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Abstract: A fundamental goal of ecology is to understand the spatial distribution of species.
For moving animals, their location is crucially dependent on the movement mechanisms they employ
to navigate the landscape. Animals across many taxa are known to exhibit directional correlation
in their movement. This work explores the effect of such directional correlation on spatial pattern
formation in a model of between-population taxis (i.e., movement of each population in response to
the presence of the others). A telegrapher-taxis formalism is used, which generalises a previously
studied diffusion-taxis system by incorporating a parameter T, measuring the characteristic time for
directional persistence. The results give general criteria for determining when changes in T will drive
qualitative changes in the predictions of linear pattern formation analysis for N > 2 populations. As a
specific example, the N = 2 case is explored in detail, showing that directional correlation can cause
one population to ‘chase’ the other across the landscape while maintaining a non-constant spatial
distribution. Overall, this study demonstrates the importance of accounting for directional correlation
in movement for understanding both quantitative and qualitative aspects of species distributions.

Keywords: animal movement; correlated random walk; movement ecology; population dynamics;
taxis; telegrapher’s equation

1. Introduction

Understanding spatial distributions of animal species is a key concern for ecology, being of
fundamental importance for a wide range of applications including conservation efforts [1], quantifying
biodiversity [2], and invasive species research [3,4]. For mobile animals, decisions about where to move
drive their individual locations. Consequently there has been a huge amount of effort in recent years
to understand the causes and consequences of animal movement [5-7]. However, these movement
decisions have an effect not only on individuals’ locations but also on the spatial distribution of the
whole population [8]. To understand this individual-to-population upscaling in a non-speculative way
requires mathematical models that are built from the underlying movement processes of individuals [9].
Such models exhibit emergent phenomena on the population level that can be then quantified and
related concretely to the underlying mechanisms of individual movement (e.g., [10,11]).

One recent study in this general area examines how the movement responses between individuals
from N > 2 different animal populations can drive spatio-temporal distribution patterns on temporal
scales whereby births and deaths are negligible [12]. This takes spatial ecology in a slightly different
direction to its tradition trajectory, whereby the combination of nonlinear birth-and-death terms (a.k.a.
kinetics) combine with diffusive or cross-diffusive movement to drive spatio-temporal patterns [13-17].
Instead, the study of [12] shows that inter-population taxis (a form of cross-diffusion) can drive a wide
range of complex patterns on its own, without the need for nonlinear kinetics.
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However, the study by [12] assumes that individuals move diffusively in the absence of
interactions. While this may be a reasonable approximation in many cases, in reality animals will
always display some directional correlation in movement [18,19], if only due to the significant
energetic costs of turning [20]. For some organisms, this correlation may only persist over quite
small spatio-temporal scales, in which case diffusion is a reasonable model [21,22]. However, if the
spatial scale of correlation is at a similar order of magnitude to the scale over which animals move in
the time between successive interactions, diffusive assumptions may be less valid [23].

Here, I address this issue of directional correlation by extending the model of [12] from a
diffusion-taxis system to a telegrapher-taxis system in 1D. The telegrapher’s equation accurately
models random movement with directional correlation in a 1D setting [24,25]. Moreover, it is a direct
generalisation of the diffusion equation, simply requiring the introduction of a characteristic time-scale
parameter, T, which is set to T = 0 in the diffusion limit.

The aim of this study is to examine the effect of introducing T > 0 on the linear pattern formation
properties of the model in [12]. These patterning properties separate parameter space into three
well-known categories [26]. First, patterns may not form at all from small non-constant perturbations of
the steady state, i.e., the system is stable to such perturbations. Second, small non-constant perturbations
of the steady state may grow over small times in a non-oscillatory fashion. This is classically known as
a Turing instability after [27]. Third, these perturbations may both grow in magnitude and oscillate,
which is sometimes known as a Turing-Hopf instability.

