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Abstract: In this paper, we establish some new results on the left-hand side of the
q-Hermite–Hadamard inequality for differentiable convex functions with a critical point. Our work
extends the results of Alp et. al (q-Hermite Hadamard inequalities and quantum estimates for
midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 2018, 30,
193-203), by considering the critical point-type inequalities.
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1. Introduction

Quantum calculus (also known as q-calculus) is the study of calculus without limits,
where classical mathematical formulas are obtained as q→ 1. Firstly introduced by Euler (1707–1783)
in the tracks of Newton’s infinite series, the study of q-calculus was established in the early Twentieth
Century after the work of Jackson (1910) on defining an integral later known as the q-Jackson integral;
see [1–4]. In q-calculus, the classical derivative is replaced by the q-difference operator in order to deal
with non-differentiable functions; see [5,6] for more details. Applications of q-calculus can be found in
various fields of mathematics and physics, and the interested readers are referred to [7–10].

The theory of convex functions has been widely studied and applied to various fields of science.
Due to its close relation to the theory of inequalities, a rich literature on inequalities can be found in the
study of convex functions; see [11–18]. This includes the Hermite–Hadamard inequality, introduced by
Hermite and Hadamard independently, which has been studied extensively in recent years.

Let J ⊆ R be an interval and f : J → R be a function from J to R. Recall that f is said to be a
convex function if it satisfies the inequality:

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y), (1)

for all x, y ∈ J and λ ∈ [0, 1]. In addition, if an equality holds for all x, y ∈ J and λ ∈ [0, 1], then f is
said to be affine.

It is also well known that f is convex if and only if it satisfies the Hermite–Hadamard inequality,
which is defined by:

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
, (2)
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for all a, b ∈ J and a < b. One can estimate by the right-hand side of (2) by using Iyengar’s inequality,
which is defined by:∣∣∣∣ f (a) + f (b)

2
− 1

b− a

∫ b

a
f (x)dx

∣∣∣∣ ≤ M(b− a)
4

− 1
4M(b− a)

( f (b)− f (a))2,

where M denotes the Lipschitz constant, that is M = sup
{∣∣∣ f (x)− f (y)

x−y

∣∣∣ ; x 6= y
}

.
This fundamental result of Hermite and Hadamard has attracted many mathematicians,

and consequently, this inequality has been generalized and extended in many directions; see [19–31]
and the references cited therein.

In 2018, Alp et al. [32] studied the q-analogue of Hermite–Hadamard’s inequality for increasing
functions, that is,

f
(

qa + b
1 + q

)
≤ 1

b− a

∫ b

a
f (x)adqx ≤ q f (a) + f (b)

1 + q
, (3)

where q is a constant with 0 < q < 1. Moreover, they studied the generalized q-Hermite–Hadamard
inequality for differentiable convex functions, that is,

max{I1, I2, I3} ≤
1

b− a

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
, (4)

where:

I1 = f
(

qa + b
1 + q

)
,

I2 = f
(

a + qb
1 + q

)
+

(1− q)(b− a)
1 + q

f ′
(

a + qb
1 + q

)
,

I3 = f
(

a + b
2

)
+

(1− q)(b− a)
2(1 + q)

f ′
(

a + b
2

)
.

This paper aims to establish the generalized q-Hermite–Hadamard inequality for differentiable
convex functions with a critical point.

The paper is organized as follows. Some basic concepts are recalled in Section 2. Section 3 contain
the main results, while conclusions are given in Section 4.

2. Preliminaries

In this section, some basic results are mentioned. Throughout this section, we let J = [a, b] ⊆ R be
an interval and q be a constant with 0 < q < 1.

Definition 1. [33] The q-derivative of a continuous function f : J → R at x is defined as:

aDq f (x) =
f (x)− f (qx + (1− q)a)

(1− q)(x− a)
, for x 6= a. (5)

For x = a, we define aDq f (a) = lim
x→a aDq f (x).

If aDq f (x) exists for all x ∈ J, then f is q-differentiable on J. Moreover, if a = 0, then (5) reduces
to 0Dq f = Dq f , where Dq is the q-derivative of f , which is defined by:

Dq f (x) =
f (x)− f (qx)
(1− q)x

.

For more details, see [4].
The higher-order q-derivatives of functions on J are also defined.
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Definition 2. [33] For a continuous function f : J → R, the second-order q-derivative of f on J, if aDq f is
q-differentiable on J, denoted by aD2

q f and defined by:

aD2
q f = aDq(aDq).

Similarly, provided that aDn−1
q f is the q-derivative on J for some integer n > 2, the nth-order q-derivative

of f on J is the function from J → R defined by:

aDn
q f = aDq(aDn−1

q f ).

