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Abstract: This paper deals with the air traffic controller (ATCo) work shift scheduling problem.
This is a multi-objective optimization problem, as it involves identifying the best possible distribution
of ATCo work and rest periods and positions, ATCo workload and control center changes in
order to cover an airspace sector configuration, while, at the same time, complying with ATCo
working conditions. We propose a three-phase problem-solving methodology based on the variable
neighborhood search (VNS) to tackle this problem. The solution structure should resemble the
previous template-based solution. Initial infeasible solutions are built using a template-based heuristic
in Phase 1. Then, VNS is conducted in Phase 2 in order to arrive at a feasible solution. This constitutes
the starting point of a new search process carried out in Phase 3 to derive an optimal solution based
on a weighted sum fitness function. We analyzed the performance in the proposed methodology
of VNS against simulated annealing, as well as the use of regular expressions compared with the
implementation in the code to verify the feasibility of the analyzed solutions, taking into account four
representative and complex instances of the problem corresponding to different airspace sectorings.

Keywords: air traffic management; work-shift scheduling problem; variable neighborhood search;
performance analysis

1. Introduction

The key concept at the heart of air traffic management (ATM) network operations is air traffic flow
and capacity management (ATFCM). ATFCM should optimize traffic flows so that airlines can operate
safe and efficient flights depending on air traffic control capacity. In Europe, the network manager
operations center (NMOC) constantly monitors the balance between the airspace capacity and traffic
load. NMOC activities are divided into four —strategic, pre-tactical, tactical and post-operational—-
phases [1].

The strategic phase is related to capacity prediction at ATC centers by air navigation service
providers (ANSPs). ANSPs prepare a routing scheme with the help of NMOC seven days ahead
of operations.

The pre-tactical phase is related to the definition of the initial network plan. The NMOC publishes
the agreed plan for the day of operations, informing ATC units and aircraft operators about the ATFCM
measures affecting European airspace from one to six days ahead of operations.

The tactical phase updates the plan for the day of operations according to real-time traffic demand
where the NMOC monitors the situation and continuously optimizes capacity. Delays are minimized
by providing aircraft affected by changes with alternative solutions on the day of operations.
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The post-operational phase is related to operational process improvement by comparing planned
and measured outcomes covering all ATFCM domains and units. Operational processes are measured
in order to develop best practices and/or analyze lessons learned after the day of operations.

In this paper, we focus on the pre-tactical phase. This phase has to solve the very important
problem of determining how the available air traffic controllers (ATCos) are assigned to each open
sector to cover a sectorization structure (established in the strategic phase) for a specified amount of
time. This assignment has to comply with a number of strong constraints accounting for the ATCo
working conditions.

The sectorization changes throughout the day depend on aircraft traffic. More sectors are opened
if the air traffic volume increases. This steps up the demand for ATCos who can only handle a limited
amount of traffic.

This is a timetabling and scheduling problem. Timetabling and scheduling problems are
combinatorial problems, which, on the grounds of size and complexity, cannot be solved by exact
methods. For examples of other timetabling and scheduling problem-solving approaches, see [2,3].

ATCo scheduling software has already been developed within the ATM field [4]. These tools have
both strengths and weaknesses [5]. Hardly any of this software has been reported in detail, sometimes
because they are in-house tools. Three ATCo scheduling problem codifications were reported alongside
three optimization techniques [6]. Another solution [7] is composed of a hybrid technique combining
propositional satisfiability problem solving [8] and hill climbing.

A simplified version of the ATCo work shift scheduling problem for Spanish airports was solved
by minimizing the number of ATCos required to cover a given airspace sectoring in compliance with
Spanish ATCo working conditions [9]. The search process employs regular expressions to check
solution feasibility. The solutions that output an optimal number of ATCos are used as the starting
point for another optimization process targeting balanced ATCo workloads. This simplified version of
the problem analyses straightforward scenarios and accounts for a core with only one type of sector
for a 24-h period. Consequently, there are no constraints on ATCo distribution across sectors.

Cores including two sector types (en-route and approach sectors) and accounting for ATCos with
different operating credentials were considered in [10]. This proposal focuses on the optimization
of only one shift in accordance with a previously specified number of ATCos to cover a specified
airspace sector configuration. This proposal adopts a multi-objective approach, accounting for ATCo
work and rest periods, positions and workload distribution, the number of control center changes,
and the solution structure. It proposes a three-phase problem-solving methodology. In the first
phase, a template-based heuristic was used to identify unfeasible solutions. In the second phase,
a number of independent simulated annealing (SA) metaheuristic runs were conducted to arrive
at feasible solutions using regular expressions to check compliance with ATCo working conditions.
In the third phase, simulated annealing was conducted by multiple independent runs to optimize the
objective functions of the original feasible solutions again taking into account ATCo working conditions.
This optimization process took into account the ordinal information on objective importance using the
rank-order centroid function to transform a multiple into a single optimization problem.

In this paper, we consider the same multi-objective problem as [10], albeit using an adaptation of
variable neighborhood search (VNS) rather than SA in the three-phase problem-solving methodology.
Four representative and complex instances of the problem corresponding to different airspace
sectorings provided by the Spanish ATM Research, Development and Innovation Reference Center
(CRIDA) are now used to compare the performance of both metaheuristics in the three-phase
problem-solving methodology. Moreover, the use of regular expressions to verify the ATCo labor
conditions (constraints) is compared against implementation in the code in terms of execution times.

The paper is structured as follows. Section 2 describes the ATCo work-shift scheduling problem.
Section 3 describes the proposed problem-solving methodology. Section 3.1 presents a template-based
heuristic to identify unfeasible solutions. Then, some notions of VNS and its adaptation to the ATCo
work-shift scheduling problem are provided in Section 3.2. Finally, we describe the second and third
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phases of the methodology aimed at reaching a feasible and an optimal solution in Sections 3.3 and 3.4,
respectively. In Section 4, four real instances are used to illustrate the proposed methodology and
to compare the performance of SA against the proposed adaptation of VNS and analyze the use of
regular expressions. Finally, some conclusions are provided in Section 6.