I give general criteria for when an increase T can cause a shift from one of these three patterning
regions to another. When this shift occurs, it holds for all T > T, where T is a threshold persistence
time, which is quantified. As an example, I examine in detail the case N = 2 in the absence
of self-aggregation. Here, the diffusion-taxis model (T = 0) can either be stable to non-constant
perturbations or exhibit a Turing instability, dependent on the parameter values of the model.
Furthermore, the parameter regimes where the system falls into these two patterning regions is
known precisely [12]. However, the N = 2 and T = 0 case is never susceptible to a Turing-Hopf
instability unless a self-aggregation process is in play [28]. I show that when T is increased sufficiently
high, Turing-Hopf instabilities are possible without self-aggregation. Furthermore, they occur when
the populations are engaged in a “pursuit-and-avoid” situation, with one population exhibiting taxis
towards the other, and the latter exhibiting taxis away from the first. In contrast, for T = 0, this
pursuit-and-avoid situation is always linearly stable to non-constant perturbations.

2. The Modelling Framework and General Results

This work focusses on a system of N populations, each of fixed size (i.e., no births or deaths).
Individuals from each population move on a 1D landscape as biased, correlated random walkers
(i.e., those where there is both persistence in movement and bias in a particular direction). This bias
depends on the density of the various populations in the system, and is represented by a taxis term
up or down the density gradient of the various populations. The correlated aspect of movement is
modelled using a telegrapher’s equation formalism [24,25].

Denoting by u;(x, t) the spatial probability density function of population i at time ¢, the study
system is given by the following telegrapher-taxis equation for each populationi (i € {1,...,N})

u;  ou; Pu; 0 N9
]:

where T > 0,d; > 0, Yij € R, and one can assume, without loss of generality, that the units are
dimensionless and d; = 1. The case where T = 0 and y;; = 0 for all i was studied in [12], and the
reader is referred there for details of the non-dimensionalisation process. The dynamics take place on
a unit line segment, [0, 1], with periodic boundary conditions
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M,‘(O, t) = M,‘(l, t), (2)

so locations, x, live in the quotient space [0,1]/{0,1}. In Equation (1), K(x) is an integrable function,
symmetric about x = 0 on the domain [0,1]/{0,1}, and K * u; is the following spatial convolution

1
Kxuj(x,t) = /0 K(x = y)ui(y, t)dy. 3)

The inter-population taxis term, in the right-hand summand of Equation (1), can come about
through different biological mechanisms. The simplest is for the organisms in population i to sense
directly the gradient of population density, % (K uj), amechanism that may be valid for very small
individuals such as single-celled organisms or swarming insects. However, for larger organisms, this
population gradient is more likely to be observed indirectly. For example, the deposition of marks
in the environment from population j (e.g., through scenting; [29,30]) may indicate the population
density, u;, across space. Similarly, memory of past interactions with individuals from population j can
act as a proxy for sensing the population density gradient [31,32]. In [12], the authors showed how all
of these biological mechanism can be modelled via the same taxis term, given in Equation (1).

The linear pattern formation properties of Equation (1) are analysed by perturbing the system
about the constant steady-state solution, u;(x,t) = 1 for all i, x, t. Specifically, let w(x,t) = (u; —
1,...,uy—1) = (ugo),...,uz(\?))’exp(at + ixx), where ugo),...,ug\?) € R, kx € Rygand ¢ € C are
constants, and ' denotes matrix transpose. By neglecting non-linear terms, Equation (1) becomes

(To? + o)w = k> M(x)w, 4)

where M(x) = [M;;(x)]; ; isan N x N matrix with
—d. K , ifi=1,
M) = T =0 5)
7iiK (%), otherwise,

and K (x) is the Fourier transform of /C(x) on [0,1]/{0,1}.

Let A1(x), ..., An(x) be the eigenvalues of M(x) (which are not necessarily distinct). If T = 0 then
o = x2A;(x) gives a solution to Equation (4) for some non-trivial vector w. From the perspective of
pattern formation, there are three regimes of interest. These are well-documented [26] but it is valuable
to summarise them briefly, for the purposes of introducing the key concepts and nomenclature used
throughout this work:

1. Stable. All eigenvalues have negative real part: Re(A;(x)) < 0 foralli € {1,...,N}, x >0,

2. Turing instability. The dominant eigenvalue (i.e., the one with the largest real part) is positive
and real, i.e., argmax, [Re(A;(x))] € R0,

3. Turing-Hopf instability. The dominant eigenvalue is not real but has positive real part,
ie., argmax, . [Re(Ai(x))] € {z € C:Re(z) >0,z ¢ R}.

