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Abstract

:

In this paper, we study the traveling wave solutions for a nonlocal dispersal SIR epidemic model with standard incidence rate and nonlocal delayed transmission. The existence and nonexistence of traveling wave solutions are determined by the basic reproduction number of the corresponding reaction system and the minimal wave speed. To prove these results, we apply the Schauder’s fixed point theorem and two-sided Laplace transform. The main difficulties are that the complexity of the incidence rate in the epidemic model and the lack of regularity for nonlocal dispersal operator.
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1. Introduction


Due to the important significance in modeling the disease transmission, traveling wave solution has been intensively researched in many epidemic models, such as the SIR epidemic models and their various extensions. For instance, Hosono and Ilyas [1] considered the following epidemic model:


∂S(x,t)∂t=d1∂2S(x,t)∂x2-βS(x,t)I(x,t),∂I(x,t)∂t=d2∂2I(x,t)∂x2+βS(x,t)I(x,t)-γI(x,t),∂R(x,t)∂t=d3∂2R(x,t)∂x2+γI(x,t),



(1)




where S,I and R denote the densities of the susceptible, infected and removed individuals, respectively. di>0,i=1,2,3 are the diffusion rates, and the positive constants β,γ denote the transmission rate and the recovery rate, respectively. They have proved that system (1) admits a pair of traveling wave solution (S(x+ct),I(x+ct)) satisfying S(-∞)=S-∞>S(∞)=S∞,I(±∞)=0 if βS-∞γ>1 and the wave speed c≥c*=2βS-∞d2(1-γβS-∞). Wang and Wu [2] considered the existence and nonexistence of traveling wave solution for a diffusive Kermack–McKendrick epidemic model with nonlocal delayed transmission. The incidence rate in these two papers is bilinear form βSI. Since then, there has been extensive research with traveling wave solutions for delayed diffusive SIR models with various incidence rates, such as βSI1+αI,βIpSq(p,q>0) and general form f(S)g(I), see [3,4,5,6,7,8,9,10,11,12,13,14]. There have also been some papers about traveling wave solutions for delayed diffusive SIR models with external supplies [15,16] and delayed diffusive SIRS epidemic models [17,18].



On the other hand, the traveling wave solution for diffusive SIR models with a standard incidence rate has attracted more and more attention. Wang et al. [19] have considered the following SIR disease outbreak model with the standard incidence rate


∂S(x,t)∂t=d1∂2S(x,t)∂x2-βS(x,t)I(x,t)S(x,t)+I(x,t),∂I(x,t)∂t=d2∂2I(x,t)∂x2+βS(x,t)I(x,t)S(x,t)+I(x,t)-γI(x,t),∂R(x,t)∂t=d3∂2R(x,t)∂x2+γI(x,t).



(2)







They have obtained full information about the existence and nonexistence of traveling wave solutions. Li et al. [20] also have studied diffusive SIR epidemic model with standard incidence rate, which is different from system (2) that they considered the effect of nonlocal delayed transmission. Wang and Wang [21] have studied the following diffusive SIR epidemic model


∂S(x,t)∂t=d1∂2S(x,t)∂x2-βS(x,t)I(x,t)S(x,t)+I(x,t)+R(x,t),∂I(x,t)∂t=d2∂2I(x,t)∂x2+βS(x,t)I(x,t)S(x,t)+I(x,t)+R(x,t)-(γ+δ)I(x,t),∂R(x,t)∂t=d3∂2R(x,t)∂x2+γI(x,t),



(3)




where δ>0 denotes the death rate due to the disease. They have obtained that system (3) has a traveling wave solution (S(x+ct),I(x+ct),R(x+ct)) satisfying S(-∞)=S-∞>S(∞)=S∞, I(±∞)=0,R(-∞)=0, R(∞)=γ(S-∞-S∞)γ+δ if βγ+δ>1,c>c*=2d2(β-γ-δ) and d3<2d2. More recently, Zhen, Wei, Tian et al. [22] have considered the following diffusive SIR epidemic model with standard incidence rate and spatiotemporal delay


∂S(x,t)∂t=d1∂2S(x,t)∂x2-βS(x,t)(G∗I)(x,t)S(x,t)+(G∗I)(x,t)+R(x,t),∂I(x,t)∂t=d2∂2I(x,t)∂x2+βS(x,t)(G∗I)(x,t)S(x,t)+(G∗I)(x,t)+R(x,t)-(γ+δ)I(x,t),∂R(x,t)∂t=d3∂2R(x,t)∂x2+γI(x,t),



(4)




where


(G∗I)(x,t)=∫-∞t∫-∞∞G(x-y,t-s)I(y,s)dyds.











The spatiotemporal kernel G(x-y,t-s) describes the interaction between the infective and the susceptible individuals at location x and the present time t, which occurred at location y and at earlier time s. It should be emphasized that the incidence rate in system (3)–(4) is different from the previous one in model (2), which is βSIS+I. The incidence rate βSIS+I+R makes the diffusive systems be totally coupled, and the corresponding traveling wave systems consist of three equations, where few papers have dealt with it, see [23].



The diffusion terms of the above systems are Laplacian operators that account for random motion. However, due to the more frequent interaction with other people, the movements of individuals may be not limited to a small area. Thus, recently, various integral operators have been widely used to model the diffusion phenomena, for example, in [24,25,26]. Yang et al. [27] considered the following nonlocal dispersal epidemic model


∂∂tS(x,t)=d1[J∗S(x,t)-S(x,t)]-βS(x,t)I(x,t),∂∂tI(x,t)=d2[J∗I(x,t)-I(x,t)]+βS(x,t)I(x,t)-γI(x,t),∂∂tR(x,t)=d3[J∗R(x,t)-R(x,t)]+γI(x,t),








where J(·) denotes the probability distribution of rates of dispersal and J∗u-u can describe the net rate of increase due to the dispersal of subpopulation u, where J∗u(x,t) is the standard convolution with space invariable x and u can be either S,I or R. Under some assumptions about the dispersal kernel function J(·), they obtained the existence and nonexistence of traveling wave solutions. Since then, many researchers pay more attention to the study of traveling wave solutions of nonlocal dispersal SIR epidemic models, for instance, in [28,29,30,31,32,33]. Therefore, in this paper, we will consider the corresponding nonlocal dispersal model of system (4) that is the following nonlocal dispersal SIR epidemic model with nonlocal delayed transmission:


∂S(x,t)∂t=d1(J∗S(x,t)-S(x,t))-βS(x,t)(G∗I)(x,t)S(x,t)+(G∗I)(x,t)+R(x,t),∂I(x,t)∂t=d2(J∗I(x,t)-I(x,t))+βS(x,t)(G∗I)(x,t)S(x,t)+(G∗I)(x,t)+R(x,t)-(γ+δ)I(x,t),∂R(x,t)∂t=d3(J∗R(x,t)-R(x,t))+γI(x,t).



