
Article

Properties of Fluctuating States in Loop
Quantum Cosmology

Martin Bojowald

Institute for Gravitation and the Cosmos, The Pennsylvania State University, 104 Davey Lab,
University Park, PA 16802, USA; bojowald@gravity.psu.edu

Received: 7 June 2019; Accepted: 16 July 2019; Published: 19 July 2019
����������
�������

Abstract: In loop quantum cosmology, the values of volume fluctuations and correlations determine
whether the dynamics of an evolving state exhibits a bounce. Of particular interest are states that
are supported only on either the positive or the negative part of the spectrum of the Hamiltonian that
generates this evolution. It is shown here that the restricted support on the spectrum does not significantly
limit the possible values of volume fluctuations.
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1. Introduction

A solvable model [1] that captures basic features of classical and quantum cosmology is given by
two canonical variables, Q and P with Poisson bracket {Q, P} = 1, and a one-parameter family of
Hamiltonians, Hδ = |Q sin(δP)|/δ with δ ≥ 0. In the limit δ → 0, H0 = |QP| is quadratic up to the
absolute value, and a system close to an upside-down harmonic oscillator is obtained. Since QP and
therefore sgn(QP) is preserved by equations of motion generated by the auxiliary Hamiltonian H′0 = QP,
the set of regular solutions (such that QP 6= 0) of the classical H0-system is given by the union of two
disjoint sets: solutions of the H′0-system with initial values Q(0), P(0) such that sgn(Q(0)P(0)) = 1,
and solutions of the −H′0-system with initial values Q(0), P(0) such that sgn(Q(0)P(0)) = −1. All
classical solutions can therefore be obtained from a quadratic Hamiltonian.

For δ 6= 0, Hδ = |ImJδ|/δ is, up to the absolute value, linear in Jδ := Q exp(iδP), whose real and
imaginary parts, together with Q, are generators of the sl(2,R) algebra

{Q, ReJδ} = −δImJδ , {Q, ImJδ} = δReJδ , {ReJδ, ImJδ} = δQ . (1)

Again, introducing an auxiliary Hamiltonian H′δ = ImJδ/δ, all regular solutions (such that ImJδ 6= 0)
of the Hδ-system can be obtained from solutions of the ±H′δ-systems with suitable initial values.

In a simple cosmological interpretation, |Q| = V/4πG is proportional to the volume V of an
expanding or collapsing universe, while P is the (negative) Hubble parameter. According to the Friedmann
equation of classical cosmology for flat spatial slices, which reads

P2 =
8πG

3
ρ (2)

in our canonical variables with the matter energy density ρ, H0 = |QP| can, up to a numerical factor,
be interpreted as the momentum canonically conjugate to a free, massless scalar source φ, whose energy
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density is ρ = 1
2 p2

φ/V2 with the momentum pφ canonically conjugate to φ. In quantum cosmology, it is
common to describe time dependence not with respect to a coordinate such as proper time, but rather with
respect to one of the degrees of freedom of the model, such as φ [2]. Solutions Q(φ) and P(φ) of Hamilton’s
equations of motion generated by ±H0 ∝ pφ therefore describe how Q and P change in relation to the
“internal time” φ. If δ 6= 0, Hδ can still be interpreted in this way, but only if the Friedmann equation is
modified such that P2 is replaced by sin2(δP)/δ2. This modification may be motivated by the appearance
of holonomies in loop quantum gravity [3,4] and loop quantum cosmology [5], and is supposed to describe
an implication of quantum geometry. (If a Taylor expansion of sin2(δP)/δ2 is used, higher-order terms
in P, proportional to the Hubble parameter, can be interpreted as a specific form of higher-curvature
corrections suggested by the theory.)