Example 1. Let f : J → R with f (x) = x2 + 1. Let q be a constant with 0 < q < 1. Then, for x 6= a, we have:

aDq(x2 + 1) =
(x2+1)−[(qx+(1−q)a)2+1]

(1−q)(x−a)

= (1+q)x2−2qax−(1−q)a2

(x−a)
= (1 + q)x + (1− q)a.

(6)

For x = a, aDq f (a) = lim
x→a aDq f (x) = 2a.

Definition 3. [33] The q-integral of a continuous function f : J → R is defined as:

∫ x

a
f (t) adqt = (1− q)(x− a)

∞

∑
n=0

qn f (qnx + (1− qn)a), (7)

for x ∈ J.
Note that if a = 0, then (7) becomes the classical q-integral of f , that is,

∫ x

0
f (t) 0dqt = (1− q)x

∞

∑
n=0

qn f (qnx)

for x ∈ [0, ∞); see [4] for more details.

Example 2. Let f : [a, b]→ R with f (x) = 2x. Let q be a constant with 0 < q < 1. Then, we have:

∫ b

a
f (x) adqx =

∫ b

a
2x adqx

= 2(1− q)(b− a)
∞

∑
n=0

qn(qnb + (1− qn)a)

=
2(b− a)(b + qa)

1 + q
.

Note that if q→ 1, we obtain the classical integration:

∫ b

a
f (x)dx =

∫ b

a
2xdx = b2 − a2.

Theorem 1. Assume that the function f : J → R is continuous. Then, we have the following:

(i) aDq
∫ x

a f (t) adqt = f (x)− f (a);
(ii)

∫ x
c aDq f (t) adqt = f (x)− f (c) for c ∈ (a, x).

Theorem 2. Assume that the functions f , g : J → R are continuous and α ∈ R. Then, we have the following:

(i)
∫ x

a [ f (t) + g(t)] adqt =
∫ x

a f (t) adqt +
∫ x

a g(t) adqt;
(ii)

∫ x
a (α f )(t) adqt = α

∫ x
a f (t) adqt;
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(iii)
∫ x

c f (t) aDqg(t) adqt = ( f g)|xc −
∫ x

c g(qt + (1− q)a)aDq f (t) adqt for c ∈ (a, x).

For the proofs of the properties in Theorems 1 and 2, see [34].

3. Main Results

In this section, we present our main results on the left-hand side of the q-Hermite–Hadamard
inequality for differentiable convex functions with a critical point.

Theorem 3. Suppose that f : [a, b]→ R is a differentiable convex function on (a, b) such that f ′(c) = 0 for
c ∈ (a, b), and let q be a constant with 0 < q < 1. Then, we have:

f
(

q(a+c)+(1−q)b
1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

) (
q(b−c)

1+q

)
≤ 1

b−a

∫ b
a f (x)adqx

≤ q f (a)+ f (b)
1+q .

(8)

Proof. Since the function f is differentiable on (a, b), there exists a tangent line at the point
q(a+c)+(1−q)b

1+q ∈ (a, b), given by:

h(x) = f
(

q(a + c) + (1− q)b
1 + q

)
+ f ′

(
q(a + c) + (1− q)b

1 + q

)(
x− q(a + c) + (1− q)b

1 + q

)
. (9)

Since f is a convex function on [a, b], it follows that h(x) ≤ f (x) for all x ∈ [a, b].
After q-integrating of (9) on [a, b], we have:∫ b

a h(x) adqx
=
∫ b

a

[
f
(

q(a+c)+(1−q)b
1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

)
×
(

x− q(a+c)+(1−q)b
1+q

)]
adqx

= (b− a) f
(

q(a+c)+(1−q)b
1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

) (∫ b
a x adqx− (b− a) q(a+c)+(1−q)b

1+q

)
= (b− a) f

(
q(a+c)+(1−q)b

1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

) (
(b− a) (qa+b)

1+q − (b− a) q(a+c)+(1−q)b
1+q

)
= (b− a)

[
f
(

q(a+c)+(1−q)b
1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

) (
q(b−c)

1+q

)]
≤
∫ b

a f (x) adqx.

On the other hand, since f is a convex function, we obtain:

1
(b−a)

∫ b
a f (x)adqx = 1

(b−a) [(1− q)(b− a)∑∞
n=0 qn f (qnb + (1− qn)a)]

= (1− q)∑∞
n=0 qn f (qnb + (1− qn)a)

≤ (1− q)∑∞
n=0 qn[qn f (b) + (1− qn) f (a)]

= (1− q)
[

f (b)
1−q2 +

f (a)
1−q −

f (a)
1−q2

]
= q f (a)+ f (b)

1+q .