2. Problem Description

There are limits on the amount of traffic that human ATCos can handle. Therefore, air traffic
conditions the number of ATCos required, as airspace sectors are created and reduced to deal
with demand, resulting in varying numbers of ATCos. The sectorization of the airspace according
to estimated traffic for a specified period can be defined in advance and is denoted as airspace
sector configuration.

A core is composed of a set of sectors, and any one sector may belong to several cores. A control
center may be responsible for managing one or more cores. Each core should be solved separately,
unless there are sectors belonging to more than one core. In this case, ATCos should be simultaneously
assigned to the respective cores.

There are two types of sectors: approach and en-route sectors. Depending on airport procedures,
approach sectors are generally five to 10 nautical miles (9 to 18 km) from the airport, whereas en-route
sectors are usually further way.

Two ATCos with different roles operate each sector. The executive ATCo communicates with
aircraft, instructing pilots on how to avoid each other, whereas the planner ATCo foresees possible
conflicts between aircrafts which he or she reports to the executive ATCo. ATCos are accredited to
operate a particular sector and categorized as PTD or CON ATCos. A PTD ATCo can operate en-route
and approach sectors, whereas a CON ATCo can only operate en-route sectors. Figure 1 is an example
of an airspace sectorization for the Barcelona eastern route in Spain. Each interval is associated with a
configuration (3C, 4A, 64, ...), where the number represents the number of open sectors and the letter
refers to the sector configuration, i.e., there are two sectorizations with a different spatial distribution
of the same number of sectors (5A and 5B in Figure 1).

Figure 1 shows one of the four examples used to illustrate our problem-solving methodology.
The airspace is divided into three sectors (configuration 3C), after which one of the sectors is divided
into a further two sectors. The result is configuration 4A, which is operational for one hour. The next
configuration is 6A used for 40 min. See Figure 10 for further details.

MORNING SHIFT

3c

6A

5A | 5B | 5A

5:20 5:40 6:40 7:20 8:20 9:20 10:00 11:00 12:00 13:00
Figure 1. Barcelona eastern route airspace sectoring.

A day (24 h) is divided into night (N), morning (M) and afternoon (A) periods, covered by five
different ATC shifts: long morning (LMS) (5:40-14:00 h.), morning (MS) (6:20-14:00), afternoon (AS)
(14:00-21:20), long afternoon (LAS) (14:00-22:20) and night (NS) (21:20-6:20). At certain times, ATCo
shifts overlap: AS and LAS from 14:00 to 21:20; NS and LAS from 21:20 to 22:20, NS and LMS from 5:40
to 6:20, and MS and LMS from 6:20 to 14:00. NS ATCos are the only ATCos at work from 22:20 to 5:40.

On top of the division by shifts, ATCo working conditions also have to be taken into account.
Royal Decree 1001/2010 and Law 9/2010, regulating the provision of air traffic services, stipulate these
conditions, including constraints on minimum and maximum working and resting times, how long
ATCos can spend in different positions, the maximum number of sectors that an ATCo can operate
during a shift, etc. A list of ATCo working conditions is available in [10].

The ATCo work shift scheduling problem that we intend to solve should achieve the following
objectives in accordance with a specified airspace sectorization and a specified number of ATCos with
their respective accreditations:
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e ATCo work and rest periods and position should respect the specified values.

o  The number of control center changes should be reduced to the minimum.

e  The solution structure should resemble the previous template-based solution for ease of
understanding by control center staff with a view to potential manual changes.

e  ATCo workload distribution should be balanced.

Experts from the Reference Center for Research, Development and Innovation in ATM
(CRIDA, www.crida.es), a non-profit joint venture between ENAIRE, Spain’s air navigation manager,
the Universidad Politécnica de Madrid, and Ineco, a global infrastructure engineering and consultancy
leader, ranked the above objectives by importance.

3. Problem-Solving Methodology

This section outlines a three-phase methodology to solve the stated ATCo work shift scheduling
problem for a given airspace sectorization. Phase 1 sets out a heuristic which is used to construct ten
different initial solutions by modifying rest period lengths using an optimized template. These initial
solutions require more ATCos than are available and do not satisfy all working conditions.

In Phase 2, an algorithm based on variable neighborhood search (VNS) is applied to the infeasible
solutions achieved in the first phase, in order to yield a feasible solution. The aim is to reduce the
number of ATCos used to meet the number of available ATCos, while penalizing the number of times
labour conditions are violated until a feasible solution is achieved.

A VNS-based algorithm is run again on the feasible solution output in Phase 2. This algorithm
should optimize the objective functions. The objective functions represent the ATCo work and rest
periods and positions, ATCo workload distribution, the number of control center changes, and the
similarity of the solution structure to the previous template-based solution. The original multi-objective
optimization problem is then transformed into a single weighted optimization problem taking into
account the objectives ranked by importance by CRIDA experts. This ordinal information is used
to specify the centroid-based weights. Solutions are represented by a matrix. The matrix columns
represent time slots, and the rows ATCos. Time slots are equivalent to five minutes because five
is the greatest common divisor for the applicable constraint times (e.g., ATCos have to work for at
least 15 min in the new sector and a sector has to be open for at least 20 min). The Phase 1 heuristic
establishes the number of rows, which will not necessarily be the same across the initial solutions.

Each matrix element (i, j) represents the state of ATCo i in time slot j. It is symbolized by three
letters. The value 111 represents a resting ATCo, uppercase letters [A-Z] indicate that the ATCo is
working as an executive operator, whereas lowercase letters [a-z] are used for planner positions.

