. mathematics ﬁw\o\w

Article

On the Efficacy of Ensemble of Constraint Handling
Techniques in Self-Adaptive Differential Evolution

Hassan Javed ¥, Muhammad Asif Jan »**(©, Nasser Tairan ', Wali Khan Mashwani 1@,
Rashida Adeeb Khanum *f, Muhammad Sulaiman **{, Hidayat Ullah Khan > and
Habib Shah >*

Institute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, Pakistan
College of Computer Science, King Khalid University, Abha 61321, Saudi Arabia

Jinnah College for Women, University of Peshawar, Peshawar 25000, Pakistan

Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan

Department of Economics, Abbottabad University of Science & Technology, Abbottabad 22010, Pakistan
Correspondence: majan.math@gmail.com or majan@kust.edu.pk

G = W N =

*

1t These authors contributed equally to this work.

check for
Received: 9 June 2019; Accepted: 10 July 2019; Published: 17 July 2019 updates

Abstract: Self-adaptive variants of evolutionary algorithms (EAs) tune their parameters on the go
by learning from the search history. Adaptive differential evolution with optional external archive
(JADE) and self-adaptive differential evolution (SaDE) are two well-known self-adaptive versions
of differential evolution (DE). They are both unconstrained search and optimization algorithms.
However, if some constraint handling techniques (CHTs) are incorporated in their frameworks,
then they can be used to solve constrained optimization problems (COPs). In an early work,
an ensemble of constraint handling techniques (ECHT) is probabilistically hybridized with the
basic version of DE. The ECHT consists of four different CHTs: superiority of feasible solutions,
self-adaptive penalty, e-constraint handling technique and stochastic ranking. This paper employs
ECHT in the selection schemes, where offspring competes with their parents for survival to the
next generation, of JADE and SaDE. As a result, JADE-ECHT and SaDE-ECHT are developed,
which are the constrained variants of JADE and SaDE. Both algorithms are tested on 24 COPs and
the experimental results are collected and compared according to algorithms’ evaluation criteria
of CEC’06. Their comparison, in terms of feasibility rate (FR) and success rate (SR), shows that
SaDE-ECHT surpasses JADE-ECHT in terms of FR, while JADE-ECHT outperforms SaDE-ECHT in
terms of SR.

Keywords: evolutionary algorithms; formal methods in evolutionary algorithms, differential
evolution, self-adaptive differential evolutionary algorithms; metaheuristics; mutation strategies;
parameters’ adaptation; constrained optimization; ensemble of constraint handling techniques; and
hybrid algorithms

1. Introduction

Evolutionary algorithms (EAs) are nature inspired population-based stochastic search and
optimization methods. EAs work on the principle of natural evolution. In EAs, selected population
members based on a fitness/selection scheme, the so called parents, undergo perturbation by applying
genetic operators, mutation and crossover, to produce offspring. A selection scheme is then adopted
to select the fittest individuals with a certain probability among the parents and offspring for the
next generation. Many EAs, such as genetic algorithms (GAs), differential evolution (DE), particle
swarm optimization (PSO), firefly algorithm (FA), bee algorithm (BA), ant colony optimization (ACO),

Mathematics 2019, 7, 635; d0i:10.3390/math7070635 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2733-5439
https://orcid.org/0000-0002-3957-0508
https://orcid.org/0000-0002-5081-741X
https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0003-2078-6285
http://dx.doi.org/10.3390/math7070635
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/7/635?type=check_update&version=2

Mathematics 2019, 7, 635 2 of 19

evolution strategy (ES) etc. have been designed using different genetic operators and selection schemes
for the unconstrained optimization problems since 1959.

Differential evolution (DE) [1] has proven to be a simple and efficient EA for many
optimization problems. A number of variants of DE were developed and are in practice for
unconstrained /constrained optimization [2-9]. In DE, a random initial population of size NP is
generated in the whole search space to a possible extent and the fittest/best with minimum function
value in the initial population is found. It then invokes one of the different mutation strategies such as
DE/rand/1, DE/current to best/2, DE/rand/2, DE/current-to-rand /1 to generate a mutant vector.
For example in DE/rand/1, the weighted difference scaled by a scaling factor F € [0, 2] between two
population vectors is added to a target vector to generate a mutant vector. Afterwards, the parameters
of mutant vector and target vector are mixed with a certain crossover probability C, € [0, 1] to produce
the trial vector. Using the one-to-one-spawning selection mechanism, if the objective function value
of the trial vector is less than the objective function value of the target vector, in minimization sense,
then the trial vector replaces the target vector and becomes the parent for the next generation. The three
steps of producing the mutant vector, the trail vector and comparison of the target and trial vectors
are repeated until a stopping criterion is met. Also, the fittest/best individual is updated after every
generation by comparing the function values of the trial vector, if it is successful in selection process,
and fittest/best individual found so far. For more details of DE and different mutation strategies used
in it, the readers are referred to [10,11].

The performance of the original DE algorithm is highly dependent on the mutation strategies and
its parameters’ settings [11-14]. During different evolution stages, different strategies and different
parameters’ settings with different global and local search capabilities might be preferred. Huang et al.
developed a self-adaptive DE variant, SaDE [10]. SaDE automatically adapts the learning strategies
and the parameters’ settings during evolution. It probabilistically selects one of the four mutation
strategies: DE/rand /1, DE/current to best/2, DE/rand /2, DE/current-to-rand /1 for each individual
in the current population. J. Zhang and A. C. Sanderson developed another self-adaptive DE version,
self-adaptive differential evolution with optional external archive (JADE) [15]. JADE too automates
the parameters and employs the mutation strategy DE/current-to-pbest with the optional external
archive. The strategy DE/current-to-pbest uses not only the information of the best solution, but also
the information on the other good solutions. The external archive keeps record of the inferior solutions,
which are then used for diversity among population members and avoiding premature convergence.

For recent advances in DE, the readers are referred to [16,17]. EAs suit a variety of applications
in the fields of engineering and science [18-24]. Generally, EAs outperform traditional optimization
algorithms for problems which are not continuous, non-differentiable, multi-modal, noisy and not
well-defined. However, EAs are unconstrained optimization techniques. They are not capable to
directly solve COPs having constraints of any kind (e.g., equality, inequality, linear and non-linear etc.).
To overcome this problem, CHTs are used with EAs to handle all types of constraints. The last three
decades have witnessed many techniques for handling constraints by EAs [20,25]. Michalewicz and
Schoenauer [26] categorized them into five classes: preserving feasibility of solutions, adopting penalty
functions, separating feasible solutions from infeasible ones, decoding, and hybridizing different
techniques. However, according to no free lunch theorem (NFL) [27], a single CHT can not outperform
all other CHTs on each problem. Same is true for different EAs as well. Thus, one has to try and
combine different CHTs and EAs to design a suitable algorithm that can solve most of the problems.
So keeping in mind the NFL theorem and some other individual problems of COPs, an ensemble of
constraint handling techniques (ECHT) is combined with the basic version of DE in [28,29]. ECHT
consists of four different CHTs: superiority of feasible solutions, self-adaptive penalty, e-constraint
handling technique and stochastic ranking. SaDE and JADE, being advanced self-adaptive variants,
are both unconstrained search and optimization algorithms. Like other EAs, they also need some
additional CHTs to solve constrained optimization problems (COPs).