(5)







Throughout this paper, we give the following assumptions on the kernel functions J and G:



(J)J∈C1(R),J(y)=J(-y)≥0,∫-∞∞J(y)dy=1,J is compactly supported. Furthermore, for any v∈[0,v˜),


∫-∞∞J(y)e-vydy<+∞,








and ∫-∞∞J(y)e-vydy→+∞ as v→v˜- where v˜ may be +∞;



(G)G(y,s)=G(-y,s)≥0,∫0∞∫-∞∞G(y,s)dyds=1,∫0∞∫-∞∞sG(y,s)dyds<∞ and G(y,s) is Lipschitz continuous with the space variable y. Moreover, for each c≥0,


∫0∞∫-∞∞G(y,s)e-λ(y+cs)dyds<∞,λ∈[0,∞),










∫0∞∫-∞∞G(y,s)e-λ(y+cs)dyds→∞,asλ→∞.











The remainder of this paper is organized as follows. In Section 2, we introduce some preliminaries. In Section 3, we prove the existence of traveling waves by the Schauder’s fixed point theorem and the method of upper-lower solution. We will discuss the nonexistence of the traveling waves in Section 4. Finally, we will provide the conclusions and give a discussion about the effect of the nonlocal delayed transmission on the propagation of the disease in Section 5.




2. Some Preliminaries


In this section, we will consider the traveling wave solutions for system (5). Upon substituting S(I,R)(x,t)=S(I,R)(x+ct) into (5), and denoting ξ=x+ct, we derive the following wave profile system for system (5):


cS′(ξ)=d1(J∗S(ξ)-S(ξ))-βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ),cI′(ξ)=d2(J∗I(ξ)-I(ξ))+βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)-(γ+δ)I(ξ),cR′(ξ)=d3(J∗R(ξ)-R(ξ))+γI(ξ),



(6)




where


(G∗I)(ξ)=∫0∞∫-∞∞G(y,s)I(ξ-y-cs)dyds.











We assume that system (6) has a disease free equilibrium (S0,0,0), where S0>0 is a constant. According to the meaning of mathematical epidemiology, we intend to find solution (S(ξ),I(ξ),R(ξ)) for system (6) which is nonnegative and satisfies the following asymptotic boundary conditions:


S(-∞)=S0,limξ→+∞S(ξ):=S∞<S0,I(±∞)=0,R(-∞)=0.











Moreover, if R is bounded, then limξ→+∞R(ξ) exists and


R(∞)=γ(S0-S∞)γ+δ.











For any λ,c>0, by linearizing the second equation of system (6) at (S0,0,0) and letting I(ξ)=eλξ, we obtain the characteristic equation


Δ(λ,c)=d2∫-∞∞J(y)e-λydy-1-cλ+β∫0∞∫-∞∞G(y,s)e-λ(y+cs)dyds-γ-δ.











For the convenience, we denote


G¯(λ,c)=∫0∞∫-∞∞G(y,s)e-λ(y+cs)dyds,








then


Δ(λ,c)=d2∫-∞∞J(y)e-λydy-1-cλ+βG¯(λ,c)-γ-δ.











By a direct calculation, and using (J) and (G), we have


Δ(0,c)=β-γ-δ,Δ(λ,+∞)=-∞,∂Δ(0,c)∂λ=-c1+β∫0∞∫-∞∞sG(y,s)dyds<0,∂Δ(λ,c)∂c=-λ-λβ∫0∞∫-∞∞sG(y,s)e-λ(y+cs)dyds<0,∂2Δ(λ,c)∂λ2=d2∫-∞∞y2J(y)e-λydy+β∫0∞∫-∞∞(y-cs)2G(y,s)e-λ(y+cs)dyds>0.











Therefore, we have the following lemma.



Lemma 1.

Assume that R0=βγ+δ>1, then there exist c*>0,λ*>0 such that


Δ(λ*,c*)=0,∂Δ∂λ(λ,c)|(λ*,c*)=0.








Furthermore,




	(i) 

	
if 0<c<c*, then Δ(λ,c)>0 for all λ>0;




	(ii) 

	
if c>c*, then Δ(λ,c)=0 has two different positive roots λ1(c),λ2(c) with 0<λ1(c)<λ*<λ2(c) and


Δ(λ,c){>0λ∈[0,λ1(c))∪(λ2(c),∞),<0λ∈(λ1(c),λ2(c)).



















When c>c*,i=1,2, we denote λi(c) as λi.



For any c>0, we also define function Δ1(λ,c) as follows:


Δ1(λ,c)=cλ-d3∫-∞∞J(x)e-λxdx-1.











Then,


∂Δ1(0,c)∂λ=c>0,∂2Δ1(λ,c)∂λ2<0.











Thus, there exists λ0>0 such that Δ1(λ,c)>0 for any λ∈(0,λ0).




3. Existence of Traveling Waves


3.1. Upper-Lower Solution of System (6)


In this section, we will prove the existence of traveling wave solutions for system (5). In the remainder of this section, we fix R0=βγ+δ>1,c>c*. At first, we define six nonnegative continuous functions as follows:


S+(ξ)=S0,S-(ξ)=S0(1-σeαξ),ξ<ξ1,0,ξ≥ξ1,I+(ξ)=eλ1ξ,ξ<ξ2,(β-γ-δ)S0γ+δ,ξ≥ξ2,I-(ξ)=eλ1ξ(1-Meηξ),ξ<ξ3,0,ξ≥ξ3,R+(ξ)=M1eηξ,R-(ξ)=0,








where σ,α,M,M1 are all positive constants, σ=1α,η∈(0,λ0) is sufficiently small satisfying η<min{α,λ1,λ2-λ1}.



Now, we have the following lemmas.



Lemma 2.

For sufficiently large M1, the following inequalities hold:


cS+′(ξ)≥d1(J∗S+(ξ)-S+(ξ))-βS+(ξ)(G∗I-)(ξ)S+(ξ)+(G∗I-)(ξ)+R+(ξ),



(7)






cI+′(ξ)≥d2(J∗I+(ξ)-I+(ξ))+βS+(ξ)(G∗I+)(ξ)S+(ξ)+(G∗I+)(ξ)+R-(ξ)-(γ+δ)I+(ξ),ξ≠ξ2,



(8)






cR+′(ξ)≥d3(J∗R+(ξ)-R+(ξ))+γI+(ξ).



(9)









Proof. 

Since G∗I-(ξ)≥0 and S+(ξ)=S0 is a positive constant, then inequality (7) holds naturally.



Next, we consider inequality (8). Due to (J), (G) and the definition of I+(ξ), we have


J∗I+(ξ)≤mineλ1ξ∫-∞∞J(y)e-λ1ydy,(β-γ-δ)S0γ+δ,G∗I+(ξ)≤mineλ1ξG¯(λ1,c),(β-γ-δ)S0γ+δ.