The proof is complete.



Mathematics 2019, 7, 632 5 of 9

Remark 1. In Theorem 3, if q ∈ (0, c−b
a−b ], then q(a+c)+(1−q)b

1+q ∈ [c, b). We can reduce the left-hand side of
Theorem 3 as:

f
(

q(a + c) + (1− q)b
1 + q

)
≤ 1

(b− a)

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
,

since f ′
(

q(a+c)+(1−q)b
1+q

) (
q(b−c)

1+q

)
≥ 0.

Remark 2. In Remark 1, if c → a+, then c−b
a−b → 1−. Since q ∈ (0, 1), we have q(a+c)+(1−q)b

1+q ∈ (a, b).
We can reduce the left-hand side of Theorem 3 as:

f (qa + (1− q)b) ≤ 1
(b− a)

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
,

since f ′
(

q(a+c)+(1−q)b
1+q

) (
q(b−c)

1+q

)
≥ 0.

Corollary 1. Assume that f : [a, b]→ R is a differentiable convex function on (a, b) such that f ′
(

a+b
2

)
= 0,

for 0 < q < 1. Then, we have:

f
(

q(a+ a+b
2 )+(1−q)b
1+q

)
+ f ′

(
q(a+ a+b

2 )+(1−q)b
1+q

)
q(b−a)
2(1+q)

≤ 1
b−a

∫ b
a f (x)adqx

≤ q f (a)+ f (b)
1+q .

(10)

Corollary 2. Assume that f : [a, b] → R is a differentiable convex function on (a, b) such that f ′ (0) = 0,
for 0 ∈ (a, b) and 0 < q < 1. Then, we have:

f
(

qa+(1−q)b
1+q

)
+ f ′

(
qa+(1−q)b

1+q

)
qb

(1+q)

≤ 1
b−a

∫ b
a f (x)adqx ≤ q f (a)+ f (b)

1+q .
(11)

Theorem 4. Let f : [a, b]→ R be a differentiable convex function on (a, b) such that f ′(c) = 0 for c ∈ (a, b)
and 0 < q < 1. Then, we have:

f
(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
(1−q)a+q(c+b)

1+q

) (
q(2a−b−c)+b−a

1+q

)
≤ 1

b−a

∫ b
a f (x)adqx

≤ q f (a)+ f (b)
1+q .

(12)

Proof. Since the function f is differentiable on (a, b), there exists a tangent line at the point
(1−q)a+q(c+b)

1+q ∈ (a, b), which is given by:

k(x) = f
(
(1− q)a + q(c + b)

1 + q

)
+ f ′

(
(1− q)a + q(c + b)

1 + q

)(
x− (1− q)a + q(c + b)

1 + q

)
. (13)
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Since f is convex on [a, b], it follows that k(x) ≤ f (x) for all x ∈ [a, b]. After q-integrating (13),
we obtain: ∫ b

a k(x) adqx
=
∫ b

a

[
f
(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
(1−q)a+q(c+b)

1+q

) (
x− (1−q)a+q(c+b)

1+q

)]
adqx

= (b− a) f
(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
1−q)a+q(c+b)

1+q

) (∫ b
a x adqx− (b− a) (1−q)a+q(c+b)

1+q

)
= (b− a) f

(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
(1−q)a+q(c+b)

1+q

) [
(b− a)

((
aq+b
1+q

)
− (1−q)a+q(c+b)

1+q

)]
= (b− a)

[
f
(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
(1−q)a+q(c+b)

1+q

) (
q(2a−b−c)+b−a

1+q

)]
≤
∫ b

a f (x)adqx.

(14)

The proof is complete.

Remark 3. In Theorem 4, if q ∈ ( 1
2 , c−a

b−a ], then f ′
(
(1−q)a+q(c+b)

1+q

)
≤ 0 and q(2a−b−c)+b−a

1+q < 0. We can
reduce the left-hand side of Theorem 4 as:

f
(
(1− q)a + q(c + b)

1 + q

)
≤ 1

(b− a)

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
,

since f ′
(
(1−q)a+q(c+b)

1+q

) (
q(2a−b−c)+b−a

1+q

)
≥ 0.

Remark 4. In Remark 3, if c → b−, then q → 1−. Since q ∈ ( 1
2 , 1), we have (1−q)a+q(b+c)

1+q ∈ ( a+2b
3 , b).

We can reduce the left-hand side of Theorem 4 as:

f
(
(1− q)(

2a + b
3

) + qb)
)
≤ 1

(b− a)

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
,

since f ′
(
(1−q)a+q(c+b)

1+q

) (
q(2a−b−c)+b−a

1+q

)
≥ 0.