Figure 2 illustrates solutions using colors to represent sectors. Rest periods are colored
white. Figure 2 shows the solution for the airspace sector configuration illustrated in the Figure 1.
This configuration is manned by 15 ATCos (number of rows).

3c 4A BA 5A 58 5A
ENEEEEEEENEEEEEEEEEEE NN NN NN EEEEEEE NN NN NN NN NN NN EEEEEEEE NN NN RN NN ENEREREEE!
AAD aad 111 aaa | aal AAL 111 AAT AAA aak I 111
aad AAD 111 ARA 111 aar aat ] AAD 111
111 AAE aad AAR_ | aaa 111 AAD aad 111 | aar [ Aap
111 ace AAD 111 aal aad AAD I 111 | AAK
111 AAK aak AAL 111 aar ARK I 111 aak
111 aak AAK aal | AAR 111 AAR aal 111 [ AAL
111 aaf AAR aar 111 aak AAL 111 [ aal
aar I AAJ 111 aar aak AAK 111 AAK aak AAD 111
AAR | aaj AAF | aaa 111 AAK aak AAK 111 aad AAR
AAO aaa | AAA 111 AAA aaa 111 aar AAK [ 111 aal aar
aa0 ARA | aaa AAF 111 aaa AAA 111 AAR aar AAL 111
111 | AAR aar 111 aad AAR 111 aat | aaa AAR aad 111
111 AN | aar AAR 111 AAD aar AAL 111 AAD aad
111 | aal AAL 111 aad aal 111 | aaa AAA
111 | AAL aal 111 AAD aak 111 | ARA aaa

Figure 2. Example of solution representation.
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3.1. Phase 1: A Heuristic for the Construction of Initial Solutions

We propose a heuristic to build a set of initial solutions with different rest periods. The Phase 2
algorithm then outputs a feasible solution based on the initial solutions output in Phase 1. The proposed
heuristic is based on an optimized template (see Figure 3), with three ATCos covering a sector for 96
time slots (eight hours). ATCo positions (executive or planner) are not assigned until later.

ATCo 1 Working | Resting | Working | Working | Resting | Working | Working
ATCo 2 Resting | Working | Working | Resting | Working | Working | Resting
ATCo 3 Working | Working | Resting | Working | Working | Resting | Working

Figure 3. Shift template.

All work periods of are of equal length and twice as long as rest periods. The heuristic builds
different, albeit similarly structured, initial solutions if the rest period duration varies. As the working
conditions specify that each rest period should last at least 15 min (three slots) and the minimum and
maximum work periods are six and twenty four slots, respectively, a rest period must be at least three
and at most twelve slots long. Thus, the heuristic builds ten different initial solutions.

The steps of the heuristic are as follows. First, starting from an empty solution, the heuristic adds
templates to cover the airspace sectoring. Note that more ATCos than available could be incorporated
to the solution in this process. Then, ATCo positions (executive or planner) are allocated taking into
account the number of open sectors in each time slot.

Next, we repair the solution to improve feasibility. To do this, we try to transfer a work period
without the minimum length from one ATCo to another and extend a work period that does not have
the minimum length using a work period from another ATCo.

Finally, we allocate available resources, i.e., we assign an available ATCo to each row in the built
initial solution, taking into account the sectors in that row and the ATCo accreditations.

More details about the implementation of the heuristic are available in [10].

3.2. Variable Neighborhood Search and Its Adaptation to the ATC Work-Shift Scheduling Problem

The idea underlying variable neighborhood search (VNS) is to successively explore a set of
predefined neighborhoods to find better solutions [11]. VNS explores a set of neighborhoods either at
random or systematically in search of local optima. Conducting a local search of diverse neighborhoods
potentially generates different local optima, where the global optimum is a local optimum for a given
neighborhood. Different neighborhoods generate different landscapes.

The basic version of VNS is shown in Algorithm 1. However, other variants of this basic VNS, such
as variable neighborhood descent, reduced variable neighborhood search and variable neighborhood
decomposition search can be found in the literature. They depend on:

e  The order in which the neighborhoods are used: forward VNS, which starts with k = 1 and
increases k by one if no better solutions are found; otherwise set k <+ 1; backward VNS,
which starts with k = k;;,x and decreases k by one if no better solutions are found, and extended
version, which uses parameters ki, and kstep, sets k < k;;;;, and increases k by kst if no better
solution is found.

e  The acceptance of worse solutions. For instance, skewed VNS accepts if f(x”) — ad(x,x") < f(x),
being d(x, x"") the distance between candidate solutions.
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Algorithm 1 Basic VNS.

Require: Nj: set of neighborhood structures, k = 1, ..., kjyax
Ensure: Best solution found.

1. k=1

2: Generate an initial solution x

3: repeat

4. Randomly generate x’ € Ni(x)
5. x"= Local-search(x’,Nj)

6: if (f(x") < f(x)) then
7

8

X =x
: k=1

9: else

10: k=k+1

11:  end if

12: until stopping criterion

The variable neighborhood descent (VND), proposed by [12], changes the neighborhood
deterministically. First, the set of neighborhoods and their order are determined, then the algorithm
selects an initial solution, and it iterates until it has gone through all the neighborhoods. In each
iteration, it performs a search process to reach a local optimum and evaluates if this local optimum is
better than the previously derived best solution. If better, it becomes the starting solution for a new
local search; otherwise, the algorithm moves on to the next neighborhood to be explored.

The reduced VNS, proposed by [13], is similar to basic VNS except that no iterative improvement
procedure is applied. It explores different neighborhoods randomly and quickly reaches good quality
solutions for large instances.

The variable neighborhood decomposition search, put forward by [13], generates subproblems by
keeping all but k solutions components fixed, and applies local search only to the k “free” components.