Replacing the unbounded function P2 with a bounded function sin2(δP)/δ2, still proportional to the
energy density of a matter source, suggests that the classical big-bang singularity, at which the energy
density diverges, could be avoided by quantum-geometry effects [6]. Indeed, solutions for Q(φ) of
equations of motion generated by ±H′δ,

dQ
dφ

= ±ReJδ(φ) ,
dReJδ

dφ
= ±Q(φ) , (3)

are superpositions of real exponential functions. If the condition Q2 − |Jδ|2 = 0 is imposed, which ensures
that P in the definition of Jδ is real, the equation

Q2 − (ReJδ)
2 = (ImJδ)

2 = (δH′δ)
2 > 0 , (4)

which is by definition positive for regular solutions, implies that Q(φ) must be cosh-like and
ReJδ(φ) sinh-like. The eternally collapsing behavior of the volume Q(φ) approaching zero if
δ = 0, Q(φ) = Q(0) exp(±φ), is then replaced by a “bounce” at the non-zero minimum of cosh.

The preceding argument ignores quantum fluctuations, which may be expected to be significant
in a discussion of big-bang solutions. If (∆Q)2 is large, it could conceivable change the balance of
signs in Equation (4), in which 〈Q̂2〉 = 〈Q̂〉2 + (∆Q)2 would take the place of Q2. For states with
(∆Q)2 ≥ (δH′δ)

2 + (∆ReJδ)
2, the right-hand side of Equation (4), written for expectation values, is no

longer positive, and 〈Q̂〉(φ) would not be cosh-like. The possibility of such non-bouncing solutions in
loop quantum cosmology has been demonstrated using canonical effective methods [7], in particular for
small δH′δ relevant for an understanding of generic spacelike singularities [8,9].

However, for quantum states, the absolute value in Hδ has to be treated with greater care than
in the case of classical solutions. Solutions of quantum evolution generated by an operator Ĥδ via
a Schrödinger equation for wave functions can be expressed as superpositions of solutions of quantum
evolution generated by an operator Ĥ′δ, provided the latter are supported solely on the positive or
negative part of the spectrum of Ĥ′δ. (See Section 2.3 below for a demonstration.) This condition is a
straightforward replacement of the classical restriction on initial values. However, it may have more
significant ramifications, in particular when quantum fluctuations are taken into account that may be
larger than the expectation value 〈Ĥδ〉, as required to change the signs in Equation (4). A state that is
supported only on the positive part of the spectrum of Ĥ′δ and has an expectation value of |Ĥ′δ| close
to zero may not have arbitrarily large fluctuations of Ĥ′δ. The question to be addressed in this paper is
whether this restriction also limits the size of fluctuations of Q̂.
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2. Eigenstates

We first determine the spectra of Ĥ′0 and Ĥ′δ and then discuss relevant properties of states obtained
from superpositions of their positive parts.

2.1. Eigenstates of Ĥ′0

We use the symmetric ordering

Ĥ′0 =
1
2
(Q̂P̂ + P̂Q̂) (5)

to quantize H′0 = QP on the standard L2-Hilbert space. Eigenstates of this operator in the Q and
P-representations are determined by the same type of first-order differential equation,

Q
dψλ(Q)

dQ
+

1
2

ψλ(Q) = i
λ

h̄
ψλ(Q) (6)

in the Q-representation, and

P
dφλ(P)

dP
+

1
2

φλ(P) = −i
λ

h̄
φλ(P) (7)

in the P-representation. For every λ, there are in each representation two orthogonal solutions ψλ±(Q)

and φλ±(P), respectively, given by

ψλ+(Q) =

{
0 if Q ≤ 0

cλ+Qiλ/h̄−1/2 if Q > 0
(8)

ψλ−(Q) =

{
cλ−(−Q)iλ/h̄−1/2 if Q < 0

0 if Q ≥ 0
(9)

φλ+(P) =

{
0 if P ≤ 0

dλ+P−iλ/h̄−1/2 if P > 0
(10)

φλ−(P) =

{
dλ−(−P)−iλ/h̄−1/2 if P < 0

0 if P ≥ 0
. (11)

It is obvious that ψλ1+ and ψλ2− are orthogonal to each other for any λ1 and λ2, and so are φλ1+ and
φλ2−. Moreover,