The first of these states that the linear perturbation, w(x, t), will decay back to the homogeneous
steady state, the second that w(x,t) will grow at small times for certain wavenumbers, «, in a
non-oscillatory fashion, and the third that w(x, ) will grow and oscillate at small times. These regimes
give an indication for the pattern formation properties of the system. In the Stable region,
the expectation is that spatial patterns do not form. In the Turing instability region, stationary patterns
are predicted to form, which are fixed over time. If there is a Turing-Hopf instability, patterns that
are in perpetual flux are expected to emerge. However, it is important to note that these are merely
predictions, arising from a linearisation of the system, and that it is possible for the non-linear terms to
cause different pattern formation properties asymptotically.
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The main aim of this work is to examine how the demarcation into the above three regimes
changes as T is increased from 0. When T > 0, for each i € {1, ..., N}, there are up to two values of ¢
such that To? + o = x?A;(x). Thus I define

—1+ /14 4Tx?A;(x)
+
o7 (x,T) = T et (6)

foreachi € {1, ...,N }, and note that O'Z.i (x, T) solves Equation (4) for each i. The main results from
this work are given in the following three theorems.

Theorem 1. In the case where the system is linearly stable for T = 0 (i.e., Re(A;(x)) < Oforalli € {1,...,N},
x > 0) one of two situations can occur:

1. IfAi(x) € Rforalli,x, then Re(o:(x, T)) < 0 for all i, x, T, so the system stays in the Stable regime for
all T > 0.

2. Ifthere exist i and x such that A;(x) ¢ R then there exists some T, > O such that for all T > T, there is
a Turing-Hopf instability. In other words, for this value of i and «, argmax,, . ry[Re(0i(x, T)] € {z € C:
Re(z) >0,z ¢ R} forall T > T.. Furthermore, Ty is the minimum T > 0 such that there exist i, x with
Re(/1+44Tk%A;(x)) > 1.

Proof. For part (1), if A;(x) € R for all i, x then, since Re(A;(x)) < 0, the inequality 1+ 4T«x?A;(x) < 1
holds, so Re((fijE (x,T)) <Oforallix,T.

For part (2), leti € {1,..., N} and x > 0 such that A;(x) ¢ R. Assume, without loss of generality,
that Im(A;(x)) > 0 (otherwise, pick the complex conjugate of A;(x)). Then if Re(\/1 4 4Tx2A;(x)) > 1,
the inequality Re(c;" (x, T)) > 0 holds, so that there is a Turing-Hopf instability.

I now show that if T is arbitrarily large, the criterion Re(y/1+4Tx%A;(x)) > 1 is always

satisfied. Here,
Re(1/1+44Tx2A;(x)) ~ Re(1/4Tk%A;(x)). (7)

Now, arg(\/4Tx?A;(k)) =arg(Ai(x))/2. Since Im(A;(x)) > 0 and Re(A;(x)) < 0,
the following holds

/2 < arg(Ai(x)) < m. 8)

0 < arg(,/4Tx?A;(x)) < 7/2,

so that Re(y/4T«x%A;(x)) > 0. Hence Re(y/1+4Tx%A;(x)) > 0 whenever T is sufficiently
large. Furthermore, Re(y/1 + 4Tx2A;(k)) — oo as T — oo, so there exists some T* such that
Re(+/1+4Tx2A;(x)) > 1forall T > T*. There may be more than one j € {1,...,N} and x > 0
such that A;(x) ¢ R. Thus let T, be the minimum of T/* over such j and all k. Then T, satisfies the
requirements of the theorem. [

Therefore

Theorem 2. Consider the Turing instability case for T = 0 (i.e., argmax, [Re(Ai(x)] € Rsyg). For a given
i, let A;(x) be the dominant eigenvalue of M(x). Then one of two situations can occur:

1. IfRe(y/1+44x2TAj(x)) < /14 4x2TA;(x) for all j then there is a Turing instability at wavenumber x
and persistence time T.