In the biased VNS, reported by [13], once a good solution has been found after a good exploitation,
it is usually necessary to move away from this good neighbor to try to find a better solution. This new
search is usually very similar to a multi-start heuristic, but this method is usually too expensive in
terms of efficiency. Therefore, the algorithm chooses to move towards the best neighbor depending on
a distance function between the candidate solutions multiplied by a parametrizable value «.

Parallel VNS, described by [14], is a variant aimed at parallelizing the local search processes
within VNS to derive and then compare several solutions resulting from starting points.

The VNS adaptation used in this paper is similar to VND in the sense that the algorithm restarts
the search process once a solution is found that improves upon the previously best solution. However,
whereas VND restarts the process using the same neighborhood definition, our version repeats the
search process in all the previously used neighborhood definitions.

Besides, the basic VNS randomly generates a solution from the neighborhood under consideration
and starts a local search from this solution, whereas our adaptation of VNS starts the search from
the solution in the previous iteration since the local search process is not completely deterministic,
rendering the previous step (randomly generate the initial solution) unnecessary.

The following four types of neighborhoods have been considered for the VNS adaptation proposed
in this paper:

1. First neighborhood. It is based on a time slot exchange between two ATCos fulfilling the following
constraints (see Figure 4):

(@) The length of the time interval to be exchanged cannot be greater than 18 slots.

(b) The first ATCo must be located in a row that is higher up than the second ATCo in the
solution matrix.

(c) The time interval for the first ATCo must correspond to a work period, whereas, for the
second controller, it has to be a rest period.
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(d) The exchange process will only be performed if the second ATCo was previously working
in the same sector and position just before or after the exchanged time slot (see Figure 4)
i.e., we are extending the work period for the second ATCo.

111 aav 111 111 111 111
ABB . 111 ABB ABB 111
aav 111 aav aav aav aav

Figure 4. First neighborhood example.

Second neighborhood. It also consists of a time slot exchange between two ATCos, the only difference
from the first neighborhood definition above being that the two time periods involved in the
exchange process must be work periods (see Figure 5).

111 aav 111 111 111
ABB 111 ABB ABB 111
aav aav aav aav aav

Figure 5. Second neighborhood example.

Third neighborhood. This neighborhood is similar to the first one except for the fact that the
exchange process will be performed if the second ATCo was previously working in the same
sector and position just before or after the exchange time slot (see Figure 6), i.e., it is not necessary
to extend the work period for the second ATCo.

111 AAW 111 111 111 111
111 111 111
abb 1 aba abb aba

Figure 6. Third neighborhood example.

Fourth neighborhood. This neighborhood is similar to the second one except for the fact that the
exchange process will be performed if the second ATCo was previously working in the same
sector and position just before or after the exchange time slot (Figure 7), i.e., it is not necessary to
extend the work period for the second ATCo.

111 AAW 111 111 aav 111
11T 111 11T
abb aav aba abb AAW aba

Figure 7. Fourth neighborhood example.

Figure 8 describes how the four neighborhood definitions are used in our VNS adaptation for

Phases 2 and 3, where time_int represents the time interval length to be exchanged, neighborhood
identifies which of the neighborhood definitions under consideration is used, and laps refers to the
times number the neighborhood definitions have been used.
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BestSolution = 0
laps =0

!

neighbourhood = 1 BestSoultion

time_int=1 =
New Solution

|
‘ ‘ Local Search in

neighbourhood ++ ) ) Neighbourhood 3 No
. . time_int ++
time_int =1 =

l .
TNO T No T No phase? ———>  feasible?

No Yes
neighbourhood il q New Solution Yes
laps ¢ ig ¢ time_int ¢ S

>
>4 Yes @ Yes >18 BestSolution

laps ++

Yes

!

Return
BestSolution

Figure 8. Adapted VNS algorithm for Phases 2 and 3.

The time interval length to be exchanged is initially set to one time slot (time_int = 1) and we use
the first neighborhood definition (neighborhood = 1). Then, if the local search outputs a new solution
that is better than the current BestSolution in Phase 2, we check if the new solution is feasible. If it is,
we output that solution and Phase 2 finishes. If the new solution is not feasible or we are performing
Phase 3, then the new solution becomes the BestSolution and a new iteration is carried out.

If the solution achieved in the local search is worse than the current BestSolution, the time
interval length is increased, and the local search is executed again. If the time interval length is 18
and the output solution is still worse than the current BestSolution, then we start using the second
neighborhood definition and the time interval length is initialized (time_int = 1). If we have used the
four neighborhood definitions each with time interval lengths up to 18 and no solutions outperform
the current BestSolution, then we use the first neighborhood definition again and repeat the process.
This process ends when a feasible solution is reached (in Phase 2) or we have used the neighborhood
definitions four times (laps = 4). In the second case, the current BestSolution is the optimal solution.

The local search consists of generating all the possible solutions within the neighborhood with
a given time interval (time_int). The generation process is parallelized and the respective solutions
are stored in a list in the order in which they are generated. Four seeds are then established to
initialize a search process within the list. We use the first seed, which identifies a solution in the list,
and randomly move one position to the left or right along the list. If the fitness of the initial solution
is not outperformed after exploring 25% of the solutions in the list, then we take the second seed
and repeat the process. Once all four seeds have been used, the best solution visited in the process
is returned.

Finally, note that we did not consider the same the neighborhood definition as in the SA used
by [10] in the VNS adaptation proposed in this paper because the local searches we perform generate all
the solutions in the respective neighborhood. This does not pose a problem for the four neighborhood
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definitions that we use in terms of cardinality. However, the number of solutions in a neighborhood
based on the definition used in [10] is very high, which would lead to unaffordable computation times.

3.3. Phase 2: Deriving a Feasible Solution

In Phase 2, VNS is run on an initial solution output in Phase 1. VNS should reduce the number of
ATCos covering all open sectors in a given airspace sector configuration to below the available number
of ATCos, subject to the ATCo working condition constraints.

