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Abstract: Based on the very recent work by Shehu and Agbebaku in Comput. Appl. Math. 2017,
we introduce an extension of their iterative algorithm by combining it with inertial extrapolation
for solving split inclusion problems and fixed point problems. Under suitable conditions, we prove
that the proposed algorithm converges strongly to common elements of the solution set of the split
inclusion problems and fixed point problems.

Keywords: variational inequality problem; split variational inclusion problem; multi-valued
quasi-nonexpasive mappings; Hilbert space

MSC: 47H06; 47H09; 47J05; 47J25

1. Introduction

The split monotone variational inclusion problem (SMVIP) was introduced by Moudafi [1].
This problem is as follows:

Find a point x∗ ∈ H1 such that 0 ∈ f̂ (x∗) + B1(x∗) (1)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ ĝ(y∗) + B2(y∗), (2)

where 0 is the zero vector, H1 and H2 are real Hilbert spaces, f̂ and ĝ are given single-valued operators
defined on H1 and H2, respectively, B1 and B2 are multi-valued maximal monotone mappings defined
on H1 and H2, respectively, and A is a bounded linear operator defined on H1 to H2.
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It is well known (see [1]) that

0 ∈ f̂ (x∗) + B1(x∗) ⇐⇒ x∗ = JB1
λ (x∗ − λ f̂ (x∗)),

and that
0 ∈ ĝ(y∗) + B2(y∗) ⇐⇒ y∗ = JB2

λ (y∗ − λĝ(y∗)), y∗ = Ax∗,

where JB1
λ := (I + λB1)

−1 and JB2
λ := (I + λB2)

−1 are the resolvent operators of B1 and B2, respectively,
with λ > 0. Note that JB1

λ and JB2
λ are nonexpansive and firmly nonexpansive.

Recently, Shehu and Agbebaku [2] proposed an algorithm involving a step-size selected
and proved strong convergence theorem for split inclusion problem and fixed point problem
for multi-valued quasi-nonexpansive mappings. In [1], Moudafi pointed out that the problem
(SMVIP) [3–5] includes, as special cases, the split variational inequality problem [6], the split zero
problem, the split common fixed point problem [7–9] and the split feasibility problem [10,11], which
have already been studied and used in image processing and recovery [12], sensor networks in
computerized tomography and data compression for models of inverse problems [13].

If f̂ ≡ 0 and ĝ ≡ 0 in the problem (SMVIP), then the problem reduces to the split variational
inclusion problem (SVIP) as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗) (3)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (4)

Note that the problem (SVIP) is equivalent to the following problem:

Find a point x∗ ∈ H1 such that x∗ = JB1
λ (x∗) and y∗ = JB2

λ (y∗), y∗ = Ax∗

for some λ > 0.

We denote the solution set of the problem (SVIP) by Ω, i.e.,

Ω = {x∗ ∈ H1 : 0 ∈ B1(x∗) and 0 ∈ B2(y∗), y∗ = Ax∗}.

Many works have been developed to solve the split variational inclusion problem (SVIP). In 2002,
Byrne et al. [7] introduced the iterative method {xn} as follows: For any x0 ∈ H1,

xn+1 = JB1
λ (xn + γA∗(JB2

λ − I)Axn) (5)

for each n ≥ 0, where A∗ is the adjoint of the bounded linear operator A, γ ∈ (0, 2/L), L = ‖A∗A‖
and λ > 0. They have shown the weak and strong convergence of the above iterative method for
solving the problem (SVIP).

Later, inspired by the above iterative algorithm, many authors have extended the algorithm {xn}
generated by (5). In particular, Kazmi and Rizvi [4] proposed an algorithm {xn} for approximating a
solution of the problem (SVIP) as follows:{

un = JB1
λ (xn + γn A∗(JB2

λ − I)Axn),

xn+1 = αn fn(xn) + (1− αn)Sun
(6)

for each n ≥ 0, where {αn} is a sequence in (0, 1), λ > 0, γ ∈ (0, 1/L), L is the spectral radius of the
operator A∗A, f : H1 → H1 is a contraction and S : H1 → H1 is a nonexpansive mapping. In 2015,
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Sitthithakerngkiet et al. [5] proposed an algorithm {xn} for solving the problem (SVIP) and the fixed
point problem (FPP) of a countable family of nonexpansive mappings as follows:{

yn = JB1
λ (xn + γn A∗(JB2

λ − I)Axn),

xn+1 = αn f (xn) + (1− αnD)Snyn
(7)

for each n ≥ 0, where {αn} is a sequence in (0, 1), λ > 0, γ ∈ (0, 1/L), L is the spectral radius of the
operator A∗A, f : H1 → H1 is a contraction, D : H1 → H2 is strongly positive bounded linear operator
and, for each n ≥ 1, Sn : H1 → H1 is a nonexpansive mapping.