∫ ∞

−∞
ψ∗λ1±(Q)ψλ2±(Q)dQ = cλ1±cλ2±

∫ ∞

0
qi(λ2−λ∗1)/h̄ dq

q

= cλ1±cλ2±

∫ ∞

−∞
exp(ix(λ2 − λ∗1)/h̄)dx

=

{
2πh̄cλ1±cλ2±δ(λ2 − λ∗1) if λ2 − λ∗1 ∈ R

∞ otherwise
(12)
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and ∫ ∞

−∞
φ∗λ1±(P)φλ2±(P)dP = dλ1±dλ2±

∫ ∞

0
p−i(λ2−λ∗1)/h̄ dp

p

= dλ1±dλ2±

∫ ∞

−∞
exp(−iy(λ2 − λ∗1)/h̄)dy

=

{
2πh̄dλ1±dλ2±δ(λ2 − λ∗1) if λ2 − λ∗1 ∈ R

∞ otherwise
(13)

where the substitutions q = |Q|, x = log q, p = |P| and y = log p have been used. For real λ, all eigenstates
are delta-function normalizable, fixing the coefficients cλ± = 1/

√
2πh̄ = dλ±. The spectrum of Ĥ′0 is

therefore real, continuous, and twofold degenerate.

2.2. Eigenstates of Ĥ′δ

For δ 6= 0, the Hamiltonian is periodic in P with period 2π/δ. To be specific, we will assume that the
basic operators are represented on a separable Hilbert space of square-integrable functions periodic in P,
such that Q̂ has a discrete spectrum given by h̄δZ. Inequivalent representations, such as states which are
periodic only up to a phase factor exp(iε), for which the spectrum of Q̂ is shifted by h̄ε, or non-separable
Hilbert spaces as used often in loop quantum cosmology [10], would not change our results. In the
Q-representation, our states therefore obey an `2 inner product such that

(ψ1, ψ2) =
∞

∑
n=−∞

ψ1(nh̄δ)∗ψ2(nh̄δ) . (14)

We write Ĥ′δ as

Ĥ′δ =
Im Ĵδ

δ
=

1
2iδ

(
Ĵδ − Ĵ†

δ

)
=

1
2iδ

(
Q̂ exp(iδP̂)− exp(−iδP̂)Q̂

)
. (15)

Since exp(iδP̂) is a translation operator in the Q-representation, eigenstates of Ĥ′δ in this representation
are determined by a difference equation

(Q + h̄δ)ψλ(Q + h̄δ) + 2iδλψλ(Q)−Qψλ(Q− h̄δ) = 0 (16)

where Q takes the values nh̄δ with integer n. This equation with non-constant coefficients does not
have straightforward solutions. It is, however, possible to show that eigenstates obey a similar twofold
degeneracy as in the case of Ĥ′0:

Lemma 1. For given λ, there are two orthogonal solutions ψλ±, one of which is supported on positive values of Q
(and Q = 0), and one on negative values of Q. They are related by

ψλ±(Q) = ψλ∓(−Q− h̄δ) . (17)

Proof. Let us first look for solutions such that ψλ+(−h̄δ) = 0. Using the Equation (16) for Q = −h̄δ,
we obtain ψλ+(−2h̄δ) = 2i(λ/h̄)ψλ+(−h̄δ) = 0. Moreover, if ψλ+(−(n− 1)h̄δ) = 0 and ψλ+(−nh̄δ) = 0,
using the equation for Q = −nh̄δ shows that ψλ+(−(n + 1)h̄δ) = 0. By induction, ψλ+(Q) = 0 for all
integer Q/h̄δ < 0. However, if ψλ+(0) 6= 0 for such a solution, ψλ+(h̄δ) = −2i(λ/h̄)ψλ+(0) 6= 0, using
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Equation (16) for Q = 0. The solution therefore is not identically zero, and it is unique up to multiplication
with a constant ψλ+(0).

A similar line of arguments, starting with the assumption that ψλ−(0) = 0, implies that ψλ−(Q) = 0
for all integer Q/h̄δ ≥ 0, while assuming ψλ−(−h̄δ) 6= 0 guarantees that the solution is not identically
zero. Since the supports of any ψλ1+ and ψλ2− are disjoint, the two states are orthogonal with respect to
the inner product (14).