Mathematics 2019, 7, 635 30f 19

In this work, the ECHT is implemented in the selection scheme, where offspring and parents
compete for survival to next generation, of JADE and SaDE. As a result, constrained versions of JADE
and SaDE, denoted by JADE-ECHT and SaDE-ECHT, are developed. The performance of JADE-ECHT
and SaDE-ECHT is tested and compared based on feasibility rate (FR) and success rate (SR) on 24 COPs
according to algorithms’ evaluation criteria of CEC’06.

This rest of this paper is ordered as follows. The general COP and ECHT are detailed in Section 2.
Section 3 presents the proposed modified algorithms, JADE-ECHT and SaDE-ECHT. Section 4 presents
and discusses the experimental results obtained with JADE-ECHT and SaDE-ECHT. Finally, Section 5
describes the concluding remarks of this work.

2. Constrained Optimization Problem and ECHT

This section first describes the constrained optimization problem to be considered in this work.
It then illustrates the four CHTs of ECHT.

2.1. Constrained Optimization Problem (COP)

Time, physical, and geometric etc. type constraints exist in most of the real world optimization
problems. Such problems can be modelled as a COP. Mathematically, a COP, in case of minimization,
can be formulated as follows [30]:

Minimizef (x), x = [x1,%2, ..., Xu]"
subject to
gi(x) <0 i=1...] @

h](x):()]:l+1,/P1
li Sxi S ui,i:1,2,...,n..

In problem (1), f(x) is called cost function which will be minimized. In case of maximizing the
cost function, it needs to be multiplied with a negative sign. The n-dimensional vector x is called
decision variable vector. There are [inequality and p — I equality constraints. An inequality constraint
g;j(x) becomes an active constraint, if g;j(x*) = 0, where x* is global optimum solution, whereas
equality constraints, ;(x) = 0, are active by default. Generally, equality constraints are converted into
inequality constraints by |h;(x)| — € < 0, where € is an acceptable tolerance for equality constraints.
According to CEC’06 [30] evaluation criteria, € is set to 0.0001 (in this work, we will also use the same
value for €). [; and u; are the lower and upper bounds of component x; of vector x. They form the
whole search space S. The solution x € S is referred to be feasible, if it satisfies all the equality and
inequality constraints of problem (1); otherwise, it is called infeasible. We denote with F the set of
all feasible solutions and normally F C S. The total constraints’ violation for an infeasible solution is
defined as [28,29]:

_ 25;1 Ci (g;(x))

v(x) 25;1 .

, 2

where

) = { mer(g (0,0}, =11 N

1' max{|hj(x)| —€,0}, j=1+1,...,p. °

where ¢;(= 1/g},qx,) denotes weight parameter, g},,,, denotes the maximum constraint violation of
constraint g;(x),i = 1,...,1 obtained thus far. It maybe noted that ¢; changes during the evolution
process. This helps in balancing how each constraint contributes in the problem irrespective of their
different numerical ranges. The four constraints handling techniques which are used in this work are
detailed as follows.

Mathematics 2019, 7, 635 4 0f 19

2.2. Superiority of Feasible Solutions (SF)

As the name suggests, in SF feasible solutions have priority over infeasible solutions. SF was first
suggested by Deb [31]. In this method, two solutions, a parent x' and an offspring x compete. The
parent x' is considered better than the offspring x/, if any of the subsequent three settings is met [31]:

e Darent, X' is feasible and offspring, X/ is infeasible.
Both parent and offspring, x’ and x/ are feasible, but parent, x' has minimum fitness value than
the offspring, xf . ‘ '

e Both x’ and x/ are infeasible, and overall constraints’ violation v(x') of parent, x' is less than
overall constraints’ violation v(x/) of offspring, x/, where v(x') and v(x/) are calculated by using
Equation (2).

2.3. Self-Adaptive Penalty (SP)

Penalty methods are the most common approaches to handle constraints in the family of CHTs.
In these techniques, in order to penalize an infeasible solution, the cost value of each infeasible
solution and a penalty term corresponding to its constraints’ violation are added, in minimization
sense (subtracted in maximization sense). In SP [28], an attempt has been made to facilitate the
algorithm to search for feasible solutions, in case there are few feasible solutions, and find the optimum,
in case there are enough feasible solutions. For this purpose, two penalties are added to the cost of
an infeasible solution. This help in identifying the best infeasible solutions in the existing population.
The amount of the added penalties considers the number of feasible solutions that exist in the current
population. Thus, if there are few feasible solutions in the combined population of parents and
offspring, the amount of penalty to infeasible individuals with higher constraints’ violation will be
greater. On the contrary, with many feasible solutions, the fittest infeasible solutions in terms of cost
are less penalized.

2.4. The e-Constraint (EC) Handling Technique

The e-constraint (EC) handling technique [32] adopts the parameter ¢ to relax the active constraints.
The parameter ¢ is updated until a fixed generation counter is reached. Afterwards, € becomes 0 to get
individuals with no constraints’ violation (for detailed formulation of this technique, please see [28,32]).

2.5. Stochastic Ranking (SR)

SR [33] stochastically balances overall constraints’ violation and fitness function value. A solution
is ranked based on its cost value, if it is feasible or if a randomly generated number is smaller than
a probability factor py; otherwise, it is ranked on the constraints’ violation. The proposed value of
ps = 0.475. However, if this constant value is not used, then it decreases linearly from p; = 0.475 to
ps = 0.025 from initial generation to the last generation.

In [28], the ECHT is tested with evolutionary programming (EP) and basic DE. In this paper, we
hybridize ECHT with the advanced versions of DE, JADE [15] and SaDE [10]

3. JADE-ECHT and SaDE-ECHT

In this section, we first give the algorithmic details of JADE-ECHT, which is then followed by the
details of SaDE-ECHT.

3.1. JADE-ECHT

JADE [15] is an updated version of DE. It is also an unconstrained optimization algorithm. So it
needs some additional CHTs to solve COPs. In this work, we embed the four above discussed CHTs in
the selection scheme of JADE to modify it for solving COPs. The whole procedure of the proposed
technique JADE-ECHT, shown in Figure 1, is discussed as follows.

Mathematics 2019, 7, 635 50f 19

Initialize population and param-
eters of JADE and four CHTs

I}

Divide population into four subgroups of same
size and evaluate solutions in each subgroup

‘

Apply JADE mutation and crossover op-
crators on each parent subgroup to gen-
erate its corresponding offspring sub-
group; Evaluate each offspring subgroup

Combine cach parent subgroup
with four offspring subgroups

Parents for the next generation are selected from
the four groups according to each CHT. Add
unsuccessful parents to Archive and update sets
of successful mutation factors and crossovers

Remove solutions randomly fromArchive
to keep its size equal to population size

Go back

{ Output Optimal Solutio }

Figure 1. Flowchart of self-adaptive differential evolution with optional external archive (JADE)-ensemble
of constraint handling techniques (ECHT).