(10)







If ξ<ξ2, by Lemma 1, (10) and S+(ξ)(G∗I+)(ξ)S+(ξ)+(G∗I+)(ξ)+R-(ξ)≤G∗I+(ξ), we conclude that I+(ξ)=eλ1ξ satisfies


cI+′(ξ)=d2∫-∞∞J(y)e-λ1ydy-1I+(ξ)+βI+(ξ)G¯(λ1,c)-(γ+δ)I+(ξ)≥d2(J∗I+(ξ)-I+(ξ))+β(G∗I+)(ξ)-(γ+δ)I+(ξ)≥d2(J∗I+(ξ)-I+(ξ))+βS+(ξ)(G∗I+)(ξ)S+(ξ)+(G∗I+)(ξ)+R-(ξ)-(γ+δ)I+(ξ).











If ξ>ξ2, then S+(ξ)=S0,I+(ξ)=(β-γ-δ)S0γ+δ and R-(ξ)=0. Since βxyx+y is nondecreasing with respect with x,y, we have that


βS+(ξ)(G∗I+)(ξ)S+(ξ)+(G∗I+)(ξ)+R-(ξ)-(γ+δ)I+(ξ)≤βS0I+(ξ)S0+I+(ξ)-(γ+δ)I+(ξ)=βS0(γ+δ)(γ+δ)S0+(β-γ-δ)S0-(γ+δ)I+(ξ)=0.











Thus, formula (8) is true.



Finally, we consider inequality (9). When ξ<ξ2, then I+(ξ)=eλ1ξ and R+(ξ)=M1eηξ. It suffices to prove


cηM1eηξ≥d3M1eηξ∫-∞∞J(x)e-ηxdx-1+γeλ1ξ,








that is


M1eηξcη-d3∫-∞∞J(x)e-ηxdx-1≥γeλ1ξ.



(11)







Due to η∈(0,λ0), we have Δ1(η,c)>0, and inequality (11) is equivalent to


M1≥γe(λ1-η)ξΔ1(η,c).











Furthermore, since η<λ1 and ξ<ξ2, then formula (9) holds if we take


M1>γe(λ1-η)ξ2Δ1(η,c).











Similarly, for ξ>ξ2, formula (9) is true if we take


M1>γ(β-γ-δ)S0e-ηξ2(γ+δ)Δ1(η,c).











Therefore, we take


M1>maxγe(λ1-η)ξ2Δ1(η,c),γ(β-γ-δ)S0e-ηξ2(γ+δ)Δ1(η,c),








then inequality (9) is true. The proof is complete.





Lemma 3.

Suppose that α<λ1 and σ are large enough. Then, the function S-(ξ) satisfies


cS-′(ξ)≤d1(J∗S-(ξ)-S-(ξ))-βS-(ξ)(G∗I+)(ξ)S-(ξ)+(G∗I+)(ξ)+R-(ξ)



(12)




for any ξ≠ξ1:=1αln1σ.





Proof. 

According to the definition of S-(ξ) and (J), we can obtain that


J∗S-(ξ)≥maxS0-S0σeαξ∫-∞∞J(y)e-αydy,0.



(13)







If ξ>ξ1, S-(ξ)=0, then inequality (12) holds.



By taking σ large enough such that σ>e-αξ2, then 1αln1σ=ξ1<ξ2. Therefore, if ξ<ξ1, S-(ξ)=S0(1-σeαξ), I+(ξ)=eλ1ξ. Due to S-(ξ)(G∗I+)(ξ)S-(ξ)+(G∗I+)(ξ)+R-(ξ)≤G∗I+(ξ), (10) and (13), in order to prove inequality (12), we only need to prove


cS-′(ξ)≤d1S0-S0σeαξ∫-∞∞J(y)e-αydy-S-(ξ)-βeλ1ξG¯(λ1,c).



(14)







Through a simple calculation, we know that formula (14) is equivalent to


-S0σcα-d1∫-∞∞J(y)e-αydy-1+βe(λ1-α)ξG¯(λ1,c)≤0.











Since α<λ1 and ξ<ξ1, it suffices to show that


-S0σcα-d1∫-∞∞J(y)e-αydy-1+βe(λ1-α)ξ1G¯(λ1,c)≤0,








that is


-S0σcα-d1∫-∞∞J(y)e-αydy-1+βσα-λ1αG¯(λ1,c)≤0.











By taking sufficiently large σ, the above is true, and the proof is complete. □





Lemma 4.

Supposing that M is large enough, the function I-(ξ) satisfies the inequality


cI-′(ξ)≤d2(J∗I-(ξ)-I-(ξ))+βS-(ξ)(G∗I-)(ξ)S-(ξ)+(G∗I-)(ξ)+R+(ξ)-(γ+δ)I-(ξ)



(15)




for ξ≠ξ3.





Proof. 

First, by the definition of I-(ξ) and (J), (G), we have


J∗I-(ξ)≥maxeλ1ξ∫-∞∞J(y)e-λ1ydy-Me(λ1+η)ξ∫-∞∞J(y)e-(λ1+η)ydy,0,G∗I-(ξ)≥maxeλ1ξG¯(λ1,c)-Me(λ1+η)ξG¯(λ1+η,c),0.











If ξ>ξ3, then I-(ξ)=0. Thus, inequality (15) is obviously true.



If ξ<ξ3, we choose an M large enough such that ξ3=1ηln1M<1αln1σ=ξ1, then S-(ξ)=S0(1-σeαξ)≤S0, I-(ξ)=eλ1ξ(1-Meηξ). In order to prove inequality (15), it is only necessary to prove


cI-′(ξ)≤d2(J∗I-(ξ)-I-(ξ))+βG∗I-(ξ)-(γ+δ)I-(ξ)-β[S0-S-(ξ)+(G∗I-)(ξ)+R+(ξ)]S0+(G∗I-)(ξ)+R+(ξ)G∗I-(ξ).











By the estimate of G∗I-(ξ) and the definition of Δ(λ,c), it suffices to prove that


β[S0-S-(ξ)+(G∗I-)(ξ)+R+(ξ)](G∗I-)(ξ)≤-MΔ(λ1+η,c)e(λ1+η)ξ·S0.



(16)







Since G∗I-(ξ)≤eλ1ξG¯(λ1,c), formula (16) is true if


β(S0σeαξ+eλ1ξG¯(λ1,c)+M1eηξ)eλ1ξG¯(λ1,c)≤-S0MΔ(λ1+η,c)e(λ1+η)ξ.



(17)







Due to ξ<ξ1,η<α,η<λ1,Δ(λ1+η,c)<0, by taking M be a constant number which satisfies


M≥βG¯(λ1,c)S0σηα+ση-λ1αG¯(λ1,c)+M1-S0Δ(λ1+η,c),








formula (17) holds.



In summary, there exists sufficiently large M, such that I-(ξ) satisfies inequality (15). The proof is complete. □





By Lemmas 2–4, we know that the continuous function (S+(ξ),I+(ξ),R+(ξ)) and (S-(ξ),I-(ξ),R-(ξ)) is a pair of upper-lower solutions for system (6).