The solution matrix output by the Phase 2 search is reordered as follows: the ATCo with the
smallest workload is placed at the top, followed by the ATCo with the second smallest workload,
and so on. On the other hand, the ATCos with the largest workloads are placed at the bottom.
This permutation tends to reduce the number of ATCos as the search progresses.

The fitness function considered in Phase 2 is:

max f = {w1h+w2g, %f c>n )
g ifc>n

where c is the number of ATCos for the current solution, n is the number of available ATCos, g is
the penalty for all unsatisfied constraints (working conditions) and w; and w, represent the relative
importance of the components / and g.

Function h should reduce the number of ATCos in the solution below:

C
h=—5 Y ih, @)
i=1

c
where c is the number of ATCos and #; is the number of work time slots for the i-th ATCo. The term Clz
means that a decrease in the number of ATCos improves the objective value enormously. Objective
values are greater for solutions with a large workload and for ATCos with higher indexes (at the
bottom of the solution matrix).

Looking at the objective function and the row permutation of the solutions in Phase 2, the search
process appears to reallocate work periods from ATCos at the top of the solution matrix to ATCos in
the bottom rows (with the largest workload). This augments the rest periods for the ATCos at the top
of the matrix, thus decreasing the number of ATCos required to cover the airspace sector configuration.

Functions h and ¢ must be normalized in order to correctly use the weighted fitness function,
see [10].

Note that, in the four neighborhood definitions, condition (b) “The first ATCo must be located
in the solution matrix in a row that is higher up than the second ATCo” is considered in the Phase 2
search process only when the number of ATCos in the solutions is greater than the available number
of ATCos and is, otherwise, obviated.

Besides, the neighborhoods are initially used in the order in which they were listed in Section 3.2,
but numerical experiments prove that the 4-1-3-2 order provides better solutions once the available
number of ATCos is reached.

As already mentioned, VNS is conducted starting from an initial solution output in Phase 1. If a
feasible solution is not reached in the search process, then we start again with another initial solution
output in phase 1 (10 initial solutions were output in Phase 1). The Phase 3 search process starts from
the respective feasible solution. This means that Phase 3 is only executed once. Note that a multi-start
SA was proposed by [10], in which Phase 2 was executed for the 10 initial solutions derived from
Phase 1, and Phase 3 was executed from each feasible solution reached in Phase 2.

3.4. Phase 3: Reaching the Optimal Solution

In Phase 3, VNS is run again, this time on the feasible solution output in Phase 2, in order to
optimize the following four objective functions:
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1. Objective 1: Desirable ATCo work and rest periods, and positions. This objective accounts for three
equally important sub-objectives.

(a)  The time ATCos remain in the same sector and working position (planner or executive) should be as
close as possible to 45 min.

(b)  The optimal working time between breaks should be 90 min.

(c)  The percentage of ATCo working time in executive positions must be between 40% and 60% of the
total working time (not including rest periods).

2. Objective 2: Similar solution structure to previous template-based solution. Control center staff will
find such a solution easier to understand, and this should facilitate any manual changes. To do
this, we analyzed the template-based structure which was used as a benchmark. We concluded
that rest and work periods for the same sector should be closely clustered.

3. Objective 3: Minimization of the number of control center changes. This objective can be achieved by
reducing the number (not the duration) of rest periods.

4. Objective 4: Balanced ATCo workloads. ATCo workloads should be balanced in order to avoid high
workloads for some, and low workloads for other, ATCs. This is achieved using the standard
deviation of the work periods in the different solution matrix rows.

For the mathematical notation and the normalization process of the above objectives and
sub-objectives, see [10].

We then transform the original multi-objective optimization problem into a single weighted
optimization problem, whose weights, w;, are derived using the rank-order centroid (ROC) method [15].
This single weighted optimization accounts for the ordinal information provided by CRIDA experts.

Finally, note that, in the four neighborhood definitions, condition (b) “The first ATCo must be
located in the solution matrix in a row that is higher up than for the second ATCo” is not considered in
the Phase 3 search process. Moreover, numerical experiments prove that the 2-1-3-4 neighborhood order
provides better solutions. Note also that the infeasible solutions generated using the corresponding
neighborhood definition in the Phase 3 local searches are not stored in the list.

4. Results: VNS and SA Performance Analysis

In this section, we illustrate the proposed methodology and compare the performance of VNS
against SA in Phases 2 and 3 on the basis of four representative and complex instances of the problem
corresponding to different airspace sectorings selected by CRIDA experts.

4.1. Illustrative Instances

Instance 1. Morning shift in Barcelona control center (10 different open sectors). Figure 9 shows
the airspace sectoring of the Barcelona control center. It consists of a morning shift covering from 5:20
to 13:00 with 10 different open sectors:

e 3 open sectors (LECBLEGL, LECBLGU, LECBPPI) from 5:20 to 6:00,

e 4 open sectors (LECBLEGL, LECBLGU, LECBP1I, LECBPP2) from 6:00 to 7:40,

e  5open sectors (LECBP1I, LECBPP2, LECBLVL, LECBLVS, LECBLVU) from 7:40 to 8:40,

e 6 open sectors (LECBPP2, LECBLVL, LECBLVS, LECBLVU, LECBP1L, LECBP1U) from 8:40 to
12:00, and

e 5 (LECBP1I LECBPP2, LECBLVL, LECBLVS, LECBLVU) from 12:00 to 13:00. All the sectors and
controllers involved belong to the western route core. The number of available controllers is 16,
and their accreditation type is CON.
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LECBLGL |
LECBLGU |

Corel

520 620 T20 820 920 1020 1120 1220 1300

Figure 9. Sectorization of instance 1.