Theorem 5. [Generalized q-Hermite–Hadamard inequality for convex differentiable functions]. Let f : [a, b]→
R be a differentiable convex function on (a, b) such that f ′(c) = 0 for c ∈ (a, b) and 0 < q < 1.
Then, we have:

max{I1, I2, } ≤ 1
b− a

∫ b

a
f (x) adqx ≤ q f (a) + f (b)

1 + q
, (15)

where
I1 = f

(
q(a+c)+(1−q)b

1+q

)
+ f ′

(
q(a+c)+(1−q)b

1+q

) (
q(b−c)

1+q

)
,

I2 = f
(
(1−q)a+q(c+b)

1+q

)
+ f ′

(
(1−q)a+q(c+b)

1+q

) (
q(2a−b−c)+b−a

1+q

)
.

Proof. A combination of (8) and (12) yields (15). Thus, the proof is complete.
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Example 3. Define the function f (x) = x2 on [−1, 3], and let q ∈ (0, 1). Applying Theorem 3 with a = −1,
b = 3, and c = 0, the left-hand side becomes:

f
(

q(a + c) + (1− q)b
1 + q

)
+ f ′

(
q(a + c) + (1− q)b

1 + q

)
q(b− c)

1 + q
− 1

b− a

∫ b

a
f (x)adqx

= f
(

3− 4q
1 + q

)
+ f ′

(
3− 4q
1 + q

)(
3q

1 + q

)
− 1

4

[
4(1− q)

∞

∑
n=0

qn f (3qn − (1− qn))

]

=
−9q4 − 9q3 − 9q2 − 16q
(1 + q)2(1 + q + q2)

≤ 0.

For the right-hand side, we have:

1
3− (−1)

∫ 3

−1
x2

adqx− q f (−1) + f (3)
1 + q

=
16

1 + q + q2 −
8

1 + q
+ 1− 9 + q

1 + q
≤ 0.

Example 4. Define function f (x) = x2 on [−1, 1], and let q ∈ (0, 1). Applying Corollary 2 with a, b = −1
and c = 0, the left hand-side becomes:

f
(

qa + (1− q)b
1 + q

)
+ f ′

(
qa + (1− q)b

1 + q

)
(qb)
1 + q

− 1
b− a

∫ b

a
f (x)adqx

= f
(

1− 2q
1 + q

)
+ f ′

(
1− 2q
1 + q

)(
q

1 + q

)
− (1− q)

∞

∑
n=0

qn f (2qn − 1)

=
4q2 − 4q + 1
(1 + q)2 +

2q(1− 2q)
(1 + q)2 −

1 + 2q− 2q2 + q3

(1 + q + q2)(1 + q)
≤ 0.

For the right-hand side, we have:

1
1− (−1)

∫ 1

−1
x2

adqx− q f (−1) + f (1)
1 + q

=
1
2

[
(1− q)(2)

∞

∑
n=0

qn f (qn − (1− qn))

]
− 1 + q

1 + q

=
4

1 + q + q2 −
4

1 + q
+ 1− 1 ≤ 0.

Example 5. Define functions f (x) = x2 on [−3, 1], and let q ∈ (0, 1). Applying Theorem 4 with a = −3,
b = 1, and c = 0, the left-hand side becomes:

f
(
(1− q)a + q(c + b)

1 + q

)
+ f ′

(
(1− q)a + q(c + b)

1 + q

)(
q(2a− b− c) + b− a

1 + q

)
− 1

b− a

∫ b

a
f (x)adqx

= f
(

4q− 3
1 + q

)
+ f ′

(
4q− 3
1 + q

)(
4− 7q
1 + q

)
− 1

4

[
4(1− q)

∞

∑
n=0

qn f (4qn − 3)

]

=
16q2 − 24q + 9

(1 + q)2 +
−56q2 + 74q− 24

(1 + q)2 − 16
1 + q + q2 +

24
1 + q

− 9 ≤ 0.
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For the right-hand side, we have:

1
3− (−1)

∫ 3

−1
x2

adqx− q f (−3) + f (1)
1 + q

=
16

1 + q + q2 −
24

1 + q
+ 9− 9q + 1

1 + q
≤ 0.

4. Conclusions

In this paper, we considered and investigated the class of differentiable convex functions,
which has a critical point in the setting of q-calculus. We used the approach of q-calculus to derive
some new results on the left-hand side of q-Hermite–Hadamard inequalities. It is expected that the
ideas and techniques presented in this paper will stimulate further research in this field.
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