From now on, we will establish the existence of traveling wave solutions of (4). Due to the lack of regularity of nonlocal dispersal operator, we first consider the traveling wave system (6) on a bounded interval. For this purpose, we take X>1ηlnM, and define the following set:


ΓX=(ϕ(·),χ(·),ψ(·))∈C([-X,X],R3)ϕ(-X)=S-(-X),χ(-X)=I-(-X),ψ(-X)=R-(-X),S-(ξ)≤ϕ(ξ)≤S0,I-(ξ)≤χ(ξ)≤I+(ξ),R-(ξ)≤ψ(ξ)≤R+(ξ),∀ξ∈[-X,X].











It is easy to know that ΓX is a closed, convex subset of C([-X,X],R3). For any (ϕ(·),χ(·),ψ(·))∈ΓX, we define


ϕ˜(ξ)=ϕ(X),ξ>X,ϕ(ξ),|ξ|≤X,S-(ξ),ξ<-X,χ˜(ξ)=χ(X),ξ>X,χ(ξ),|ξ|≤X,I-(ξ),ξ<-X,








and


ψ˜(ξ)=ψ(X),ξ>X,ψ(ξ),|ξ|≤X,R-(ξ),ξ<-X.











We consider the following initial value problem:


cS′(ξ)=d1∫-∞∞J(y)ϕ˜(ξ-y)dy-d1S(ξ)-βϕ(ξ)(G∗χ˜)(ξ)ϕ(ξ)+(G∗χ˜)(ξ)+ψ(ξ),



(18)






cI′(ξ)=d2∫-∞∞J(y)χ˜(ξ-y)dy-(d2+γ+δ)I(ξ)+βϕ(ξ)(G∗χ˜)(ξ)ϕ(ξ)+(G∗χ˜)(ξ)+ψ(ξ),



(19)






cR′(ξ)=d3∫-∞∞J(y)ψ˜(ξ-y)dy-d3R(ξ)+γχ(ξ),



(20)




with


S(-X)=S-(-X),I(-X)=I-(-X),R(-X)=R-(-X).



(21)







By the theory for ODE [34], problems (18)–(21) admit a unique solution (SX(ξ),IX(ξ),RX(ξ)) satisfying SX(·),IX(·),RX(·)∈C1([-X,X]). Furthermore, we define an operator F=(F1,F2,F3): ΓX→C([-X,X]) such that, for any ξ∈[-X,X],


F1(ϕ,χ,ψ)(ξ)=SX(ξ),F2(ϕ,χ,ψ)(ξ)=IX(ξ),F3(ϕ,χ,ψ)(ξ)=RX(ξ).











Lemma 5.

The operator F maps ΓX into ΓX, and is completely continuous.





Proof. 

First, by Lemmas 2–4 and using the similar method as that of Theorem 2.4 in [28], we can obtain that F maps ΓX into ΓX. We leave the proof in the Appendix A. Next, we only give the proof of continuity and compactness of F.



By a direct computation, we can obtain the solutions of the initial value problem (18)–(20) as follows:


SX(ξ)=S-(-X)e-d1c(ξ+X)+1c∫-Xξed1c(η-ξ)d1(J∗ϕ˜)(η)-βϕ(η)(G∗χ˜)(η)ϕ(η)+(G∗χ˜)(η)+ψ(η)dη,IX(ξ)=I-(-X)e-d2+γ+δc(ξ+X)+1c∫-Xξed2+γ+δc(η-ξ)d2(J∗χ˜)(η)+βϕ(η)(G∗χ˜)(η)ϕ(η)+(G∗χ˜)(η)+ψ(η)dη,RX(ξ)=1c∫-Xξed3c(η-ξ)(d3(J∗ψ˜)(η)+γχ(η))dη.











For any (ϕi,χi,ψi)∈ΓX,i=1,2, we denote


F1(ϕi,χi,ψi)(ξ)=SX,i(ξ),F2(ϕi,χi,ψi)(ξ)=IX,i(ξ),F3(ϕi,χi,ψi)(ξ)=RX,i(ξ).











Since


J∗ϕ˜(η)=∫-∞-XJ(η-y)S-(y)dy+∫-XXJ(η-y)ϕ(y)dy+∫X∞J(η-y)ϕ(X)dy,








we have


|J∗ϕ˜1(η)-J∗ϕ˜2(η)|≤2maxy∈[-X,X]|ϕ1(y)-ϕ2(y)|.











Similarly, there hold


|J∗χ˜1(η)-J∗χ˜2(η)|≤2maxy∈[-X,X]|χ1(y)-χ2(y)|,










|J∗ψ˜1(η)-J∗ψ˜2(η)|≤2maxy∈[-X,X]|ψ1(y)-ψ2(y)|








and


|G∗χ˜1(η)-G∗χ˜2(η)|≤2maxy∈[-X,X]|χ1(y)-χ2(y)|.











By proposition 2.5 in [33], we have that βϕ(η)(G∗χ˜)(η)ϕ(η)+(G∗χ˜)(η)+ψ(η) is Lipschitz continuous. Then, by the definitions of SX,i(ξ),IX,i(ξ),RX,i(ξ) and the operator F, we can conclude that F is continuous.



Finally, we show that F is compact. Since SX(·), IX(·),RX(·)∈C1([-X,X]) and satisfy (18)–(20), we obtain that SX′,IX′ and RX′ are uniformly bounded. Thus, the operator F is compact, and we obtain that F is completely continuous. □





Based on the above discussion, by using Schauder’s fixed point theorem, we obtain the following result.



Theorem 1.

There exists (SX(·),IX(·),RX(·))∈ΓX such that


(SX(·),IX(·),RX(·))=F(SX,IX,RX)(ξ)foranyξ∈(-X,X).














3.2. Traveling Wave Solution for (6) on R


Next, we want to obtain the existence of solutions for traveling wave system (6) on R. To this end, we will give some priori estimates for SX,IX,RX in the space C1,1([-X,X]), where


C1,1([-X,X])={u∈C1([-X,X])∣u,u′areLipschitzcontinuous}








with the norm


∥u∥C1,1([-X,X])=maxx∈[-X,X]|u|+maxx∈[-X,X]|u′|+supx≠y∈[-X,X]|u′(x)-u′(y)||x-y|.











Lemma 6.

For any X>1ηlnM, there exists Y>0, such that Y+r<X, and


∥SX∥C1,1([-Y,Y])≤C(Y),∥IX∥C1,1([-Y,Y])≤C(Y),∥RX∥C1,1([-Y,Y])≤C(Y),








where r is the radius of suppJ, C(Y) is a constant which is independent from X.





Proof. 

Clearly, (SX,IX,RX) satisfies


cSX′(ξ)=d1∫-∞∞J(ξ-y)S˜X(y)dy-d1SX(ξ)-βSX(ξ)(G∗I˜X)(ξ)SX(ξ)+(G∗I˜X)(ξ)+RX(ξ),



(22)






cIX′(ξ)=d2∫-∞∞J(ξ-y)I˜X(y)dy-(d2+γ+δ)IX(ξ)+βSX(ξ)(G∗I˜X)(ξ)SX(ξ)+(G∗I˜X)(ξ)+RX(ξ),



(23)






cRX′(ξ)=d3∫-∞∞J(ξ-y)R˜X(y)dy-d3RX(ξ)+γIX(ξ)



(24)




for ξ∈[-X,X], where


S˜X(ξ)=SX(X),ξ>X,SX(ξ),|ξ|≤X,S-(ξ),ξ<-X,I˜X(ξ)=IX(X),ξ>X,IX(ξ),|ξ|≤X,I-(ξ),ξ<-X








and


R˜X(ξ)=RX(X),ξ>X,RX(ξ),|ξ|≤X,R-(ξ),ξ<-X.