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

generate initial population P, set the generation number t = 1, initial crossover probability
ucr = 0.5, initial mutation factor yr = 0.5, the set of archive inferior solutions A; = @, the
sets of successful mutation factors and crossovers, Sﬁ'_- =@, SER = O, respectively, where
i=1,...,4

divide population P into four subpopulations, P;,i = 1,...,4 each of size PS (population size
to be tackled by each CHT). Set parameters PAR;, i = 1,...,4 of PS individuals each with
dimension D according to the rules of JADE and corresponding CHT. Also, calculate F/ and
CRj, Y1 e {1,...,PS}, where CR} = randn; (ucg,0.1), F| = randn; (icg,0.1).

compute the cost and the total constraints’ violation for every solution in each subpopulation
using Equations (1)—(3).

each parent subpopulation (P;,i = 1,...,4) generates offspring subpopulation (OFF;,i =
1,...,4) as a result of applying mutation and crossover operators, respectively as follows [15]:

),

where X pest ¢ is one of the 100P% best vectors. and i; ; #* xil ; # x§ ; are chosen randomly
2/ 1/ !

i i i i Poni
Vi =X+ F-(Xppest — X1) + F -(X,{/t — Xy

from the existing population, P and from the union of current population and archived
population, P U A. The archive A retains the parent individuals that are unsuccessful in the
selection scheme.

v;',t’ if (randj [0’” < McRr Or (] = jrand)
xf 4 otherwise .

)

i
Uy =

In Equation (4), U?,t and xf/t are the /th components of the ith mutant and trial vectors in
generation £.

evaluate the cost and the total constraints’ violation for every offspring in each subpopulation
using Equations (1)—(3). Every offspring holds the cost and constraints values distinctly.

Mathematics 2019, 7, 635 6 of 19

Step 6:

Step 7:

Step 8:

Step 9:

each parent subpopulation is grouped together with its own offspring and the offspring
produced by the remaining three subpopulations corresponding to different CHTs. This way
four different groups of populations are generated.

Parents population P for the next generation is selected from the four groups according to the
rule of each CHT. Unsuccessful parents are added to the archive A;. All successful crossover
probabilities from CR%S and mutation factors from PI@S are added to S-p and SE.

Remove solutions randomly from A; so that |A;| < PS. Update pcg and pr adopting the
formulations of [28].

If the stopping criteria are not met, go to Step 2; otherwise, stop.

3.2. SaDE-ECHT

SaDE [10] is also an unconstrained optimization algorithm. Like JADE and other EAs, it also
needs some additional mechanisms to solve COPs. In this work, the four CHTs of ECHT are used in
the selection scheme of SaDE for solving COPs. The whole procedure of proposed SaDE-ECHT, shown

in Figure 2, is as follow:

Step 1:

Step 2:

Step 3:

Step 4:

Initialize population and param-
cters of SADE and four CHTs

Divide population into four subgroups of same
size and evaluate solutions in each subgroup

Apply SADE four mutation strategies
with adaptively adjusted probabilities and
crossover operator on each parent subgroup
to generate its corresponding offspring sub-

group; Evaluate each offspring subgroup

|

Combine each parent subgroup
with four offspring subgroups

|

Parents for the next generation are selected
from the four groups according to each CHT

Go back

{ Output Optimal Solution }

Figure 2. Flowchart of JADE-ECHT.

generate initial population P, initiate the generation counter ¢ = 1, initial crossover probability
ucr = 0.5, initial mutation factor yr = 0.5.

divide population P into four subpopulations, P;,i =1, ...,4 each of size PS. Set parameters
PAR;, where i = 1,...,4 of PS individuals each with dimension D and generate F in
[0,2] and CR in (0,1) by using normal distribution according to the rules of SaDE and
corresponding CHT.

compute the cost and the total constraints’ violation for every solution in each subpopulation
using Equations (1)—(3).

each parent in each subpopulation produces offspring by using one of the four mutation
strategies, DE/rand /1, DE/current-to-best/2, DE/rand/2, and DE/current-to-rand/1 (for
details of these strategies, please see [10]) and crossover given in Equation (4). For first
20 generations, probabilities are fixed and set to p; = p2 = p3 = pa = 0.25. Afterwards,
the Roulette Wheel selection is adopted to update the respective probability p; as follows [10]:

ns;

= —,i=1,2,3,4 5
ns; +nf; ©®)

pi

Mathematics 2019, 7, 635 7 of 19

Step 5: evaluate the cost and the total constraints’ violation for every offspring in each subpopulation
using Equations (1)—(3).

Step 6: each parent subpopulation is grouped together with its own offspring and the offspring
produced by the remaining three subpopulations corresponding to different CHTs. This way
four different groups of populations are generated.

Step 7: parents population P for the next generation are selected from the four groups according to
the rule of each CHT.

Step 8: recalculate crossover probability after every five generations according to the mean of
recorded CR values.

Step 9: if the stopping criteria are not met, go to Step 2; otherwise, stop.

4. Experimental Results

The performances of JADE-ECHT and SaDE-ECHT were evaluated on the suit of CEC’06, which
contains twenty four benchmark functions. The PC configuration and parameters’ settings are given
in Tables 1 and 2.

Table 1. Configuration of the PC.

System Windows 8
CPU 3.00 GHz
Ram 2 GB

Language MATLAB 2012, 8.0.0.783

Table 2. Parameters’ settings.

Parameters’ Description Parameters’ Settings
Population size for each CHT PS =25
Whole population size NP =4xPS =100
Maximum number of generations t = 2500
Total number of runs runs = 25
Initial value of mutation factor urp =05
Initial value of crossover probability ucr = 0.5

Termination criterion based on maximum function evaluations max_FEs = 500,000.

4.1. Result Achieved

In Tables 3-6, a comparison of both algorithms after 5 x 10° FEs is shown. All the obtained
results are gathered according to CEC’06 [30] algorithms’ evaluation criteria for problems g01 to g24.
The criteria include collecting statistics of the best (minimum), worst (maximum), median, mean and
standard deviation of the function error values f(x) — f(x*), where f(x) is the best objective function
value obtained by the algorithm after 5 x 10° FEs and f(x*) is the know objective function value at the
optimal solution. The numbers in parenthesis after the objective function value show the number of
violated constraints, whereas ¢ determines the number of violated constraints at the median solution
with violation greater than 0.1,0.001,0.0001. 7 shows mean violation at median solution, FR is the
feasibility rate which is defined as the number of feasible runs over total runs, and SR is success rate
given by the number of successful runs over total runs. A run is called a feasible run, if the algorithm
attains in max_FEs at least one feasible solution. Likewise, a run is successful, if the algorithm gets a
feasible solution for which the function error value is smaller than 0.0001 in max_FEs.

Table 3 compares the experimental results achieved by JADE-ECHT and SaDE-ECHT for problems
g01-g06. This table shows that SaDE-ECHT achieved better statistics in terms of best, median, mean
and standard deviation values than JADE-ECHT on problems g01 and g03, whereas JADE-ECHT
surpasses SaDE-ECHT on problems g02 and g05 except the best value of g02. It can also be observed
from the same table that both algorithms show comparable performance on problems g04 and g06.