2. If there is some j such that Re(\/1+4x2TA;(k)) > \/1+4x2TA;(x) then there is a Turing-Hopf

instability at wavenumber x and persistence time T. Let T. be the minimum T > 0 such that
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Re(y/1+4xk2TAj(x)) > +/1+4k2TA;(x) for some j. Then there is a Turing-Hopf instability for

all T > T,.

Proof. For part (1), let x, T > 0. If Re(/1 4 4x2TA;(x)) < \/1 + 4x2TA;(x) for all j then o;" (x, T) is

the dominant eigenvalue. Since A;(x) € R, /1 + 4K2T)ti ) € Rupso 0t (k,T) € Rygso thereis a
Turing instability for these values of T and «.

For part (2), suppose there exist j, T, k with Re(/1 +4k2TA;(x)) > /1 +4k2TA;(x) and suppose
Re(/1+4Kk2TAj(x)) > Re(y/1 + 4k2TAi(x)) for all k. Then 7; F(x,T) is the dominant eigenvalue. It is

necessary to show that (fj+ (x, T) is not real. Therefore, for a contradiction, suppose /1 4 4x2TA;(x) €
R. Then Aj(x) € R. However, A;(x) < A;(x), since A;(x) is the dominant eigenvalue of M(x), so

1+44x2TAj(x) < \/1+ 4x2TA;(x), which contradicts the assumption. Hence 7; *(x,T) ¢ R so there
is a Turing-Hopf instability for these values of T and x. [

Corollary. If there is some j such that Re(/A;(x)) > 1/A;(x) then there is a Turing-Hopf instability
at wavenumber « for sufficiently large T.

Theorem 3. Consider the case where there is a Turing-Hopf instability for T = 0. Then there is a Turing-Hopf
instability for all T > 0.

Proof. Let i be such that A;(x) is the dominant eigenvalue of M(x) for some x where there is a
Turing-Hopf instability for T = 0. Assume, without loss of generality, that Im(A;(x)) > 0 (otherwise
choose the complex conjugate of A;(x)). Since Re(A;(x)) > 0, the inequality Re(1 + 4Tx?A;(x)) > 1
holds, so \/Re(1+4Tx2A;(x)) > 1. Since 1+ 4T«x*A;(x) has positive real and imaginary part,
VRe(1+4Tx2A;(x)) < Re(y/1+ 4Tx2);(x)). The latter follows from the following general calculation
forr >0and0< 0 < 71/2

\/Re(rei?) = \/ry/cos(8) < \/r COS(G% = +/rcos (g) Re(Vrelf). ©)

The inequality in (9) requires 0 < cos(f) < 1, which follows from 0 < 6 < 71/2.

It follows that Re(+/1 + 4T«xA;(x)) > 1, and thus from Equation (6) that Re(c;" (x, T)) > 0 for all
T > 0. To show that this is within the Turing-Hopf instability region, it is necessary to check that there
does not exist j such that both (7].+ (x,T) € Ryp and (7].+ (x,T) > Re(o;" (x,T)), since otherwise this is

the Turing instability region. For a contradiction, suppose such a o (K, T) exists. Then

J1HATR2A () > Re(y/1+4Tw2A;(x)) > \/Re(1 +4Tx2A(x)) (10)

s0 14 4Tx?A(k) > Re(1 4 4Tx?A;(x)) so Aj(k) > Re(A;(x)), which contradicts the fact that A;(x) is
the dominant eigenvalue for the T = 0 case. O

3. The Case of Two Interacting Populations (N = 2)

In this section, I look in detail at the specific example where N = 2 and v;; = 0 for all
i €{1,...,N}, to show how persistent movement can drive qualitative changes in pattern formation
properties even in this simple situation. In the case T = 0 (studied by [12]), the following holds

—(1+4+d2) £ \/(1 —d2)? + 4712721 K2 ()
2 7

Ar(x) = (11)
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and it follows that the system for T = 0 is linearly stable to wave perturbations whenever y1,721 < ds.
When 715921 > do, the system can have a Turing instability, and always does in the limit £(x) — 1,
where the spatial averaging given by K is arbitrarily small. The system never exhibits a Turing-Hopf
instability for T = 0 [12].