Since SX(ξ)≤S0, we can deduce from equation (22) that


|SX′(ξ)|≤1cd1|J∗S˜X(ξ)|+d1|SX(ξ)|+β|SX(G∗I˜X)SX+(G∗I˜X)+RX|≤2d1+βcS0.



(25)







Similarly, we have that


|IX′(ξ)|≤2d2+β+γ+δcβγ+δ-1S0.



(26)







Since RX(ξ)∈ΓX, combined with the definitions of ΓX and R+(ξ), we know that RX(ξ)≤M1eηY for any ξ∈[-Y,Y], where 0<Y<X-r. By formula (24) and using the analogous argument as inequality (25), we can obtain that


|RX′(ξ)|≤1c2d3M1eηY+γ(β-γ-δ)γ+δS0,ξ∈[-Y,Y].











Consequently, we can conclude that, for any ξ,η∈[-Y,Y], there exist positive constants L1,L(Y) such that,


|SX(ξ)-SX(η)|≤L1|ξ-η|,|IX(ξ)-IX(η)|≤L1|ξ-η|,|RX(ξ)-RX(η)|≤L(Y)|ξ-η|.











Finally, we will prove that SX′(ξ),IX′(ξ),RX′(ξ) are Lipschitz continuous. For any ξ,η∈[-Y,Y], it can be inferred from equation (22) that


|SX′(ξ)-SX′(η)|≤d1c|∫-∞∞[J(ξ-y)-J(η-y)]S˜X(y)dy|+d1c|SX(ξ)-SX(η)|+βc|SX(ξ)(G∗I˜X)(ξ)SX(ξ)+(G∗I˜X)(ξ)+RX(ξ)-SX(η)(G∗I˜X)(η)SX(η)+(G∗I˜X)(η)+RX(η)|:=Λ1+Λ2+Λ3.











Since


|∫-XX[J(ξ-y)-J(η-y)]SX(y)dy|=|∫ξ-Xξ+XJ(y)SX(ξ-y)dy-∫η-Xη+XJ(y)SX(η-y)dy|=|∫ξ-Xη-XJ(y)SX(ξ-y)dy+∫η-Xξ+XJ(y)SX(ξ-y)dy-∫η-Xξ+XJ(y)SX(η-y)dy-∫ξ+Xη+XJ(y)SX(η-y)dy|≤(2S0∥J∥L∞+L1)|ξ-η|,








then we can obtain the following estimation about Λ1:


|∫-∞∞[J(ξ-y)-J(η-y)]S˜X(y)dy|=|∫-∞-X(J(ξ-y)-J(η-y))S-(y)dy+∫-XX(J(ξ-y)-J(η-y))SX(y)dy+∫X∞(J(ξ-y)-J(η-y))SX(X)dy|≤S0|∫-∞-X(J(ξ-y)-J(η-y))dy|+(2S0∥J∥L∞+L1)|ξ-η|+S0|∫X∞(J(ξ-y)-J(η-y))dy|=S0|∫ξ+Xη+XJ(y)dy|+|∫η-Xξ-XJ(y)dy|+(2S0∥J∥L∞+L1)|ξ-η|≤(4S0∥J∥L∞+L1)|ξ-η|.











Moreover, a simple calculation implies that


Λ3≤βc[|SX(ξ)-SX(η)|+|G∗I˜X(ξ)-G∗I˜X(η)|+|RX(ξ)-RX(η)|].











By a direct calculation, we have


|G∗I˜X(ξ)-G∗I˜X(η)|=|∫0T∫-∞∞[G(ξ-y-cs,s)-G(η-y-cs,s)]I˜X(y)dyds|=|∫0T∫-∞-X[G(ξ-y-cs,s)-G(η-y-cs,s)]I-(y)dyds+∫0T∫-XX[G(ξ-y-cs,s)-G(η-y-cs,s)]IX(y)dyds+∫0T∫X∞[G(ξ-y-cs,s)-G(η-y-cs,s)]IX(X)dyds|≤TLG∫-∞1ηln1MI-(y)dy|ξ-η|+βγ+δ-1S0∫0T∫ξ-X-csη-X-cs|G(y,s)|dyds+|∫0T∫-XX[G(ξ-y-cs,s)-G(η-y-cs,s)]IX(y)dyds|,








where LG is the Lipschitz constant of kernel G(y,s) with invariable y. Since


|∫0T∫-XX[G(ξ-y-cs,s)-G(η-y-cs,s)]IX(y)dyds|≤|∫0T∫η+X-csξ+X-csG(y,s)IX(ξ-y-cs)dyds|+|∫0T∫η-X-csξ-X-csG(y,s)IX(η-y-cs)dyds|+|∫0T∫ξ-X-csη+X-csG(y,s)[IX(ξ-y-cs)-IX(η-y-cs)]dyds|≤2βδ+γ-1S0T∥G∥L∞(R×[0,T])+L1|ξ-η|,








we have


Λ3≤βc2L1+TLG∫-∞1ηln1MI-(y)dy+3βδ+γ-1S0T∥G∥L∞(R×[0,T])+L(Y)|ξ-η|.











Thus, there exists a constant C1(Y) such that


|SX′(ξ)-SX′(η)|≤C1(Y)|ξ-η|.











Similarly, there exist two constants C2(Y),C3(Y) such that


|IX′(ξ)-IX′(η)|≤C2(Y)|ξ-η|,|RX′(ξ)-RX′(η)|≤C3(Y)|ξ-η|.











Therefore, there exists some constant C(Y)>0, such that


∥SX∥C1,1([-Y,Y])≤C(Y),∥IX∥C1,1([-Y,Y])≤C(Y),∥RX∥C1,1([-Y,Y])≤C(Y).








□





Now, we derive the existence of solutions for system (6) on R by a limiting argument. Choose a sequence {Xn}n=1+∞ such that Xn>1ηlnM,Xn>Y+r and limn→+∞Xn=+∞. For every n, we know that there exists (SXn,IXn,RXn)∈ΓXn satisfying the conclusion in Lemma 6. Therefore, there exists a subsequence {Xnk} by diagonal extraction argument, such that limk→+∞Xnk=+∞ and Snk→S,Ink→I,Rnk→R when k→+∞.