Mathematics 2019, 7, 635 8 of 19

The table also shows that both algorithms have achieved 100% FR on all six problems, as can be
confirmed from the Os in parenthesis after the objective function values, and columns for ¢ and o.
The SR of SaDE-ECHT on problems g01-g03 is higher than JADE-ECHT. JADE-ECHT’s SR is better
than SaDE-ECHT on problem g05, while both algorithms obtained the same SR of 100% on problems
g04 and g06.

Table 3. Comparison of self-adaptive differential evolution with optional external archive
(JADE)-ensemble of constraint handling techniques (ECHT) and self-adaptive differential evolution
(SaDE)-ECHT after FES = 500,000 for g01-g06. The bold numbers indicate the better results.

Prob Algorithm Best Median Worst c 7 Mean Std FR SR
o01 JADE-ECHT 0(0) 0(0) 2.0000(0) 0,0,0 0 0.0800 0.4000 100% 96%
SaDE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
002 JADE-ECHT 0.0001(0) 0.0004(0) 0.0276(0) 0,0,0 0 0.0064 0.0091 100% 16%
SaDE-ECHT 0(0) 0.0110(0) 0.1263(0) 0,0,0 0 0.0191 0.0254 100% 24%
203 JADE-ECHT 0.0250(0) 0.1015(0) 0.4245(0) 0,00 0 0.1385 0.1036 100% 0%
SaDE-ECHT 0(0) 0.0122(0) 0.1524(0) 0,0,0 0 00243 00343 100% 12%
204 JADE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
405 JADE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
SaDE-ECHT 0(0) 91.4773(0) 515.4900(0) 0,0,0 0 110.1546 101.2496 100% 4%
206 JADE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%

Table 4 presents the experimental statistics achieved by JADE-ECHT and SaDE-ECHT for
problems g07-g12. The results of this table show that both algorithms obtained comparable statistics
for problems g08, g11 and g12. This table also shows superior performance of SaDE-ECHT in terms
median, mean and standard deviation values than JADE-ECHT on the problems g07, g09 and g10
except the best values on problems g07 and g10, where JADE-ECHT got better best values. The table
also confirms that both algorithms have achieved 100% FR on all six problems, as can be seen from the
0s in parenthesis after the objective function values, and columns for ¢ and v. The SR of JADE-ECHT
on problems g07 and g10 is higher than SaDE-ECHT. SaDE-ECHT’s SR is better than JADE-ECHT on
problem g09, while both algorithms obtained the same SR of 100% on problems g08, g11 and g12.

Table 5 demonstrates the experimental results achieved by JADE-ECHT and SaDE-ECHT for
problems g13—g18. The results of this table show that both algorithms performed similar on problem
g16. This table also shows superior performance of SaDE-ECHT in terms best, median, mean and
standard deviation values than JADE-ECHT on problems g13 and g18 except the standard deviation of
g13, while JADE-ECHT performed better than SaDE-ECHT on problems g14, g15 and g17 except the
mean and standard deviation values of problem g14, where SaDE-ECHT got better values for the two
quantities. The table also confirms that both algorithms have achieved 100% FR on all six problems,
as can be seen from the 0s in parenthesis after the objective function values, and columns for c and @.
The SR of JADE-ECHT on problems g14, g15, and g17 is higher than SaDE-ECHT. SaDE-ECHT’s SR
is better than JADE-ECHT on problems g13 and g18, while both algorithms obtained the same SR of
100% on problem g16.

Mathematics 2019, 7, 635 9 of 19

Table 4. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g07-g12. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c Mean Std FR SR

g

oy JADEECHT 0(0) 0.0879(0) 0.2651(0) 0,0,0 0 00976 0.0726 100% 4%
g

SaDE-ECHT 0.0001(0) 0.0114(0) 0.3230(0) 0,0,0 0 0.0518 0.0850 100% 0%

208 JADE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
509 JADE-ECHT 0(0) 0.0039(0) 0.0714(0) 0,0,0 0 00132 00192 100% 20%
SaDE-ECHT 0(0) 0(0) 0.0006(0) 0,0,0 0 0.0001 0.0002 100% 76%
£10 JADE-ECHT 0(0) 1339677(0) 343.5425(0) 0,0,0 0 143.0809 1054501 100% 4%
SaDE-ECHT 0.0012(0) 0.1709(0) 11.9004(0) 0,0,0 0 11748 3.0352 100% 0%
o1 JADE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
412 JADE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%

Table 5. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g13—g18. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c 7 Mean Std FR SR
o13 JADE-ECHT 0.3849(0) 0.9118(0) 0.9459(0) 0,00 0 0.8275 0.1750 100% 0%
SaDE-ECHT 0(0) 0.3870(0) 0.8491(0) 0,0,0 0 03608 02828 100% 4%

14 JADE-ECHT 0(0) 0.0174(0) 55402(0) 0,0,0 0 1.9415 22940 100% 40%
SaDE-ECHT 0.4527(0) 1.6397(0) 3.3912(0) 0,00 0 1.7600 0.6956 100% 0%

15 JADE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%
SaDE-ECHT 0(0) 0.0009(0) 2.5449(0) 0,0,0 0 03333 0.6971 100% 44%

416 JADE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0,00 0 0 0 100% 100%

517 JADE-ECHT 0(0) 0(0) 74.0580(0) 0,00 0 88870 245623 100% 88%
SaDE-ECHT 7.9251(0) 91.2351(0) 297.1687(0) 0,0,0 0 929967 50.4589 100% 0%

o18 JADE-ECHT 0(0) 0.0001(0) 0.0206(0) 0,00 0 0.0011 0.0041 100% 52%

SaDE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%

Table 6 presents the experimental results achieved by JADE-ECHT and SaDE-ECHT for problems
g19-g24. The results of this table show that both algorithms performed similar on problem g24. This

Mathematics 2019, 7, 635 10 of 19

table also shows superior performance of JADE-ECHT in terms best, median, mean and standard
deviation values than SaDE-ECHT on problems g19, g20 g21 and g23, except the best value of
problem g20 and standard deviation value of problem g23, while SaDE-ECHT performed better than
JADE-ECHT on problem g22. The table also confirms that both algorithms have achieved 100% FR on
problems g19 and g24, as can be seen from the 0s in parenthesis after the objective function values, and
columns for ¢ and 7. Both algorithms are unsuccessful in solving problems g20 and g20. The FR of
JADE-ECHT on problem g21 is lower than SaDE-ECHT, while the situation is vice versa in case of SR.
The FR and SR of JADE-ECHT on problem g23 is higher than SaDE-ECHT.