The problem posed by this instance is the percentage resting time constraint, where all ATCos
must rest for 25% of the shift. If 16 ATCos cover 6 sectors (two templates of 3 sectors with 8 ATCos,
which is optimized), the ATCos must work exactly 75% of the time. This implies that the work
distribution slack is zero, and the working time for all ATCos is exactly equal, whereas all other
constraints are met.

Instance 2. Morning shift in Barcelona control center (11 open sectors). Figure 10 shows the airspace
sectoring of the Madrid control center. It consists of a morning shift, which covers from 5:20 to 13:00
with 11 open sectors: 3 open sectors from 5:20 to 8:40, 4 open sectors from 5:40 to 6:40, 6 open sectors
from 6:40 to 7:20, 5 open sectors from 7:20 to 10:00, 5 open sectors from 10:00 to 11:00, and from 11:00
to 13:00. All the sectors and ATCos involved belong to the eastern route core. There are 15 available
ATCos, whom are CON accredited.

[ LECBCCC LECBCCC

COrel LecBecL |
LECcBCCU |

LECBMNU | | LECBMNU
LECBMUS

620 20 720 a20 220 10:20 1120 1220 13.00

Figure 10. Sectorization of instance 2.

The problem posed by this instance is sector opening and closing. We must also cover 6 sectors
opened for 40 min with only 15 controllers. Note that an additional ATCo would be necessary if these
sectors were to remain open for longer.

Instance 3. Morning shift in Barcelona control center (9 open sectors). Figure 11 shows the airspace
sectoring of the Barcelona control center for a morning shift, covering from 6:20 to 14:00 with 9 sectors
open: 2 open sectors from 6:20 to 8:20, 4 sectors open from 8:20 to 10:20, 5 sectors open from 10:20 to
12:20, and 4, from 12:20 to 14:00. All the sectors and ATCos involved belong to the eastern route core.
There are 14 available ATCos, all whom hold CON accreditation.

LECBPPI
LECBP
LECBPP2
LECBLGL [ [ LECBAGL
LECRLVU |
) a0 820 520 10:20 120 1220 1320 14:00

Figure 11. Sectorization of instance 3.

It is a relatively simple example, but there are quite a few changes of sectors that complicate the
fulfillment of all constraints.
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Instance 4. Afternoon shift in Barcelona control center (6 open sectors). Figure 12 shows the airspace
sectoring of the Barcelona control center for an afternoon shift, covering from 14:00 to 21:20. There are
6 open sectors in the Barcelona western route core: 4 sectors open from 14:00 to 19:20, and 2 sectors
open from 19:20 to 21:20; and 9 sectors open in the Barcelona eastern route core: 5 sectors open from
14:00 to 19:20, 4 sectors open from 19:20 to 21:00, and 2 sectors open from 21:00 to 21:20. The number
of available ATCos is 28, whose accreditation type is CON, 14 belonging to the eastern and 14 to the
western core.

—
LECHMNI
LECBVNI
LECBEVN
LECEMVS
LECBLVS
LECHRLI
LECHPP2
[ LECBLGL
| LECBLGL
[ |
14000 1500 1600 1700 1800 1900 1920 2000 2100 2

Figure 12. Sectorization of instance 4.

The main problem posed by this instance is its size. A large number of ATCos are needed to cover
all sectors. In addition, there is a progressive closure of sectors, where ATCos are highly unlikely to
comply with the minimum consecutive work constraint, among others.

Figures 13-15 illustrate an initial solution of this last instance, the corresponding feasible solution
and the optimal solution reached using VNS in Phases 2 and 3, respectively. Looking at Figure 13,
we find that optimized templates are used where three ATCos cover a sector for 96 time slots and the
number of necessary ATCos (43) is greater than the number that are actually available ATCos (28).
Figure 14 shows the feasible solution derived from Phase 2 using VNS. Now the number of ATCos
matches 28, and all labor conditions are met. Finally, Figure 15 shows the optimal solution derived
in Phase 3 using VNS. If we compare the initial feasible and the optimal solutions, it is clear that the
structure of the optimal solution is like the previous template-based solution, where work and rest
periods are more concentrated.
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Figure 13. An initial solution in instance 4.
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Figure 14. A feasible solution in instance 4.
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Figure 15. Optimal solution in instance 4.

Table 1 shows three out of the four original objectives, optimizing the ATCo work and rest
periods and positions, the number of control center changes (rest periods), and the distribution of the
ATCo workload.

Table 1. Objective functions in the initial and optimal solution in Instance 4.

ATCo Work and Rest Periods and Positions Objective 3 ATCo Workloads
Sub-Object. 1 Sub-Object. 2 Sub-Object. 3  Rest Periods o min  max

Initial  27.9,44.9,71.7% 24.4,24.4,38.3% 81.3,85.4,86.4% 122 87.3 17 293.5
VNS  9.37,11.45,23.95% 10.12,12.65,14.55% 95,98, 100% 160 58.13 115 330

The first column (sub-object. 1) shows the percentage of cases with a difference less than or equal
to 10, 15 and 25 min, respectively, with respect to the goal of 45 min. The second column (sub-object. 2)
shows the percentage of cases with a difference less than or equal to 15, 20 and 25 min, respectively,
with respect to the goal of 90 min. The third column (sub-object. 1) shows the ATCo percentages whose
differences are lower than or equal to 5%, 10% and 15%, respectively. The fourth column shows the
number of rest periods, and, finally, the fifth column (ATCo workloads) lists the standard deviation,
and the minimum and the maximum value of the ATCo workloads.

As expected, the optimal solution outperforms the initial one for all the objectives
under consideration.

4.2. Computational Improvements

All the constraints with respect to the ATCo labor conditions must be checked to verify the
feasibility of the analyzed solutions in the different iterations of the VNS execution. In Phase 2, this
constraint verification is associated with the fitness function, since this phase is aimed at reaching a
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feasible solution, whereas the Phase 3 search process is carried out within the feasible region, on which
ground we have to check the feasibility of the visited solutions.