In the Turing instability case for T = 0, both the eigenvalues are real, so the conditions of
Theorem 2, part 2, are met. Thus there is a Turing instability for all T > 0. The case where y12721 < da,
however, is more interesting. Here, Theorem 1 states that a Turing-Hopf instability will occur for
sufficiently large T as long as A+ (x) ¢ R, thatis

(1—d2)? + 471271 K?(x) < 0. (12)

The first thing to notice about the condition given by (12) is that 1, and 7,1 need to be of opposite
signs. This means that one population tends to advect up the density gradient of the other, while the
second population retreats down the gradient of the first. This is termed a “pursuit-and-avoid’ situation
in [12]. In this situation, for T = 0, no patterns form: the populations each settle to a steady-state
distribution whereby they are uniformly distributed on the terrain. However, if T is defined to be
the minimum positive real number such that there exists > 0 with Re(y/1 + 4Tx?A4 (x)) > 1, then
Theorem 1 implies there is a Turing-Hopf instability whenever T > T.

To understand how T, depends on the parameters, I fix d» = 1 and set y = ++/—712721. (Notice
that v € Ry since 17 and 71 are of opposite signs.) It is also necessary to pick a particular functional
form for IC(x). This is a slightly delicate matter as it is not necessarily the case that the pattern
formation problem is well-posed for an arbitrary C(x). For example, if (x) = J(x) is used, where
(x) is the Dirac delta function, then, by Equation (6), the dominant eigenvalue is

—1+4 /1 —4Tk2 + 4Tik2y
2T

O’Z-JF(K, T) = . (13)
If T is fixed and « is arbitrarily large, then Re(c;" (, T)) ~ «Re(y/=1+1iv/ VT) — coas k — oo,
Hence patterns can form for arbitrarily high wavenumbers, meaning the pattern formation problem
is ill-posed.
However, suppose instead that

el ) if—1/2<x<1/2
]C(x) = { oy/merf %)’ (14)
0, otherwise,
for some o > 0, so that
R erf (= — KT perf (L 4 i 2.2
£ (x) = (217 2 ) : (20 2 ) exp( K40' ) (15)
2erf (g)

The case of interest is where ¢ is small, in which case the following approximation can be made

K(x) =~ exp (_Kjaz) : (16)

Then Equation (6) gives

—1+ /T~ 4TK2 1 ATir% exp(— K202 /4
ot (k, T) = /1 4Tx +2T17" exp(=K*c*/4) (17)
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Now, notice that if T is fixed and « is arbitrarily large, then

Re(o7 (, T)) ~ xRe (V_l i e;;(_"z"z/ 4)> -0, (18)

as k¥ — co. Therefore, with the Gaussian averaging kernel from Equation (14), the pattern formation
problem is well-posed, in the sense that patterns cannot form at arbitrarily high wavenumbers.

By Theorem 1, there is some T, such that there is a Turing-Hopf instability for all T > T.
Furthermore, this Theorem states that T is the minimum T such that the following holds for some %

f(x) == Re[y/1 — 4Tk + 4Tiyi? exp(—x202/4)] > 1. (19)

In Figure 1a, f(x) is plotted against x for v = 0.2, ¢ = 0.05, and varying values of T. This reveals
that T not only affects whether patterns form, but the range of wavenumbers for which patterns may
form. In this example, there is a Turing-Hopf bifurcation for value of T = T, somewhere between
T=0.05and T = 0.1.

The precise values of T for a range of - and o-values are plotted in Figure 1b,c. The ¥ parameter
encodes the strength of attraction/avoidance. Figure 1b,c shows that T, decays for increasing y and
grows with the width of spatial averaging, o.

a)

2.5

2.0

1.0 ,:::, - T»,",' :':,r - ﬁ ,,,,,,,,,,

0.5

TR TS

0.0
0

1 1
20 40

Figure 1. Critical value of T for pattern formation. In Panel (a), Equation (19) is plotted for v = 0.2,
o = 0.05, and various values of T. Where f(«) > 1, there is a Turing-Hopf instability. In Panels (b,c),
the value, T, above which there is a Turing-Hopf instability for some x and below which there is not,
is plotted for various values of & and 7.