Table 6. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g19-g24. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c v Mean Std FR SR
419 JADE-ECHT 0(0) 1.4028(0) 3.6498(0) 0,0,0 0 1.5502 1.0136 100% 12%
SaDE-ECHT 0.3671(0) 1.7022(0) 6.6604(0) 0,0,0 0 2.3120 1.9699 100% 0%
20 JADE-ECHT 3.2029(9) 6.2057(8) 15.4062(12) 1,1,2 1.1209 7.2582 3.5087 0% 0%
SaDE-ECHT 2.4461(11) 14.8045(9) 18.3511(11) 2,4,4 3.1946 13.1617 4.8304 0% 0%
¢21 JADE-ECHT 0(0) 0.0633(0) 263.7866(1) 0,0,0 0 39.1073 63.9006 96% 44%
SaDE-ECHT 0(0) 77.3185(0) 110.2441(0) 0,0,0 0 71.8631 253368 100% 4%
o2 JADE-ECHT 390.4334(4) 10,565.5111(3) 19,715.2233(4) 3,3,3 17,5401.6096 10,557.6213 6162.3243 0% 0%
SaDE-ECHT 292.6511(3) 8834.7836(3) 19,258.8965(3) 3,3,3 90,196.1317 9289.3437 4998.2886 0% 0%
02 JADE-ECHT 0(0) 8.5726(0) 601.1293(0) 0,0,0 0 117.5730 198.2664 36% 36%
SaDE-ECHT 182.7482(0) 357.7081(0) 518.9083(0) 0,0,0 0 344.3397 87.4764 0% 0%
o4 JADE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%
SaDE-ECHT 0(0) 0(0) 0(0) 0,0,0 0 0 0 100% 100%

Figure 3 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g01-g06.
This figure shows that JADE-ECHT converges faster than SaDE-ECHT on problems g01, g05 and g06,
as less number of FEs have been used by it. In case of problem g04, the convergence of SaDE-ECHT is
speedy than JADE-ECHT, while in case of problems g02, g03 both algorithms converge at the same rate.

3 4 5
function evaluations x10° function evaluations s

(a) JADE-ECHT (b) SaDE-ECHT

Figure 3. Convergence comparison of JADE-ECHT and SaDE-ECHT for g01-g06.

Mathematics 2019, 7, 635 11 of 19

Figure 4 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT for
problems g01-g06. This figure shows that both algorithms converge quickly to the feasible region and
the optimal solution (s) thus has zero constraints’ violations.

Figure 5 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g07-g12.
This figure shows that both JADE-ECHT and SaDE-ECHT converge at the same rate for all six problems
except g11, where JADE-ECHT converges faster than SaDE-ECHT.

4 10 a
P] gg ----- gg
10 g =4
9;‘* 10° gg
ol || g FE g
L L T (N e 96
10" 10°
= 10 =
S 5 10
G o
10* 10° i
!
10°H '5
S 10°
1070
H
L
7 . I . I A . I I I
0 o] 1 2 3 4 5 1 0 1 2 3 4 5
function evaluations x10° function evaluations x10°
(a) JADE-ECHT (b) SaDE-ECHT

Figure 4. Constraint violation comparison of JADE-ECHT and self-adaptive differential evolution
(SaDE)-ECHT for g01-g06.

..... g8
B g09 == g9
10°] g10 o [g10
----- g1 10 9 |====rgtl
[mm=ngt2 - g12
A a

log (f(x)-F(<)
log(f(x)-f(x))

I——— e
i
i

3
function evaluations x10° function evaluations 5

(a) JADE-ECHT (b) SaDE-ECHT
Figure 5. Convergence comparison of JADE-ECHT and SaDE-ECHT for g07-g12.

Figure 6 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT for
problems g07-g12. This figure too shows that both algorithms converge quickly to the feasible region
and optimal solution(s) thus has zero constraints’ violations.

Figure 7 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g13-g18.
This figure shows that both JADE-ECHT and SaDE-ECHT converge at the same rate for all six problems
except g15, where JADE-ECHT converges faster than SaDE-ECHT.

Mathematics 2019, 7, 635

12 of 19
10’ 10
—_—g7 —_—g7
----- g8 Emi s
-g9 === 09
o g10 10° g10
w0 g | = 1 2 1 g1
m==eg12 -=meg12
10+
10"
g 1o
10”
10°
-3
10 104
gt ‘ ‘ ; 10°
o} 1 2 3 5 4 5
function evaluations % 105 function evaluations 5 ,‘05
(a) JADE-ECHT (b) SaDE-ECHT
Figure 6. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g07—g12.
10° 10°
—gi13 —g13
----- gl4 —-mmigld
s 15 o b
g16 g16
----- 917 ===mrg17
10 sty o |7 18 10° eSS s - gl8

=
% 10° i)
= 3
g i
2 i
i
)
\
\
10" t
H
i
10" :
0 1 3 4 5
function evaluations x10°

(a) JADE-ECHT

log(f(x)-f(x))
5,

‘‘‘‘‘
‘‘‘‘‘‘‘‘‘‘‘
‘‘‘‘‘‘‘‘‘‘‘

~~~~~

2 3 4 5
function evaluations

(b) SaDE-ECHT

Figure 7. Convergence comparison of JADE-ECHT and SaDE-ECHT for g13—g18.

Figure 8 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT
for problems g13-g18. This figure shows that both algorithms explore the infeasible region for about
1000 iterations and then converge to the feasible region. As a result, optimal solution(s) thus obtained

has zero constraints’ violations.

(o} 1 2 3 4
function evaluations

(a) JADE-ECHT

3 4 5
function evaluations % 10°

(b) SaDE-ECHT

Figure 8. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g13-g18.



Mathematics 2019, 7, 635 13 of 19

Figure 9 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g19-g24.
This figure shows that both JADE-ECHT and SaDE-ECHT converge almost at the same rate for all six
problems and utilize the maximum function evaluations.

log (f()-F())
log(f(x)-f(x))

0 1 2 3 4 5 0 1 3 4 5
function evaluations x10° function evaluations

(a) JADE-ECHT (b) SaDE-ECHT
Figure 9. Convergence comparison of JADE-ECHT and SaDE-ECHT for g19-g24.
Figure 10 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT

for problems g19-g24. This figure clearly shows that both algorithms failed to obtain any feasible
solution in case of problems g20 and g22, although maximum function evaluations have been used.

10
10° SN 10°
~~~~~~
-20 o S, -2 -
10 e, 107 B “=3gmsmammmmmm oo
g P Y 000 TR
\ 1
5 a = ok
510 O 510 11
e el \ N
) \\\ i % -
' . o
10 e 107}
80 RN 8 E
10° g 10700
1012 10" . .
0 1 2 3 4 5 0 1 2 3 4 5
function evaluations % 105 function evaluations 5 105
(a) JADE-ECHT (b) SaDE-ECHT

Figure 10. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g19-g24.

Figures 3,5,7 and 9 show the comparison of the convergence graphs vs FES of both algorithms
for all problems g01-g24, whereas Figures 4,6,8 and 10 demonstrate their comparison graphs of the
constraints’ violations vs FEs.

Overall, it can be concluded from the tabulated results and figures that both algorithms have
achieved feasible solution (s) and near optimal solution (s) on 22 problems out of 24 except problems
£20 and g22. The tables show that the FR of JADE-ECHT on 20 problems out of 24 is 100% and that
of SaDE-ECHT on 22 problems out of 24 is 100%. The SR of JADE-ECHT on most of the problems
is better than SaDE-ECHT. On two problems g20 and g22, the FR and SR of both algorithms are 0%.
The dimension of these two problems is higher than other 22 problems. Also, these two problems had
a large number of equality constraints. It can be noted from our experiments and some other literature
review that equality constraints were hard to handle.