Verifying constraints is very time consuming. Therefore, we have carried out a comparative
analysis to check if this process is faster using regular expressions, which, apart from structuring the
constraint modularly could lead to better computation times than implementing such constraints in
the code.

Figure 16 shows the mean execution times throughout the iterations in the proposed VNS
adaptation using both regular expressions and the code implementation for Instance 4. Contrary
to what we had initially thought, the code implementation outperforms the use of regular expressions
for higher numbers of iterations. This is due to the complexity of some of the constraints to be checked,
requiring lot more than one number of regular expression.

Comparative between RegEx and Code Comparative between different different degrees of parallelization

—= -Sequential —= -Parallel 1 ——Parallel 2 — -Parallel 4 -~ Parallel 8 -+ Parallel 12
-e-Regex ——Code

Minutes
Minutes

1000 5000 10000 50000 75000 100000 200000 500000 4000 5000 1pooa 50000 100000 450000

Iterations Iterations

Figure 16. Computation improvements.

Additionally, the parallelization of the constraint verification process could improve computation
times. Figure 16 shows the different execution times with and without different degrees of
parallelization (up to 12 simultaneous threads), again for Instance 4. As expected, parallelization offers
faster speeds with respect to sequential execution. We find that there are significant improvements as
the number of threads increases, up to four threads.

These results are logical taking into account the computer that we used, which had a quad-core
processor. Therefore, it works better when the number of threads used in the execution is also four.
When more than four threads are used, they all share the CPU time and sometimes have to wait in
a queue to be processed. These CPU inputs and outputs are time consuming and make the process
less efficient. However, a CPU with a higher number of cores would take better advantage of more
parallelized threads.

Similar results were output for the other three instances.

5. Discussion

In this section, we compare the performance of VNS against the multi-start SA used by [10] for
the four complex instances under consideration, taking into account both the quality of the solution
reached by means of the fitness function and the four original objectives and execution times.

Each instance was executed 10 times using a Intel(R) Xeon(R) E3-1240 PC with 3.50 GHz and
16 GB of RAM, running Windows 10.

Table 2 shows the minimum, mean and maximum values of the fitness function in the optimal
solutions achieved by the VNS and SA. The mean values for SA are clearly higher than for VNS in
all four instances under consideration. We can thus conclude that SA slightly outperforms VNS with
respect to the quality of the solutions reached.
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Table 2. Optimal fitness values in Phase 3 for SA and VNS.

SA VNS
Min Mean Max Min Mean Max
Inst. 1 0.8637 0.8689 0.875 0.853 0.857 0.863
Inst. 2 0.8714 0.8742 0.8769 0.845 0.853 0.858
Inst. 3 0.8915 0.8946 0.8968 0.876 0.887  0.896
Inst. 4 0.8527 0.8604 0.867 0.854 0.855 0.856

150f18

Let us analyze in depth the optimal solutions derived by both metaheuristics in the four instances

under consideration.

Tables 3—6 show the values of the initial solution and solutions reached by VNS and SA for the
four instances under consideration, respectively, in terms of the four original objectives, optimizing
the ATCo work and rest periods and positions, the similarity to the previous template-based solution,
the number of control center changes (rest periods), and the distribution of the ATCo workload.

Note that Tables 3-6 provide mean values, and the respective best values for each column are

highlighted in bold.

Table 3. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 1.

ATC Work and Rest Periods and Positions Ob;j. 2 Obj. 3 ATCo Workloads
Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods o Min Max
Initial 26.7,41.2,70.8 18.2,20.9,30.8 87.3,94.2,945 819 51.2 67.1 35 292.5
SA 35.6,35.6,85.6  31.4,66.6,66.6 100,100,100 71.77 51 2045 255 325
VNS  47.9,52,86.7 25.9,61.1,61.1 100,100,100 68.7 54 254 240 330

Table 4. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 2.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads
Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods o Min Max
Initial 24.3,38,62.5 16.4,17.1,254  61.9,66.7,67.3  75.6 59.3 116.6 15 319.5
SA 65.2,65.2,80 38.3,38.3,38.3 100,100,100 74.88 46 185 280 340
VNS 50,63.1,86.8 30.9,41.8,45.4 100,100,100 71 54 16.3 275 330

Table 5. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 3.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads
Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods o Min Max
Initial 25.3,38.1,67.6 16.5,19.2,252  85.1,904,94.1 84.7 43.5 60.8 70 238.5
SA 75,75,88.1 30.1,30.1,30.1 100,100,100 80.55 38 349 220 320
VNS 54.6,63.9,91.8 32.4,40,47.5 100,100,100 79.6 42 21.2 210 280

Table 6. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 4.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads
Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods o Min Max
Initial 27.9,44.9,71.7 244,244,383 81.3,854,86.4 67.6 122 873 17 293.5
SA 56.6,56.6,76.6  40,40,40 100,100,100 73.05 77 32 200 320
VNS  64.7,74.6,90 41.2,53.9,58.8 84,88.7,88.7 68.6 193 19.2 2125 290

Looking at sub-object. 1, we find that VNS outperforms SA for 8 out the 12 mean values shown in
Tables 3-6; whereas SA is better than VS for sub-object. 2 in the first instance but not for instances 3

and 4.
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As expected, the initial solution outperforms the solutions reached by SA and VNS in terms of
similarity to previous template-based solution. However, SA outperforms VNS with respect to this
objective in all four instances under consideration.

Regarding the number of rest periods, SA outperforms VNS for all four instances under
consideration. For all four instances, the number of rest periods in VNS is [10.67, 17]% higher than
for SA.