Substituting −Q− h̄δ for Q in Equation (16), we obtain the equation

0 = −Qψλ(−Q) + 2iδλψλ(−Q− h̄δ) + (Q + h̄δ)ψλ(−Q− 2h̄δ) = 0

= −Qψ̄(Q− h̄δ) + 2iδλψ̄(Q) + (Q + h̄δ)ψ̄(Q + h̄δ) (18)

equivalent to Equation (16). The definition ψ̄(Q) = ψ(−Q− h̄δ) introduced in the second line maps a
function ψ supported on non-negative integers (times h̄δ) to a function ψ̄ supported on negative integers
(times h̄δ), and vice verse. Applied to solutions of Equation (16), it therefore maps ψλ± to ψλ∓.

In the P-representation, eigenstates of Equation (15) obey the first-order differential equation

sin(δP)
dψλ±(P)

dP
+

1
2

δ exp(iδP)ψλ±(P) = −i
λδ

h̄
ψλ±(P) . (19)

This equation is solved by

ψλ+(P) =


0 if π ≤ δP ≤ 2π√

δ

2πh̄
(cot(δP/2))iλ/h̄√

sin(δP)
exp(−iδP/2) if 0 < δP < π

(20)

ψλ−(P) =


√

δ

2πh̄
(− cot(δP/2))iλ/h̄√

− sin(δP)
exp(−iδP/2) if π < δP < 2π

0 if 0 ≤ δP ≤ π

. (21)

The substitution x = log | cot(δP/2)| shows that these states are delta-function normalized.
The spectrum therefore has the same properties as in the case of Ĥ′0, being real, continuous,
and twofold degenerate.

2.3. Existence of Positive-Energy Solutions with Large Fluctuations

For any δ, completeness of the eigenstates of a self-adjoint operator shows that any state ψ(Q) has an
expansion of the form

ψ(Q) =
1√
2

(∫ ∞

−∞
cλ+ψλ+(Q)dλ +

∫ ∞

−∞
cλ−ψλ−(Q)dλ

)
(22)

in terms of eigenstates of Ĥ′δ, for some cλ± normalized such that
∫ ∞
−∞ |cλ±|2dλ = 1. It evolves according to

ψ(Q, φ) =
1√
2

(∫ ∞

−∞
cλ+ exp(−iλφ/h̄)ψλ+(Q)dλ +

∫ ∞

−∞
cλ− exp(−iλφ/h̄)ψλ−(Q)dλ

)
. (23)
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The actual dynamics in our models of interest is generated by the Hamiltonian Ĥδ = |Ĥ′δ|.
This operator has the same eigenstates ψλ±(Q), but with eigenvalues |λ|. Its spectrum is therefore
four-fold degenerate and positive. Dynamical solutions in these models are given by

ψ(Q, φ) =
1√
2

(∫ ∞

−∞
cλ+ exp(−i|λ|φ/h̄)ψλ+(Q)dλ +

∫ ∞

−∞
cλ− exp(−i|λ|φ/h̄)ψλ−(Q)dλ

)
. (24)

The decomposition ψ(Q, φ) = 1√
2
(N−ψ−(Q, φ) + N+ψ+(Q, φ)) with

ψ−(Q, φ) =
1

N−

(∫ 0

−∞
cλ+ exp(iλφ/h̄)ψλ+(Q)dλ +

∫ 0

−∞
cλ− exp(iλφ/h̄)ψλ−(Q)dλ

)
(25)

and

ψ+(Q, φ) =
1

N+

(∫ ∞

0
cλ+ exp(−iλφ/h̄)ψλ+(Q)dλ +

∫ ∞

0
cλ− exp(−iλφ/h̄)ψλ−(Q)dλ

)
, (26)

where N2
− =

∫ 0
−∞(|cλ+|2 + |cλ−|2)dλ and N2

+ =
∫ ∞

0 (|cλ+|2 + |cλ−|2)dλ such that N2
− + N2

+ = 2,
demonstrates the claim about solutions made in the introduction.

The decomposition into positive-energy solutions ψ+ and negative-energy solutions ψ− simply
rewrites generic wave functions and does not restrict their fluctuations of Q or P. However, it is
sometimes preferred [11] (although not required [12]) to discard negative-energy solutions and consider
only positive-energy solutions ψ+ (or vice versa, but no superpositions of solutions with opposite signs of
the energy). A question of interest in quantum cosmology is whether this restriction in any way limits
the possible magnitude of fluctuations of Q or P, which would then have consequences for bouncing or
non-bouncing behavior according to Bojowald [7]. Using the spectral properties derived in the preceding
section, we now show that this is not the case.