Mathematics 2019, 7, 635 14 of 19

Table 7 compares the FR and SR of JADE-ECHT and SaDE-ECHT with other competing algorithms
of CEC’2006. It can be seen from the said table that both JADE-ECHT and SaDE-ECHT achieved
better FR, and can be placed at positions second and fourth, respectively. However, they failed to
achieve better SR than the competing algorithms. A reason of failure could be the use of four different
CHTs, where the resources (FEs) are distributed based on the success of each individual CHT, while
the competing algorithms used just one CHT. The same can also be observed from Tables 8 and 9,
where the median and standard deviation values obtained after 5 x 10° FEs of JADE-ECHT and
SaDE-ECHT are compared with other competing algorithms (the values of the two quantities for the
competing algorithms are taken from each source paper). Another reason of low SR could be observed
from the figures showing constraints’ violations vs FES graphs. It can be noticed from these graphs
that both algorithms converge quickly to the feasible region. As a result, they less explore the infeasible
region and consequently suffer from stagnation and premature convergence.

Table 7. Comparison of JADE-ECHT and SaDE-ECHT in terms of feasibility rate (FR) and success rate
(SR) with algorithms of CEC 2006.

Algorithms FR SR
DE 95.65% 78.09%
DMS-PSO 100% 90.61%
€ DE 100% 95.65%
GDE 92.00% 77.39%
jDE-2 95.65% 80.00%
MDE 95.65% 87.65%
MPDE 94.96% 87.65%
PCX 95.65% 94.09%
PESO+ 95.48% 67.83%
SaDE 100% 87.13%

JADE-ECHT 95.30% 57.04%
SaDE-ECHT 95.65% 46.43%

Mathematics 2019, 7, 635 15 of 19

Table 8. Comparison of median values of JADE-ECHT, SaDE-ECHT and CEC’2006 algorithms

achieved after 500,000 FEs. The bold numbers indicate the better results.
Prob DE DMS-PSO ¢ DE GDE jDE-2 MDE MPDE PCX PESO+ SaDE JADE-ECHT = SaDE-ECHT
g01 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
g02 5.1700 x1078 (0) 0(0) 3.0933 x1078(0) 2.3251 x1077(0) 3.3051 x107%(0) 0.017460(0) 3.5608 x107¢ 0(0) 1.4314 x107°(0) 3.0800 x10~2(0) 0.0004(0) 0.0110(0)
203 6.7110 x10~1(0) 0(0) —4.4409 x10716(0) 9.3634 x101(0) 0.3481(0) 0(0) —2.8866 x10~12 0(0) 1.5890 x10~7 (0) 1.7770 x10~8(0) 0.1015(0) 0.0122(0)
g0d 7.6398 x10~11(0) 0(0) 0(0) 8.0036 x10~11(0) 0(0) 0(0) 3.6380 x10~12 0(0) 1.0000 x10-10(0) 2.1667 x10~7(0) 0(0) 0(0)
g05 —9.0949 x1013(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 91.4773(0)
806 45475 x10~ 11 0(0) 1.1823 x10~11(0) 6.1846 x10711(0) 1.1823 x10~11(0) 0(0) 1.0914 x10~11 0(0) 1.0000 x10~10(0) 4.5475 x10~11(0) 0(0) 0(0)
g07 7.9783 x10~1(0) 0(0) —1.8474 x10713(0) 3.6402 x10-10(0) —1.8829 x10~13(0) 0(0) —1.8474 x10~13 0(0) 9.4367 x1070(0) 1.4608 x10~7(0) 0.0879(0) 0.0114(0)
g08 8.1964 x10~11(0) 0(0) 41633 x10717(0) 81964 x10~11(0) 4.1633 x10~17(0) 0(0) 4.1633 x10~17 0(0) 1.0000 x10~19(0) 8.1964 x10~'1(0) 0(0) 0(0)
g09 —9.8112 x101(0) 0(0) 0(0) —9.7884 x10711(0) 2.2737 x10~13(0) 0(0) 1.1369 x10~ 13 0(0) 1.0000 x10~10(0) 3.7440 x1077(0) 0.0039(0) 0(0)
gl0 6.2755 x10~1(0) 1.0124 x1078(0) —9.0949 x10-13(0) 6.9122 x10~1(0) —9.0949 x10~13(0) 0(0) —9.0949 x10~13 0(0) 1.3432 x1073(0) 1.8120 x106(0) 133.9677(0) 0.1709(0)
gl1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
g12 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
gl3 3.8486 x1071(0) 0(0) 9.7145 x10717(0) 3.8486 x1071(0) 0.6800(0) 0(0) 3.8486 x107! 0(0) 1.1200 x10-8(0) ~ 4.1898 x10~11(0) 0.9118(0) 0.3870(0)
gld 85123 x10712(0) 0(0) 2.1316 x10~14(0) 6.3148 x108(0) 2.1316 x10~14(0) 0(0) -3.9961 x10~* 0(0) 32912 x1073(0) 1.4793 x1075(0) 0.0174(0) 1.6397(0)
gl5 6.0822 x10~1(0) 0(0) 0(0) 6.0936 x10~11(0) 0(0) 0(0) 0(0) 0(0) 1.0000 x10-1°(0) 6.0822 x10~11(0) 0(0) 0.0009(0)
gle 6.5214 x10711(0) 0(0) 4.4409 x10715(0) 6.5216 x10~11(0) 5.1070 x10715(0) 0(0) 5.3291 x10~15 0(0) 1.0000 x10~10(0) 6.5214 x10~11(0) 0(0) 0(0)
gl7 7.4058 x10%(0) 7.4058 x101(0) 1.8190 x10~12(0) 7.4052 x10%(0) 10.4896(0) 0(0) 7.4058 x 10! 0(0) 13.9638(0) 7.4058 x101(0) 0(0) 91.2351(0)
g18 1.5561 x10~1(0) 0(0) 33307 x10710(0) 4.6362 x10~11(0) 4.4408 x10716(0) 0(0) 4.4409 x10~16 0(0) 4.0000 x10-19(0) 1.5561 x10~11(0) 0.0001(0) 0(0)
g19 4.6370 x10~1(0) 0(0) 5.2162 x1078(0) 5.2669 x107(0) 4.2632 x10~14(0) 0.387033(0) 3.5527 x10~14 0(0) 2.6302 x1072(0) 1.3868 x1010(0) 1.4028(0) 1.7022(0)
820 24674 x1072(8) —7.3330 x1072(17) —2.4674 x1072(8) 1.3503 x10'(20) 0.1082(2) 0.103314(20) 1.0151 x10! 0.0675(12) 32600 x1072(8) 2.3757 x10'(20) 6.2057(8) 14.8045(9)
g21 28371 x1071900) 35911 x1076(0) —2.8422 x107™(0) 6.5523 x1078(0) —2.8421 x10'4(0) 0(0) 1.4211 x10~13 0(0) 81.3460(0) 2.5785 x108(0) 0.0633(0) 77.3185(0)
g22 1.0336 x10%(15) 1.2200 %102 (0) 1.2332 x10%(0) 9.7885 x10%(19) 8033.6537(8) 9210.082460(18) 8.7919 x10° 9888.6409(15) 14,198.8059(19) 4.6907 x101(0) 10,565.5111(3) 8834.7836(3)
g23 3.0005 x102(0) 1.0267 x10~8 (0) 0(0) 1.0569 x10%(0) 22737 x10713(0) 0(0) 0(0) 0(0) 130.5043(0) 3.9790 x10~13(0) 8.5726(0) 357.7081(0)
g24 4.6736 x10712(0) 0(0) 57732 x10714(0) 4.7269 x1012(0) 5.5067 x10714(0) 0(0) 7.1054 x10~ 14 0(0) 0(0) 4.6372 x10712(0) 0(0) 0(0)

Mathematics 2019, 7, 635

Table 9. Comparison of standard deviation values of JADE-ECHT, SaDE-ECHT and CEC’2006
algorithms achieved after 500,000 FEs. The bold numbers indicate the better results.