By (J), (G) and Lebesgue dominated convergence theorem, we obtain


limk→+∞∫-∞∞J(ξ-y)S˜nk(y)dy=∫-∞∞J(ξ-y)S(y)dy=J∗S(ξ),limk→+∞∫-∞∞J(ξ-y)I˜nk(y)dy=∫-∞∞J(ξ-y)I(y)dy=J∗I(ξ),limk→+∞∫-∞∞J(ξ-y)R˜nk(y)dy=∫-∞∞J(ξ-y)R(y)dy=J∗R(ξ)








and


limk→+∞∫0∞∫-∞∞G(ξ-y-cs)I˜nk(y)dy=G∗I(ξ).











Hence, (S,I,R) satisfies the traveling wave system (6) with


S-(ξ)<S(ξ)≤S0,I-(ξ)≤I(ξ)≤I+(ξ),0<R(ξ)≤R+(ξ).











By the definition of (S-(ξ),I-(ξ),R-(ξ) and (S+(ξ),I+(ξ),R+(ξ) and utilizing squeeze theorem, we have the following existence theorem.



Theorem 2.

Supposing that R0=βγ+δ>1. For any c>c*, there exists (S(ξ),I(ξ),R(ξ)), which satisfies the traveling wave system (6) with


S-(ξ)<S(ξ)≤S0,I-(ξ)≤I(ξ)≤I+(ξ),0<R(ξ)≤R+(ξ)








and


S(-∞)=S0,I(-∞)=0,R(-∞)=0.














3.3. Asymptotic Behavior


In the following, we will consider the asymptotic behavior of traveling waves (S(ξ),I(ξ),R(ξ)) at +∞. For this purpose, we give some estimations in advance.



Lemma 7.

Suppose that R0=βγ+δ>1 and c>c*, then the solution (S(ξ),I(ξ),R(ξ)) of system (6) satisfies


0<∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)<+∞








and


∫-∞∞I(ξ)dξ<+∞,I(∞)=0.













Proof. 

First, due to the positive of βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ), we get


∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)>0.











By using the Fubini theorem, we have that


∫zx(J∗S(ξ)-S(ξ))dξ=∫zx∫-∞∞J(y)(S(ξ-y)-S(ξ))dydξ=-∫zx∫-∞∞yJ(y)∫01S′(ξ-θy)dθdydξ=∫-∞∞yJ(y)∫01(S(z-θy)-S(x-θy))dθdy.











By assumption (J) and passing a limit above, we have


limz→-∞∫zx(J∗S(ξ)-S(ξ))dξ=∫-∞∞yJ(y)∫01(S0-S(x-θy))dθdy=-∫-∞∞yJ(y)∫01S(x-θy))dθdy,








which implies that, for x∈R,


|∫-∞x(J∗S(ξ)-S(ξ))dξ|≤S0∫-∞∞|y|J(y)dy:=ϱ1.



(27)







Integrating the first equation of system (6) from -∞ to x and using formula (27) yields


∫-∞xβS(ξ)(G∗I˜)(ξ)S(ξ)+(G∗I˜)(ξ)+R(ξ)dξ=d1∫-∞x(J∗S(ξ)-S(ξ)dξ+c[S0-S(x)]≤d1ϱ1+cS0.











Then, we conclude that


∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)<∞.



(28)







Through a similar calculation as inequality (27), we have


|∫-∞x(J∗I(ξ)-I(ξ))dξ|≤β-γ-δγ+δS0∫-∞∞|y|J(y)dy:=ϱ2.



(29)







Integrating the second equation of system (6) from -∞ to ∞ and using Formulas (28) and (29), we have


cI(∞)+(γ+δ)∫RI(ξ)dξ=d2∫R(J∗I(ξ)-I(ξ))dξ+∫RβS(ξ)(G*I˜)(ξ)S(ξ)+(G*I˜)(ξ)+R(ξ)dξ<∞.











Hence, we conclude that ∫-∞∞I(ξ)dξ<∞. Combined with the claim obtained before that I′(ξ) is bounded on R, we have that I(∞)=0. □





Theorem 3.

Assuming that R0=βγ+δ>1 and c>c*, then




	(1) 

	
limξ→+∞S(ξ) exists and S∞:=limξ→+∞S(ξ)<S0;




	(2) 

	
If limξ→+∞supR(ξ)<∞, then limξ→+∞R(ξ)=γ(S0-S∞)γ+δ.











Proof. 

First, we prove the existence of limξ→+∞S(ξ). On the contrary, we assume that


limξ→+∞infS(ξ)=m1<limξ→+∞supS(ξ)=m2.











Thus, we can find two point sequences {ξn} and {ηn} such that


limn→+∞S(ξn)=liminfξ→+∞S(ξ)=m1,S′(ξn)=0,limn→+∞S(ηn)=limsupξ→+∞S(ξ)=m2,S′(ηn)=0,limn→+∞J*S(ξn)≥m1,limn→+∞J∗S(ηn)≤m2.











Following the first equation of system (6), we have


0=cS′(ξn)=d1(J∗S(ξn)-S(ξn))-βS(ξn)(G∗I)(ξn)S(ξn)+(G∗I)(ξn)+R(ξn).











Letting n→+∞, we can obtain that limn→+∞J∗S(ξn)=limn→+∞S(ξn)=m1. We prove that S(ξn-z)→m1 as n→+∞ for any z∈suppJ:=Ω. Choose a sufficiently small ϵ>0, let S˜n(z)=S(ξn-z) and Ωϵ=Ω∩{z|limn→+∞S˜(z)>m1+ϵ}. Hence, we have


m1=limn→+∞J∗S(ξn)=limn→+∞∫ΩJ(z)S˜n(z)dz≥lim infn→+∞∫Ω∖ΩϵJ(z)S˜n(z)dz+lim infn→+∞∫ΩϵJ(z)S˜n(z)dz≥m1∫Ω∖ΩϵJ(z)dz+(m1+ϵ)∫ΩϵJ(z)dz=m1+ϵ∫ΩϵJ(z)dz,








which yields that μ(Iϵ)=0 where μ(·) denotes the measure. Thus, we have for any z∈Ω,


S(ξn-z)→m1,a.e.n→+∞.



(30)







On the other hand, we have


0=cS′(ηn)=d1(J∗S(ηn)-S(ηn))-βS(ηn)(G∗I)(ηn)S(ηn)+(G∗I)(ηn)+R(ηn);








then, letting n→+∞, by I(+∞)=0, we can obtain that


limn→+∞J∗S(ηn)=limn→+∞S(ξn)=m2>m1.











Then, by a similar discussion to formula (30), we can get that, for any z∈Ω,


S(ηn-z)→m2,a.e.n→+∞.











Note that, when n→+∞,


∫ξnηnβS(ξ)G∗I(ξ)S(ξ)+G∗I(ξ)+R(ξ)dξ→0.











Integrating the first equation of system (6) from ξn to ηn, we have


0<c(m2-m1)=d1limn→+∞∫ξnηn(J∗S(ξ)-S(ξ))dξ-limn→+∞∫ξnηnβS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)dξ=d1limn→+∞∫-∞∞yJ(y)∫01[S(ξn-ty)-S(ηn-ty)]dtdy=d1(m1-m2)∫-∞∞yJ(y)dy=0,








which leads to a contradiction. Therefore,


limξ→+∞infS(ξ)=limξ→+∞supS(ξ),








which implies that limξ→+∞S(ξ)=:S∞ exists.