In particular, for potential non-bouncing behavior, we are interested in solutions with small 〈Ĥδ〉,
such that

δ2〈Ĥδ〉2 + δ2(∆Hδ)
2 ≤ (∆Q)2 − (∆ReJδ)

2 . (27)

If 〈Ĥδ〉 is small, given the positivity of the spectrum of Ĥδ, the range of possible values of ∆Hδ

seems to be limited because the state in the λ-representation can spread out only to one side of 〈Ĥδ〉.
However, the twofold degeneracy of the spectrum of Ĥ′δ, of the specific form derived in the preceding
section, in particular in Lemma 1, shows that there is no such limitation for fluctuations ∆Q even if 〈Q̂〉 is
required to be small: In order to construct a state, supported only on the positive part of the spectrum of
Ĥ′δ, such that it has a small expectation value and large fluctuations of Q̂, we choose some cλ such that∫ ∞

0 |cλ|2dλ = 1, and define ψc+(Q) =
∫ ∞

0 cλψλ+(Q)dλ. This state is supported on the positive part of the
spectrum of Ĥ′δ, by construction, and has a certain expectation value 〈Q̂〉c+ > 0 and fluctuations ∆c+Q > 0.
Similarly, the state ψc−(Q) =

∫ ∞
0 cλψλ−(Q)dλ, using the transformation in Equation (17), has expectation

value 〈Q̂〉c− = −〈Q̂〉c+ − h̄δ < 0 and fluctuations ∆c−Q = ∆c+Q > 0. The state

ψc =
1√
2

∫ ∞

0
cλ

(
αψλ+(Q) +

√
2− α2ψλ−(Q)

)
dλ , (28)

with some |α| ≤
√

2, then has expectation value

〈Q̂〉 = 1
2

(
α2〈Q̂〉c+ + (2− α2)〈Q̂〉c−

)
= (α2 − 1)〈Q̂〉c+ −

2− α2

2
h̄δ (29)
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and fluctuations given by

(∆Q)2 =
1
2

(
α2〈Q̂2〉c+ + (2− α2)〈Q̂2〉c−

)
− 〈Q̂〉2

= (∆c+Q)2 +
1
2

(
α2〈Q̂〉2c+ + (2− α2)〈Q̂〉2c−

)
−(α2 − 1)2〈Q̂〉2c+ + (2− α2)(α2 − 1)h̄δ〈Q̂〉c+ −

(2− α2)2

4
h̄2δ2

= (∆c+Q)2 + α2(2− α2)

(
〈Q̂〉c+ +

1
2

h̄δ

)2
. (30)

For α 6= 1, the result can also be written as

(∆Q)2 = (∆c+Q)2 +
α2(2− α2)

(α2 − 1)2

(
〈Q̂〉+ 1

2
h̄δ

)2
(31)

using

(α2 − 1)
(
〈Q̂〉c+ +

1
2

h̄δ

)2
=

(
〈Q̂〉+ 1

2
h̄δ

)2
. (32)

Since 〈Q̂〉c+ is not restricted by the positivity condition, ∆Q is unlimited even on states with small
expectation value 〈Q̂〉.

3. Moments

Since H′0 is a function of Q and P, H′0-moments in a given state are related to Q and P-moments in the
same state. There may therefore be restrictions on the magnitude of Q or P-fluctuations if a state is required
to have small 〈Ĥ′0〉 and small H′0-fluctuations. We will now demonstrate that Q and P-fluctuations are
indeed restricted in such a state, but only if additional assumptions on the QP-covariance are made.