Prob DE DMS-PSO € DE GDE jDE-2 MDE MPDE PCX PESO+ SaDE JADE-ECHT SaDE-ECHT
g01 6.4146 x10°1% 0 0 0 0 0 0 0 0 0 0.4000 0
g02 1.0015 x10718 46953 x1073 1.7523 1078 75112 x1073 3.0488 x1073 0 2.7802 x1073 0 7.1385 x1073 4.9786 x1073 0.0091 0.0254
g03 52098 x10714 0 29582 x10731 1.9833 x10~' 1.0140 x10~! 0 8.3681 x1072 0 1.5396 x107¢ 3.4743 x107° 0.1036 0.0343
g04 3.9644 x10713 0 0 0 0 0 0 0 0 1.8550 x10~12 0 0
205 0 0 0 1.6854 x10% 2.4193 0 3.6380 x10~13 0 0 1.8190 x10~13 0 101.2496
806 0 0 0 0 0 0 0 0 0 0 0 0
g07 64146 x10715 0 2.1831 x10715 3.8948 x10~7 1.7405 x10~15 0 3.0215 x10~15 0 22678 x1075 1.4993 x107° 0.0726 0.0850
g08 1.0015 x10718 0 1.2326 x10~32 0 1.2580 x 1032 0 0 0 0 3.8426 x10~18 0 0
g09 52098 x10~14 0 0 49555 x10~14 4.2538 x10~14 0 0 0 0 7.9851 x10~ 14 0.0192 0.0002
g10 39644 x10713 8.8141 x107° 4.2426 x10~13 0 9.1279 x10~8 0 3.0165 x10~13 0 5.8279 x1072 1.5244 x10~°® 105.4501 3.0352
gll 0 0 0 0 4.5540 x10~* 0 7.0638 x107° 0 0 0 0 0
gl2 0 0 0 0 0 0 0 0 0 0 0 0
gl3 0 1.8204 x107¢ 0 3.8650 x10~' 22376 x107! 0 2.8719 x10~! 0 6.3801 x107¢ 2.7832 x1077 0.1750 0.2828
gld 34809 x1071° 0 1.3924 x10715 3.8556 x1073 3.4809 x10~1° 0 7.9441 x10~15 0 2.8553 x1072 6.4986 x10~> 2.2940 0.6956
gl5 0 0 0 9.6094 x10~1 22020 x1072 0 4.3027 x107° 0 0 0 0 0.6971
gle 22092 x10716 0 15777 x10~%0 1.7764 x10~16 0 0 0 0 0 0 0 0
gl7 3.0234 x10! 0 12117 x107% 82114 x10! 3.8319 x 10! 0 3.4111 x10! 0 42.286 1.6168 x10! 24.5623 50.4589
gl8 4.8817 x10717 0 2.1756 10717 6.4619 x1071 3.6822 x10~17 0 4.1541 x107Y7 0 3.8184 1072 5.2898 x102 0.0041 0
gl9 12568 x107° 0 1.2568 107> 45735 x107> 1.0531 x10~13 0.847517 3.5527 x10~ 14 0 1.6158 x10~! 7.2976 x10~10 1.0136 1.9699
820 42362 x1072 69516 1073 4.2362 1072 1.9580 x10° 1.1510 x10~2 0.021688 2.8984 x10° 0.0219 4.9951 x10~% 1.0638 x10~! 3.5087 4.8304
g21 65489 x10' 2.0784 x107® 33417 x10~* 8.6788 x10! 3.6266 x10! 0 6.2358 x 10" 0 67.019 1.5058 x10~3 63.9006 25.3368
g22 57875 x10° 2.7703 x10! 1.5690 x 10! 5.9865 x 103 51748 103 4808.800969 4.8022 x10° 4421.5326 4963.7 3.0415 x 10! 6162.3243 4998.2886
g23 88097 x107° 45997 x10~* 11139 x10~ ™ 1.9119 x10? 5.9983 x 10" 0 5.1159 x10~14 0 87.634 3.4116 x10~* 198.2664 87.4764
g24 8.8525 x107% 0 2.5244 x10~% 0 1.9323 x10~% 0 0 0 0 0 0 0

16 of 19

Mathematics 2019, 7, 635 17 of 19

5. Conclusions and Future Work

This paper employed ECHT in the frameworks of two self-adaptive variants of DE, JADE and
SaDE. Thus, constrained versions of the two algorithms, denoted by JADE-ECHT and SaDE-ECHT
were developed. The proposed algorithms JADE-ECHT and SaDE-ECHT were tested and compared
on CEC’06 benchmark test suit. The experimental results show that the SR of JADE-ECHT on most of
the tested problems is better than SaDE-ECHT, while SaDE-ECHT surpasses JADE-ECHT in terms of
FR. Both algorithms, like other algorithms in the literature, failed to solve problems g20 and g22 due
to the hard nature of these problems. In the future, we intend to design ECHT of some other CHTs,
embed it then in DE and swarm based algorithms to develop constrained evolutionary algorithms
and finally test these newly developed algorithms on some real-world and engineering optimization
problems. In addition to that we are going to use [34] for multipath routing protocols and for video
streaming systems [35] in order to get the advantages of these plus the benefits of the proposed work
would be very beneficent and demanded.

Author Contributions: Conceptualization, H.J. and M.A.J.; methodology, HK., M.A.]. and W. K.M.; software,
R.AK., N.T.and H.S,; validation, H.U.K. and M.S.; formal analysis, H.]., M.A.]., R A.K. and H.S,; investigation, H.].,
M.AJ. and M.S; resources, N.T. and H.S.; writing—original draft preparation, H.J. and M.A J.; writing—review
and editing, H.U.K. and M.S.; supervision, M.A.]J. and W.K.M.; project administration, N.T. and H.S.; funding
acquisition, N.T. and H.S.

Funding: The authors would like to thank King Khalid University of Saudi Arabia for supporting this research
under the grant number R.G.P.2/7/38.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341-359. [CrossRef]

2. Li, Z;Shang, Z,; Liang,].].; Niu, B. An improved differential evolution for constrained optimization with
dynamic constraint-handling mechanism. In Proceedings of the 2012 IEEE Congress on Evolutionary
Computation (CEC), Brisbane, Australia, 10-15 June 2012; pp. 1-6.