Next, we will derive that S∞<S0. Since S(ξ)≤S0, then S∞≤S0. We assume, on the contrary, that S∞=S0. Integrating the first equation of system (6) from -x to x yields


c[S(x)-S(-x)]=d1∫-∞∞yJ(y)∫01(S(-x-ty)-S(x-ty))dtdy-∫-xxβS(ξ)G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)dξ.











Letting x→+∞, we have


∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)dξ=0,








which leads to a contradiction. Thus, we have S∞<S0.



Using the similar method above, we can obtain that, when limξ→+∞supR(ξ)<+∞, limξ→+∞R(ξ):=R∞. Now, integrating the first equation of system (6) on R yields that


∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)dξ=c(S0-S∞).











By integrating the second and third equation of system (6) on R, we can obtain that


(γ+δ)∫-∞∞I(ξ)dξ=∫-∞∞βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)dξ,cR∞=γ∫-∞∞I(ξ)dξ.











Therefore, R∞=γ(S0-S∞)γ+δ. □







4. Nonexistence of Traveling Waves


In this section, we will study the nonexistence of traveling wave solutions for system (5).



Theorem 4.

Suppose that R0>1 and 0<c<c*, then system (5) has no nontrivial positive solution (S,I,R) that satisfies the following asymptotic boundary conditions:


S(-∞)=S0,supRS(x)≤S0,I(±∞)=0,R(-∞)=0,supRR(x)<+∞.



(31)









Proof. 

Assume that (S(ξ),I(ξ),R(ξ)) is a nontrivial positive solution of system (6) satisfying formula (31). By formula (31), we have βS(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)→β,ξ→-∞. By using the continuity and R0>1, we have that there exists ξ* such that, for any ξ<ξ*,


βS(x)S(x)+(G∗I)(x)+R(x)>β+γ+δ2.











Then, for ξ<ξ*, it follows from the second equation of (6) that


cI′(ξ)≥d2[J∗I(ξ)-I(ξ)]+β+γ+δ2(G∗I)(ξ)-(γ+δ)I(ξ)=d2[J∗I(ξ)-I(ξ)]+β+γ+δ2[G∗I(ξ)-I(ξ)]+β-γ-δ2I(ξ).



(32)







Integrating equation (32) from -∞ to ξ<ξ*, we get


c[I(ξ)-I(-∞)]≥d2∫-∞ξ[J∗I(τ)-I(τ)]dτ+β-γ-δ2∫-∞ξI(τ)dτ+β+γ+δ2∫-∞ξ[G∗I(τ)-I(τ)]dτ.



(33)







Denote K(ξ)=∫-∞ξI(τ)dτ,ξ∈R. It is obvious that K(-∞)=0 and K(ξ) is bounded for any ξ∈R. By making use of the Fubini theorem, we have


∫-∞ξJ∗I(τ)dτ=∫-∞ξ∫-∞∞J(y)I(τ-y)dydτ=∫-∞∞J(y)∫-∞ξ-yI(z)dzdy=∫-∞∞J(y)K(ξ-y)dy=J∗K(ξ),∫-∞ξG∗I(τ)dτ=∫-∞ξ∫0∞∫-∞∞G(y,s)I(τ-y-cs)dydsdτ=∫0∞∫-∞∞G(y,s)∫-∞ξ-y-csI(z)dzdyds=∫0∞∫-∞∞G(y,s)K(ξ-y-cs)dyds=G*K(ξ),








then by formula (33) and I(-∞)=0, we can obtain that


β-γ-δ2K(ξ)≤cI(ξ)-d2[J∗K(ξ)-K(ξ)]-β+γ+δ2[G∗K(ξ)-K(ξ)].



(34)







Integrating Equation (34) from -∞ to ξ<ξ*, we have


β-γ-δ2∫-∞ξK(τ)dτ≤c∫-∞ξI(τ)dτ-d2∫-∞ξ[J∗K(τ)-K(τ)]dτ-β+γ+δ2∫-∞ξ[G∗K(τ)-K(τ)]dτ.



(35)







By calculation, we get


∫-∞ξ[J∗K(τ)-K(τ)]dτ=∫-∞ξ∫-∞∞J(y)[K(τ-y)-K(τ)]dydτ=∫-∞∞J(y)∫-∞ξ[K(τ-y)-K(τ)]dτdy=-∫-∞∞∫01yJ(y)K(ξ-θy)dθdy.











Similarly,


∫-∞ξ[G∗K(τ)-K(τ)]dτ=-∫0∞∫-∞∞∫01(y+cs)G(y,s)K(ξ-θ(y+cs))dθdyds.











Thus, formula (35) is equivalent to


β-γ-δ2∫-∞ξK(τ)dτ≤cK(ξ)+d2∫-∞∞∫01yJ(y)K(ξ-θy)dθdy+β+γ+δ2∫0∞∫-∞∞∫01(y+cs)G(y,s)K(ξ-θ(y+cs))dθdyds.











Since yK(ξ-θy) is monotone decreasing with respect to θ∈[0,1], we have yK(ξ-θy)≤yK(ξ) and (y+cs)K(ξ-θ(y+cs))≤(y+cs)K(ξ). Then, we obtain


β-γ-δ2∫-∞ξK(τ)dτ≤cK(ξ)+d2∫-∞∞yJ(y)K(ξ)dy+β+γ+δ2∫0∞∫-∞∞(y+cs)G(y,s)K(ξ)dyds=c1+β+γ+δ2∫0∞∫-∞∞sG(y,s)dydsK(ξ):=L˜K(ξ).



(36)







Furthermore, since K(·) is nondecreasing, and by using formula (36), we can obtain that there exists some ω>0 such that K(ξ-ω)<1/2K(ξ).



For μ0∈(0,λ1), define P(ξ)=K(ξ)e-μ0ξ. Then, there exists μ0 such that P(ξ-ω)<P(ξ). Thus, P(ξ) is bounded as ξ→-∞, which infers that there exists a constant K0>0 such that K(ξ)≤K0eμ0ξ for all ξ∈R. By the definition of K(ξ), we have


supξ∈R{I(ξ)e-μ0ξ}<∞.











Similarly, from the assumptions (J) and (G), we can obtain that


J∗I(ξ)e-μ0ξ<∞,G∗I(ξ)e-μ0ξ<∞.











Moreover, by the second equation of system (6), we can obtain that I′(ξ)e-μ0ξ<+∞ for any ξ∈R. That is, we have


supξ∈R{J∗I(ξ)e-μ0ξ}<∞,supξ∈R{G∗I(ξ)e-μ0ξ}<∞,supξ∈R{I′(ξ)e-μ0ξ}<∞.











For any ξ∈R, it follows from the second equation of system (6) that


d2[J∗I(ξ)-I(ξ)]-cI′(ξ)+β(G∗I)(ξ)-(γ+δ)I(ξ)=βG∗I(ξ)-S(x)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ).