3.1. Relationships between Moments

Because Ĥ′0 is quadratic in Q̂ and P̂, ∆H′0 is related to moments of up to fourth order in Q and P.
In the following calculations, we use the notation of Tsobanjan [13], as in

Definition 1. Given a set of operators Âi, i = 1, . . . , n, and integers k1, . . . , kn ≥ 0 such that ∑i k1 ≥ 2,
the moments of a state are

∆(Ak1
1 Ak2

2 · · · A
kn
n ) =

〈
(∆Â1)

k1(∆Â2)
k2 · · · (∆Ân)

kn
〉

symm
, (33)

where ∆Âi = Âi − 〈Âi〉, all expectation values are taken in the given state, and the subscript “symm” indicates
that all products of operators are taken in totally symmetric (or Weyl) ordering:

〈Ô1 · · · Ôn〉symm =
1
n! ∑

σ∈Sn

〈
Ôσ(1) · · · Ôσ(n)

〉
. (34)

The following reordering relations are useful:
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Lemma 2. For two operators Q̂ and P̂ such that [Q̂, P̂] = ih̄,〈
(∆Q̂)2∆P̂ + 2∆Q̂∆P̂∆Q̂ + ∆P̂(∆Q̂)2

〉
= 4∆(Q2P) (35)〈(

∆Q̂∆P̂ + ∆P̂∆Q̂
)2
〉

= 4∆(Q2P2) + h̄2 . (36)

Proof. Starting with the left-hand side of Equation (35), we write

2∆Q̂∆P̂∆Q̂ =
4
3

∆Q̂∆P̂∆Q̂

+
1
3

(
(∆Q̂)2∆P̂− ∆Q̂[∆Q̂, ∆P̂]

)
+

1
3

(
∆P̂(∆Q̂)2 + [∆Q̂, ∆P̂]∆Q̂

)
such that 〈

(∆Q̂)2∆P̂ + 2∆Q̂∆P̂∆Q̂ + ∆P̂(∆Q̂)2
〉

=
4
3

〈
(∆Q̂)2∆P̂ + ∆Q̂∆P̂∆Q̂ + ∆P̂(∆Q̂)2

〉
= 4∆(Q2P)

proves Equation (35).
On the left-hand side of Equation (36), we write〈(

∆Q̂∆P̂ + ∆P̂∆Q̂
)2
〉

=
〈

∆Q̂∆P̂∆Q̂∆P̂ + ∆Q̂(∆P̂)2∆Q̂ + ∆P̂(∆Q̂)2∆P̂ + ∆P̂∆Q̂∆P̂∆Q̂
〉

=
2
3

〈
∆Q̂∆P̂∆Q̂∆P̂ + (∆Q̂)2(∆P̂)2 + ∆Q̂(∆P̂)2∆Q̂

+∆P̂(∆Q̂)2∆P̂ + (∆P̂)2(∆Q̂)2 + ∆P̂∆Q̂∆P̂∆Q̂
〉

+
1
3

(
∆Q̂[∆P̂, ∆Q̂]∆P̂ + ∆Q̂[(∆P̂)2, ∆Q̂] + ∆P̂[(∆Q̂)2, ∆P̂] + ∆P̂[∆Q̂, ∆P̂]∆Q̂

)
using

∆Q̂∆P̂∆Q̂∆P̂ =
2
3

∆Q̂∆P̂∆Q̂∆P̂ +
1
3

(
(∆Q̂)2(∆P̂)2 + ∆Q̂[∆P̂, ∆Q̂]∆P̂

)
∆Q̂(∆P̂)2∆Q̂ =

2
3

∆Q̂(∆P̂)2∆Q̂ +
1
3

(
(∆Q̂)2(∆P̂)2 + ∆Q̂[(∆P̂)2, ∆Q̂]

)
∆P̂(∆Q̂)2∆P̂ =

2
3

∆P̂(∆Q̂)2∆P̂ +
1
3

(
(∆P̂)2(∆Q̂)2 + ∆P̂[(∆Q̂)2, ∆P̂]

)
∆P̂∆Q̂∆P̂∆Q̂ =

2
3

∆P̂∆Q̂∆P̂∆Q̂ +
1
3

(
(∆P̂)2(∆Q̂)2 + ∆P̂[∆Q̂, ∆P̂]∆Q̂

)
.