3. Elsayed, S.M.; Sarker, R.A.; Essam, D.L. An improved self-adaptive differential evolution algorithm for
optimization problems. IEEE Trans. Ind. Inform. 2013, 9, 89-99. [CrossRef]

4. Li, G, Lin, Q,; Cui, L,; Du, Z,; Liang, Z.; Chen, J.; Lu, N.; Ming, Z. A novel hybrid differential evolution
algorithm with modified CoDE and JADE. Appl. Soft Comput. 2016, 47, 577-599. [CrossRef]

5. Ali, M.; Kajee-Bagdadi, Z. A local exploration-based differential evolution algorithm for constrained global
optimization. Appl. Math. Comput. 2009, 208, 31-48. [CrossRef]

6. Ameca-Alducin, M.Y.; Mezura-Montes, E.; Cruz-Ramirez, N. Dynamic differential evolution with combined
variants and a repair method to solve dynamic constrained optimization problems: an empirical study.
Soft Comput. 2018, 22, 541-570. [CrossRef]

7. Shah, T.; JAN, M.; Mashwani, W.K.; Wazir, H. Adaptive Differential Evolution for Constrained Optimization
Problems. Sci. Int. 2016, 28, 2313-2320.

8. Wazir, H,; Jan, M.; Mashwani, W.; Shah, T. A penalty function based differential evolution algorithm for
constrained optimization. Nucleus 2016, 53, 155-166.

9. Jan, M.A.; Khanum, R.A.; Tairan, N.M.; Mashwani, W.K. Performance of a Constrained Version of MOEA /D
on CTP-series Test Instances. Int.]. Adv. Comput. Sci. Appl. 2016, 7, 496-505.

10. Brest,]J.; Zumer, V.; Maucec, M.S. Self-adaptive differential evolution algorithm in constrained real-parameter
optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,
16-21 July 2006; pp. 215-222.

11. Caraffini, F; Kononova, A.V.; Corne, D. Infeasibility and structural bias in Differential Evolution. arXiv 2019,
arXiv:1901.06153.

12. Caraffini, F.; Kononova, A.V. Structural Bias in Differential Evolution: a preliminary study. AIP Conf. Proc.
2019, 2070, 020005.

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TII.2012.2198658
http://dx.doi.org/10.1016/j.asoc.2016.06.011
http://dx.doi.org/10.1016/j.amc.2008.11.036
http://dx.doi.org/10.1007/s00500-016-2353-1

Mathematics 2019, 7, 635 18 of 19

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Yaman, A.; Iacca, G.; Caraffini, F. A comparison of three differential evolution strategies in terms of early
convergence with different population sizes. AIP Conf. Proc. 2019, 2070, 020002.

lTacca, G.; Neri, E; Caraffini, F; Suganthan, PN. A differential evolution framework with ensemble of
parameters and strategies and pool of local search algorithms. In Proceedings of the European Conference
on the Applications of Evolutionary Computation, Granada, Spain, 23-25 April 2014; pp. 615-626.

Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 2009, 13, 945-958. [CrossRef]

Caraffini, F.; Neri, F. A study on rotation invariance in differential evolution. Swarm Evol. Comput. 2018.
[CrossRef]

Caraffini, F; Neri, F. Rotation invariance and rotated problems: An experimental study on differential
evolution. In Proceedings of the International Conference on the Applications of Evolutionary Computation,
Parma, Italy, 4-6 April 2018; pp. 597-614.

Liu, C.; Wang, G.; Xie, Q.; Zhang, Y. Vibration sensor-based bearing fault diagnosis using ellipsoid-ARTMAP
and differential evolution algorithms. Sensors 2014, 14, 10598-10618. [CrossRef] [PubMed]

Datta, R.; Deb, K.; Kim, J.H. CHIP: Constraint Handling with Individual Penalty approach using a hybrid
evolutionary algorithm. Neural Comput. Appl. 2018, 1-17. [CrossRef]

Shakibayifar, M.; Hassannayebi, E.; Mirzahossein, H.; Taghikhah, F,; Jafarpur, A. An intelligent simulation
platform for train traffic control under disturbance. Int. J. Model. Simul. 2019, 39, 135-156. [CrossRef]
Cheraitia, M.; Haddadi, S.; Salhi, A. Hybridizing plant propagation and local search for uncapacitated exam
scheduling problems. Int. J. Serv. Oper. Manag. 2017. [CrossRef]

Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern.
2017, 49, 542-555. [CrossRef]

Fister, L; Fister, 1., Jr. Adaptation and Hybridization in Computational Intelligence; Springer: Berlin, Germany,
2015; Volume 18.

Wang, H.; Yi, . H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memet. Comput. 2018, 10, 177-198. [CrossRef]

Coit, D.W,; Smith, A.E.; Tate, D.M. Adaptive penalty methods for genetic optimization of constrained
combinatorial problems. INFORMS]. Comput. 1996, 8, 173-182. [CrossRef]

Michalewicz, Z.; Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems.
Evol. Comput. 1996, 4, 1-32. [CrossRef]

Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997,
1, 67-82. [CrossRef]

Mallipeddi, R.; Suganthan, PN. Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 2010,
14, 561-579. [CrossRef]

Mallipeddi, R.; Suganthan, PN. Differential evolution with ensemble of constraint handling techniques
for solving CEC 2010 benchmark problems. In Proceedings of the 2010 IEEE Congress on Evolutionary
Computation (CEC), Barcelona, Spain, 18-23 July 2010; pp. 1-8.

Liang, J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Coello, C.C.; Deb, K. Problem
definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter
optimization. J. Appl. Mech. 2006, 41, 8-31.

Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng.
2000, 186, 311-338. [CrossRef]

Takahama, T.; Sakai, S. Constrained optimization by the & constrained differential evolution with an archive
and gradient-based mutation. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(CEC), Barcelona, Spain, 18-23 July 2010; pp. 1-9.

Runarsson, T.P; Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput.
2000, 4, 284-294. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1016/j.swevo.2018.08.013
http://dx.doi.org/10.3390/s140610598
http://www.ncbi.nlm.nih.gov/pubmed/24936949
http://dx.doi.org/10.1007/s00521-018-3364-x
http://dx.doi.org/10.1080/02286203.2018.1488110
http://dx.doi.org/10.1504/IJSOM.2019.10020831
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1007/s12293-017-0241-6
http://dx.doi.org/10.1287/ijoc.8.2.173
http://dx.doi.org/10.1162/evco.1996.4.1.1
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TEVC.2009.2033582
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1109/4235.873238

Mathematics 2019, 7, 635 19 of 19

34. Igbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, N.A. Adaptive cross-layer multipath routing protocol
for mobile ad hoc networks.]. Sens. 2016, 2016, 5486437. [CrossRef]

35. Taha, M.; Garcia, L.; Jimenez,].M.; Lloret,]. SDN-based throughput allocation in wireless networks
for heterogeneous adaptive video streaming applications. In Proceedings of the 2017 13th International
Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26-30 June 2017;
pp- 963-968.

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2016/5486437
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Constrained Optimization Problem and ECHT
	Constrained Optimization Problem (COP)
	Superiority of Feasible Solutions (SF)
	Self-Adaptive Penalty (SP)
	The -Constraint (EC) Handling Technique
	Stochastic Ranking (SR)

	JADE-ECHT and SaDE-ECHT
	JADE-ECHT
	SaDE-ECHT

	Experimental Results
	Result Achieved

	Conclusions and Future Work
	References