To understand the qualitative properties of the patterns that emerge from increasing T. past the
Turing-Hopf bifurcation point, the system in Equations (1)—(3) is solved numerically, with N = 2,
dy = 1, v = +y/—712721, and the Gaussian spatial averaging from Equation (14). In Figure 2,
the results of these numerics are shown for certain values of 7y, o and T. Here, rather than decaying to
the homogeneous steady state (T = 0), for higher T the populations move across the landscape while
maintaining a non-constant population distribution.
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1.0 1.024 1.050
a)
1.035
1.016
0.8} 1
1.020
1.008
1.005
= o6 | =
q) -
U 11.000 {0.990 &
8 —
. i 3
n %4 10.975
{0.992
40.960
0.2 1
{0.984
40.945
0.0 ‘ ‘ ‘ ‘ L 10.976 . . L l0.930
00 05 1.0 15 20 25 00 05 1.0 15 20 25
Time, t Time, t

Figure 2. Example numerics for N = 2. Numerical solutions of Equation (1) for N = 2,dy =1,
Y12 =1, 721 = —1, and K(x) as in Equation (14) with o = 0.1. Both examples have random continuous
initial conditions, but forced to be symmetric about x = 0.5 to satisfy periodic boundary conditions.
In Panel (a), T = 0, and the initial perturbation of the constant steady state decays to the solution
11(x,00) = 1. In Panel (b), T = 1. Here, the population 111 moves across the landscape, not settling to a
constant distribution.

4. Discussion

This study examines a telegrapher-taxis system of N populations to demonstrate how directional
correlation can drive pattern formation in systems of between-population taxis. General criteria are
given for switches in pattern formation regime driven by directional correlation and the N = 2 case is
examined in detail. These results demonstrate the importance of considering directional correlation
when seeking to understanding the spatio-temporal population distributions of moving organisms.
As our ability to capture data on animal movement is becoming increasingly sophisticated, better
understanding of how the details of animal movement can affect population dynamics is becoming
an ever-more pertinent question [6], with implications for a diverse range of ecological areas such as
connectivity dynamics [33] and conservation [34].

The model of [12], on which the present model is based, is closely related to aggregation and
chemotaxis models inspired by cell biology [35-38]. Although many such models only examine a single
population, there are various examples of two-population models [28,39], and some that incorporate
an arbitrary number of populations [40,41]. In the latter examples, the diffusion-taxis equations are
coupled via interactions with a diffusive chemical, different to the model studied here. While cells
lack the momentum of much larger organisms, directional correlation is known to be a factor in the
movement of cells in certain circumstances [42—-44]. Therefore the results presented here suggest that
it is worth exploring how directional correlation may affect the pattern formation properties of such
aggregation and chemotaxis models.

Here, ecosystems are modelled on a constrained timescale whereby births and deaths are
negligible. However, it would be valuable to extend the model presented here to incorporate such
effects, via competition and/or predation terms (i.e., kinetics), and so explore the effect of directional
persistence over longer timescales. Adding directional persistence to models that incorporate kinetics
is non-trivial, though, and does not simply involve adding a second temporal derivative to a
reaction-diffusion-taxis model [45].
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Nonetheless, building such a system of reaction-telegrapher-taxis equations would enable
connection with cross-diffusion models (e.g., [16,17,46,47]). These are generalisations of reaction-
diffusion systems, whereby terms are added that allow for motion driven by the presence of foreign
populations. These terms include, but are not limited to, the taxis terms observed in the model
from Equation (1). However, incorporating directional correlation via a telegrapher’s term into a
cross-diffusive setting is much rarer (but see [48]) and the pattern formation properties of such systems
are not well-explored. Given the results presented here, it may be interesting to extend cross-diffusive
models in this way, to show how directional correlation may affect pattern formation in such models.

In summary, the simple but general results shown here demonstrate that directional correlation of
individuals” movement can have a great effect on the spatio-temporal distribution of species. While I
have demonstrated this in a model of ecosystems relevant over relatively short timescales, where
births and deaths are minimal, it highlights a general principle that is little-studied and may have
much wider implications.

Acknowledgments: JRP acknowledges support from the Natural Environment Research Council (NERC) (grant
number NE/R001669/1).
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