Finally, looking at the standard deviation representing the ATCo workload dispersion, we find
that SA outperforms VNS for the first instance, whereas VNS is better for Instances 2, 3 and 4. In all
four cases, the ATCo workload dispersions were very similar in both metaheuristics.

These tables were shown to CRIDA experts, who analyzed the quality of the solutions reached by
VNS and SA for the four complex instances. They concluded that, although the solutions derived by
SA slightly outperform those reached using VNS in terms of the fitness function, the quality of both
solutions were very similar four the four instances under consideration and that the key factor was
then the time it took to reach that solutions, i.e., the computation times.

Tables 7 and 8 show the minimum, mean and maximum computation times (in minutes) in Phases
2 and 3, respectively, for the original multi-start SA proposed by [10], an improved non multi-start SA
using a constraint implementation in the code rather than regular expressions and with parallelization
(4 threads), and the proposed adaptation of VNS (also using a constraint implementation in the code
and with parallelization). The metaheuristic with the lowest computation time is highlighted in bold.

Table 7. Computation times (in minutes) in Phase 2.

Original SA Improved SA VNS
Min Mean Max Min Mean Max Min Mean Max

Instance1 20621 254.71 33324 5.79 6.02 6.25 8.73 9.26 10.15
Instance2 20734 24959 308.14 1634 1764 1976 4.28 7.14 11.29
Instance 3 111.7 12896 157.88 3.64 6.75 1292 411 4.65 5.50
Instance4 394.69 507.25 619.82 48.88 49.53 5048 100.71 111.85 122.18

Table 8. Computation times (in minutes) in Phase 3.

Original SA Improved SA VNS
Min Mean Max Min Mean Max Min Mean Max

Instance1 177.59 21476 26247 4052 54.04  68.54 2148 3112  43.84
Instance2 79.87  95.19 12237  27.52 36.89 5047  28.55 30.68 33.08-
Instance 3 103.19 13924 21034 2467  25.33 26.46 16.01 19.75  24.68
Instance4 802.16 95825 1114.35 177.25 247.87 360.72 431.15 479.66 507.79

The first thing that we found is that the computation times for the improved SA are much lower
than for the original SA in both phases and for the four instances under consideration, as was expected.
Besides, computation times for Phase 3 are quite a lot higher than in Phase 2, accounting for the biggest
share of the accumulated computation times shown in Table 9.

Table 9. Mean accumulated computation times (in minutes).

Original SA Improved SA VNS

Instance 1  469.49 60.09 40.38
Instance 2 344.79 54.54 37.81
Instance 3  268.21 32.1 24.40
Instance4  1465.52 297.43 591.52

If we focus on Phase 2, VNS and SA outperform each other in two out of the four instances.
However, although the mean computation times for Instances 1 and 3 are similar, VNS clearly
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outperforms SA in Instance 2, whereas the opposite applies for Instance 4 (SA is more than 70 min
faster than VNS). Note that Instance 4 involves a larger number of open sectors and required ATCos.

In Phase 3, VNS clearly outperforms SA in instance 1 but it is only slightly better for Instances 2
and 3. In Instance 4, SA clearly outperforms VNS with a difference of close to 200 min in the mean
computation times.

Looking at the mean accumulated computation times in Table 9, we find that VNS clearly
outperforms SA in Instances 1 and 2, they are similar for Instance 3, but SA is quite a lot better
in Instance 4.

We have analyzed other sectorizations provided by CRIDA in order to verify whether or not the
performance of VNS is sensitive to the instance dimension, as in the case of Instance 4, and we have
confirmed this hypothesis: the improved SA outperforms VNS when the dimensionality (number
of open sectors and required ATCos) is high in all cases, whereas VNS is clearly better in any other
situation with a low and medium number of dimensions.

Note that although the mean computation time accumulated in Instance 4 is about 5 h (297.43 min)
with the improved SA, which could be considered a high computation time, the complexity of this
instance is the highest (9 simultaneously open sectors and 28 ATCos) that could materialize in Spanish
airports. Consequently, the maximum computation time of this instance, 50.58 min + 360.72 min
=~ 7 h could be considered, as an upper bound for the computation times. In most cases, solutions are
reached in the less than an hour.

Taking into account that the pre-tactical phase takes place one to six days before the day of
operations, the CRIDA experts considered this a good upper bound for computation times.

6. Conclusions

We have proposed a new methodology based on an adaptation of VNS for solving the ATCo
work-shift scheduling problem. This problem involves covering a given airspace sectoring with
a certain number of ATCos while satisfying a set of ATCo labor conditions according to Spanish
regulations. The problem takes into account four objectives: ATCo work and rest periods and position
should be as close as possible to fixed values, the solution structure should be similar to the previous
template-based solution, the number of control center changes should be minimized, and the ATCo
workload distribution should be balanced.

A comparative analysis proves that the constraint verification in search processes is faster
with the implementation in the code of such constraints than using regular expressions. Besides,
the parallelization of the constraint verification process has also been analyzed in terms of
computation times.

Finally, the proposed methodology has been applied to four real complex scenarios selected by
Spanish air navigation experts for the purposes of both methodology illustration and performance
comparison against two versions of simulated annealing (SA).

Although the SA-derived solutions slightly outperform VNS solutions in terms of the fitness
function, air navigation experts regard the quality of both solutions as very similar, where the key
factor then is the time it takes to reach that solutions (computation times). VNS clearly outperforms
SA in terms of computation times when the instance dimension (number of open sectors and ATCos
required) is low or medium, but the improved version of SA is better for high dimensional instances.

Finally, although the CRIDA experts considered than the computation times for the most complex
instances, such as instance 4, were good enough for the pre-tactical phase, which takes place one to six
days before the day of operations, we propose as a future research line a further analysis to reduce
these computation times together with the comparison of the considered metaheuristics with other in
the literature.
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