Evaluating the commutators and observing

∆(Q2P2) =
1
6

〈
∆Q̂∆P̂∆Q̂∆P̂ + (∆Q̂)2(∆P̂)2 + ∆Q̂(∆P̂)2∆Q̂

+∆P̂(∆Q̂)2∆P̂ + (∆P̂)2(∆Q̂)2 + ∆P̂∆Q̂∆P̂∆Q̂
〉

we obtain Equation (36).
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Proposition 1. If a state is such that it has a vanishing covariance ∆(QP) = 1
2 〈Q̂P̂ + P̂Q̂〉 − 〈Q̂〉〈P̂〉 and zero

skewness (third-order moments), then the relative fluctuations of Q̂ and P̂ are bounded from above by the relative
fluctuation of Ĥ = 1

2 (Q̂P̂ + P̂Q̂):
(∆Q)2

〈Q̂〉2
+

(∆P)2

〈P̂〉2
<

(∆H′0)
2

〈Ĥ′0〉2
. (37)

Proof. Writing operators as Â = ∆Â + 〈Â〉 in Ĥ′0 = 1
2 (Q̂P̂ + P̂Q̂), we obtain

〈Ĥ′0〉 =
1
2
〈
(∆Q̂ + 〈Q̂〉)(∆P̂ + 〈P̂〉) + (∆P̂ + 〈P̂〉)(∆Q̂ + 〈Q̂〉)

〉
=

1
2
〈∆Q̂∆P̂ + ∆P̂∆Q̂〉+ 〈Q̂〉〈P̂〉 = ∆(QP) + 〈Q̂〉〈P̂〉 . (38)

(Note that 〈∆Â〉 = 0 for any Â.)
The derivation of the fluctuation ∆(H′0

2) requires a longer calculation: We expand

∆(H′0
2) = 〈Ĥ′02〉 − 〈Ĥ′0〉2 (39)

=
1
4

〈(
(∆Q̂ + 〈Q̂〉)(∆P̂ + 〈P̂〉) + (∆P̂ + 〈P̂〉)(∆Q̂ + 〈Q̂〉)

)2
〉

(40)

−1
4
〈
(∆Q̂ + 〈Q̂〉)(∆P̂ + 〈P̂〉) + (∆P̂ + 〈P̂〉)(∆Q̂ + 〈Q̂〉)

〉2 (41)

=
1
4

〈(
∆Q̂∆P̂ + ∆P̂∆Q̂ + 2〈P̂〉∆Q̂ + 2〈Q̂〉∆P̂ + 2〈Q̂〉〈P̂〉

)2
〉

(42)

−1
4
(〈

∆Q̂∆P̂ + ∆P̂∆Q̂
〉
+ 2〈Q̂〉〈P̂〉

)2 (43)

=
1
4

〈(
∆Q̂∆P̂ + ∆P̂∆Q̂

)2
〉

(44)

+
1
2
〈Q̂〉

〈
∆P̂
(
∆Q̂∆P̂ + ∆P̂∆Q̂

)
+
(
∆Q̂∆P̂ + ∆P̂∆Q̂

)
∆P̂
〉

(45)

+
1
2
〈P̂〉

〈
∆Q̂

(
∆Q̂∆P̂ + ∆P̂∆Q̂

)
+
(
∆Q̂∆P̂ + ∆P̂∆Q̂

)
∆Q̂
〉

(46)

+〈Q̂〉〈P̂〉
〈
∆Q̂∆P̂ + ∆P̂∆Q̂

〉
+ 〈Q̂〉2〈(∆P̂)2〉+ 〈P̂〉〈(∆Q̂)2〉 (47)

−1
4
〈∆Q̂∆P̂ + ∆P̂∆Q̂〉2 . (48)

Using Equation (36) in Equation (44), Equation (35) in Equation (46) and an analogous result in
Equation (45), we obtain

∆(H′0
2) = 〈Q̂〉2∆(P2) + 〈P̂〉2∆(Q2) + 2〈Q̂〉〈P̂〉∆(QP)

+2〈P̂〉∆(Q2P) + 2〈Q̂〉∆(QP2) + ∆(Q2P2) +
1
4

h̄2 − ∆(QP)2 . (49)

If ∆(QP) = 0 and ∆(Q2P) = 0 = ∆(QP2), we obtain

∆(H′0
2)

〈Ĥ′0〉2
=

∆(Q2)

〈Q̂〉2
+

∆(P2)

〈P̂〉2
+

1
4

h̄2 + 4∆(Q2P2)

〈Q̂〉2〈P̂〉2
>

∆(Q2)