(37)







For any λ∈C with 0<Reλ<μ0, taking a two-sided Laplace transform of I(ξ) on Equation (37), we have


Δ(λ,c)L(λ)=β∫-∞∞e-λξ[(G∗I)2(ξ)+(G∗I)(ξ)R(ξ)]S(ξ)+(G∗I)(ξ)+R(ξ)dξ,



(38)




where L(λ)=∫-∞∞e-λξI(ξ)dξ. Using the property of Laplace transform, we know that either there exists positive constant λ0 such that L(λ) is analytic for λ∈C with 0<Reλ<λ0 and has singularity at λ=λ0 or for λ∈C with Reλ>0,L(λ) is well defined. According to the previous discussion, we know that the integral term on the right-hand side of formula (38) is uniformly bounded on the real line. Then, the two-sided Laplace integrals can be analytically continued to the whole right half plane. By Lemma 1, Δ(λ,c)>0 for all λ>0 when 0<c<c*, thus L(λ) is analytic in the right half plane. According to the definition of Δ(λ,c), we know that Δ(λ,c)→+∞ as λ→+∞, which leads to a contradiction from formula (38). Thus, the conclusion follows.





Theorem 5.

Assume that R0≤1. For any c>0, system (5) has no nontrivial positive traveling wave solution (S,I,R) satisfying formula (31).





Proof. 

On the contrary, we suppose that system (5) has a traveling wave solution (S,I,R) satisfying formula (31). For the case R0<1, integrating the second equation of system (6) on R, we have


(γ+δ)∫-∞∞I(ξ)dξ≤d2∫-∞∞(J∗I(ξ)-I(ξ))dξ+β∫-∞∞I(ξ)dξ,








that is


∫-∞∞I(ξ)dξ≤d2γ+δ+d2-β∫-∞∞J∗I(ξ)dξ<∫-∞∞I(ξ)dξ,








which is a contradiction and the assumption does not hold.



When R0=1 that is β=γ+δ,


cI′(ξ)=d2(J∗I(ξ)-I(ξ))+βS(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)-I(ξ).











Then, integrating the above equation, we have


∫-∞∞S(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)-I(ξ)dξ=0.











Due to the continuity and nonnegativity of S,I,R, we can obtain that


0=∫-∞∞S(ξ)(G∗I)(ξ)S(ξ)+(G∗I)(ξ)+R(ξ)-I(ξ)dξ<∫-∞∞G∗I(ξ)dξ-∫-∞∞I(ξ)dξ=∫0∞∫-∞∞G(y,s)∫-∞∞I(ξ-y-cs)dξdyds-∫-∞∞I(ξ)dξ=0,








which is also a contradiction and completes the proof.






5. Conclusions and Discussion


In this paper, we have studied the existence and nonexistence of nontrivial traveling wave solutions for system (5). Combined with Theorems 2, 4 and 5, we obtain the threshold condition for the existence and nonexistence of traveling wave solutions, which is determined by the basic reproduction number R0 of the corresponding reaction system and the minimal wave speed c*. From Lemma 1, we know that the minimal wave speed c* is the unique root of the algebraic equations


Δ(λ,c)=0,∂Δ(λ,c)∂λ=0forλ>0,c>0,








where


Δ(λ,c)=d2∫-∞∞J(y)e-λydy-1-cλ+β∫0∞∫-∞+∞G(y,s)e-λ(y+cs)dyds-γ-δ.











It is obvious that the minimal wave speed c* is dependent on the dispersal rate d2, the pattern of nonlocal interaction between the infected and the susceptible individuals, and the latent period of disease. In order to see the quantitative effect of nonlocal interaction and time delay on the minimum wave speed, we let G(y,s)=δ(s-τ)14πϱe-y24ϱ with τ>0,ϱ>0 and δ(·) be the Dirac function. By simple calculation, we have


Δ(λ,c)=d2∫-∞∞J(y)e-λydy-1-cλ+βeϱλ2-cλτ-γ-δ.











Utilizing the implicit function theorem, we have


dc*dd2=∫RJ(y)e-λ*ydy-1λ*+βλ*τeϱλ*2-c*λ*τ>0,dc*dτ=-βc*λ*eϱλ*2-c*λ*τλ*+βλ*τeϱλ*2-c*λ*τ<0,dc*dϱ=βλ*2eϱλ*2-c*λ*τλ*+βλ*τeϱλ*2-c*λ*τ>0.











Hence, we conclude that the dispersal rate d2 and the nonlocal interaction can increase the minimal wave speed, while time delay can reduce the minimal wave speed.
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Appendix A


In this appendix, we will prove the conclusion that F maps ΓX into ΓX in Lemma 5. For any (ϕ(·),χ(·),ψ(·))∈ΓX, we will prove that, for any ξ∈[-X,X],


S-(ξ)≤F1(ϕ,χ,ψ)(ξ)≤S0;



(A1)






I-(ξ)≤F2(ϕ,χ,ψ)(ξ)≤I+(ξ);



(A2)






R-(ξ)≤F3(ϕ,χ,ψ)(ξ)≤R+(ξ).



(A3)







From the definition of ϕ˜(ξ) and ΓX, we can calculate that


d1∫RJ(y)ϕ˜(ξ-y)dy-d1S0-βϕ(ξ)(G*φ˜)(ξ)ϕ(ξ)+(G*φ˜)(ξ)+ψ(ξ)≤d1S0-d1S0-βϕ(ξ)(G*φ˜)(ξ)ϕ(ξ)+(G*φ˜)(ξ)+ψ(ξ)≤0.











Since F1(ϕ,φ,ψ)(ξ)=SX(ξ) and SX(ξ) satisfies (18), by using the maximum principle, we have that SX(ξ)≤S0 for ξ∈[-X,X].



On the other hand, for S-(ξ)=S0(1-σeαξ), by using Lemma 3, we can obtain that


cS-′(ξ)-d1∫RJ(y)ϕ˜(ξ-y)dy+d1S-(ξ)+βϕ(ξ)(G∗φ˜)(ξ)ϕ(ξ)+(G∗φ˜)(ξ)+ψ(ξ)≤cS-′(ξ)-d1∫RJ(y)S-(ξ-y)dy+d1S-(ξ)+βϕ(ξ)(G∗φ˜)(ξ)ϕ(ξ)+(G∗φ˜)(ξ)+ψ(ξ)≤cS-′(ξ)-d1∫RJ(y)S-(ξ-y)dy+d1S-(ξ)+βS-(ξ)(G∗I+(ξ)S-(ξ)+(G∗I+φ)(ξ)+R-(ξ)≤0.











Using the maximum principle again, we have that S-(ξ)≤SX(ξ) for all ξ∈[-X,X]. It is concluded that S-(ξ)≤F1(ϕ,χ,ψ)(ξ)≤S0 for ξ∈[-X,X].



Similarly, we can obtain that (A2)–(A3) hold. Thus, F maps ΓX into ΓX.
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