737

LL ML

Schemes θ1(10−4) θ2(10−4) p θ1(10−4) θ2(10−4) p

1 4.7627 3.1069 0.4380 4.768372 3.112606 0.4444
2 4.1513 2.3775 0.2932 4.15802 2.384186 0.2955
3 4.1476 2.3738 0.2934 4.15802 2.384186 0.2951
4 4.7647 2.3806 0.7925 4.768372 2.384186 0.8000
5 4.1515 2.3777 0.4770 4.15802 2.384186 0.4815
6 4.0876 2.3747 0.6627 4.097034 2.384186 0.6667
7 4.7649 2.3807 1.0000 4.768372 2.384186 0.8889
8 4.7639 2.3797 0.9263 4.768372 2.384186 0.9286
9 4.1219 2.3782 0.9461 4.127871 2.384186 0.9474

5. Conclusions

In this paper, when the lifetime distribution obeys the Lindley distribution, the progressive type-II
censored competing risks data with binomial removals is adopted as the research object. Considering
two competing risks, the maximum likelihood estimates of distribution parameters (θ1, θ2 and p)
are obtained and the Bayes estimates of these parameters are obtained by using the loss functions
of squared error loss function, LINEX loss function and general entropy loss function. In order
to evaluate these estimates, Newton–Raphson algorithm and the Lindley approximation method
are used to study the performance of the estimators. Among the Bayesian estimators of θ1 and θ2,
the information prior-based estimators perform better than the non-information prior-based estimators.
Given prior information, the estimators under LINEX loss function and the squared error loss function
perform better. In the Bayes estimates of p, given the appropriate prior information, the estimators’
performance under LINEX loss function is better. Compare the bayesian estimation with the maximum
likelihood estimation. For θ1 and θ2, with prior information, the bayesian estimator under LINEX loss
function and the squared error loss function are superior to the maximum likelihood estimation. For p,
with appropriate prior information, the Bayesian estimator under the LINEX loss function is superior
to the maximum likelihood estimation.
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