〈Q̂〉2
+

∆(P2)

〈P̂〉2
. (50)

This result shows that a state with small relative H-fluctuations but large relative Q-fluctuations must
have non-zero covariance or skewness.
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3.2. Example

As shown in [14], the right-hand side of Equation (27) is strictly negative for a Gaussian state in Q.
This inequality then cannot be fulfilled. The same paper showed that the right-hand side of Equation (27)
is approximately zero for a state given by

ψ(Q) =

√√
2
π

σ

h̄Q
exp

(
−σ2(log(Q/Q̄))2/h̄2 + i(λ̄/h̄) log(Q/Q̄)

)
(51)

if Q > 0 and ψ(Q) = 0 otherwise, with constants Q̄ > 0, σ > 0 and λ̄. We now demonstrate that
such a state can be approximated by a state supported only on the positive part of the spectrum of Ĥ′0,
which then provides an example of how the restriction given by Proposition 1 can be overcome by states
with non-zero covariance.

Let us choose a Gaussian

cλ =
N

(2π)1/4
√

σ
exp

(
− (λ− λ̄)2

4σ2 +
i p̄λ

h̄

)
(52)

for λ > 0 and cλ = 0 otherwise, where

N2 =
2

1 + erf
(

λ̄/(
√

2σ)
) (53)

normalizes cλ restricted to positive λ and is close to N2 ≈ 1 for λ̄ � σ, or ∆H′0/〈Ĥ′0〉 � 1. Using the
definition in Equation (28) with α =

√
2, we consider the state ψc+(Q) =

∫ ∞
0 cλψλ+(Q)dλ. The integral

can be approximated by extending the integration over positive λ to all real λ, which is valid provided cλ

is negligible for λ < 0. Given Equation (52), the approximation can be used if the λ-variance σ is much less
than the λ-expectation value, σ� λ̄. The same condition allows us to approximate N ≈ 1, and we obtain

ψc+(Q) =
∫ ∞

0
cλψλ+(Q)dλ ≈

∫ ∞

−∞
cλψλ+(Q)dλ

≈ 1
(2π)3/4

√
σh̄Q

∫ ∞

−∞
exp(−(λ− λ̄)2/4σ2 + iλ( p̄ + log Q)/h̄)dλ (54)

=

√√
2
π

σ

h̄Q
exp

(
−(σ2/h̄2)( p̄ + log Q)2 + i(λ̄/h̄)( p̄ + log Q)

)
(55)

for Q > 0. Defining Q̄ = exp(− p̄), the result equals Equation (51).
The resulting state in Equation (54) shows that the log |Q|-variance is given by ∆ log |Q| = h̄/(2σ),

while the log |Q|-expectation value is 〈log |Q̂|〉 = − p̄. We can therefore maintain the condition λ̄ � σ,
or ∆H′0/〈Ĥ′0〉 � 1, for the approximation in Equation (54) to be valid, and choose a small 〈Q̂〉 with large
∆Q.

According to Equation (37), this state must have non-zero covariance or skewness. We can easily
confirm the former property by computing

〈Q̂〉 =

√
2
π

σ

h̄

∫ ∞

0
exp

(
−2(σ2/h̄2)(log(Q/Q̄))2

)
dQ = I1 = Q̄ exp(h̄2/8σ2) (56)

〈P̂〉 =

√
2
π

σλ̄

h̄

∫ ∞

0

1
Q2 exp

(
−2(σ2/h̄2)(log(Q/Q̄))2

)
dQ = λ̄I−1 =

λ̄

Q̄
exp(h̄2/8σ2) (57)
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and
1
2
〈Q̂P̂ + P̂Q̂〉 = Re〈Q̂P̂〉 = λ̄I0 = λ̄ . (58)

where we have used the integrals

Ia =

√
2
π

σ

h̄

∫ ∞

−∞
eaz exp(−2σ2(z− log Q̄)2/h̄2)dz = Q̄a exp(a2h̄2/8σ2) (59)

for real a. Therefore,
∆(QP) = λ̄

(
1− exp(h̄2/4σ2)

)
< 0 (60)

is non-zero, with |∆(QP)| large for σ� h̄, such that ∆Q can be large.
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