In both their works, they obtained some strong convergence results by using their proposed
iterative methods (for some more results on algorithms, see [14,15]).

Recall that a point x∗ ∈ H1 is called a fixed point of a given multi-valued mapping S : H1 → 2H1

if
x∗ ∈ Sx∗ (8)

and the fixed point problem (FPP) for a multi-valued mapping S : H1 → 2H1 is as follows:

Find a point x∗ ∈ H1 such that x∗ ∈ Sx∗.

The set of fixed points of the multi-valued mapping S is denoted by F(S).

As applications, the fixed point theory for multi-valued mappings was applied to various fields,
especially mathematical economics and game theory (see [16–18]).

Recently, motivated by the results of Byrne et al. [7], Kazmi and Rizvi [4] and Sitthithakerngkiet [5],
Shehu and Agbebaku [2] introduced the split fixed point inclusion problem (SFPIP) from the problems
(SVIP) and (FPP) for a multi-valued quasi-nonexpansive mapping S : H1 → 2H1 as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗), x∗ ∈ Sx∗ (9)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗), (10)

where H1 and H2 are real Hilbert spaces, B1 and B2 are multi-valued maximal monotone mappings
defined on H1 and H2, respectively, and A is a bounded linear operator defined on H1 to H2.

Note that the problem (SFPIP) is equivalent to the following problem: for some λ > 0,

Find a point x∗ ∈ H1 such that x∗ = JB1
λ (x∗), x∗ ∈ Sx∗ and Ax∗ = JB2

λ (Ax∗).

The solution set of the problem (SFPIP) is denoted by F(S)
⋂

Ω, i.e.,

F(S)
⋂

Ω = {x∗ ∈ H1 : 0 ∈ B1(x∗), x∗ ∈ Sx∗ and 0 ∈ B2(Ax∗)}.

Notice that, if S is the identity operator, then the problem (SFPIP) reduces to the problem (SVIP).
Moreover, if JB1

λ = JB2
λ = A = I, then the problem (SFPIP) reduces to the problem (FPP) for a

multi-valued quasi-nonexpansive mapping.

Furthermore, Shehu and Agbebaku [2] introduced an algorithm {xn} for solving the problem
(SFPIP) for a multi-valued quai-nonexpasive mapping S as follows: For any x1 ∈ H1,{

un = JB1
λ (xn + γn A∗(JB2

λ − 1)Axn),

xn+1 = αn fn(xn) + βnxn + δn(σwn + (1− σ)un), wn ∈ Sxn,
(11)
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for each n ≥ 1, where {αn}, {βn} and {δn} are the real sequences in (0, 1) such that

αn + βn + δn = 1, σ ∈ (0, 1), γn := τn
‖(JB2

λ − I)Axn‖2

‖A∗(JB2
λ − I)‖2

,

where 0 < a ≤ τn ≤ b < 1, and { fn(x)} is the uniform convergence sequence for any x in a bounded
subset D of H1, and proved that the sequences {un} and {xn} generated by (11) both converge strongly
to p ∈ F(S) ∩Ω, where p = PF(S)∩Ω f (p).

In optimization theory, the second-order dynamical system, which is called the heavy ball method,
is used to accelerate the convergence rate of algorithms. This method is a two-step iterative method
for minimizing a smooth convex function which was firstly introduced by Polyak [19].

The following is a modified heavy ball method for the improvement of the convergence rate,
which was introduced by Nesterov [20]:{

yn = xn + θn(xn − xn−1),

xn+1 = yn − λn∇ f (yn)

for each n ≥ 1, where λn > 0, θn ∈ [0, 1) is an extrapolation factor. Here, the term θn(xn − xn−1) is the
inertia (for more recent results on the inertial algorithms, see [21,22]).

The following method is called the inertial proximal point algorithm, which was introduced by
Alvarez and Attouch [23]. This method combined the proximal point algorithm [24] with the inertial
extrapolation [25,26]: {

yn = xn + θn(xn − xn−1),

xn+1 = (I + λnT̂)−1(yn)
(12)

for each n ≥ 1, where I is identity operator and T̂ is a maximal monotone operator. It was proven that,
if a positive sequence λn is non-decreasing, θn ∈ [0, 1) and the following summability condition holds:

∞

∑
n=1

θn‖xn − xn−1‖2 < ∞, (13)

then {xn} generated by (12) converges to a zero point of T.

In fact, recently, some authors have pointed out some problems in this summability condition
(13) given in [27], that is, to satisfy this summability condition (13) of the sequence {xn}, one needs to
calculate {θn} at each step. Recently, Bot et al. [28] improved this condition, that is, they got rid of the
summability condition (13) and replaced the other conditions.

In this paper, inspired by the results of Shehu and Agbebaku [2], Nesterov [20] and Alvarez
and Attouch [23], we proposed a new algorithm by combining the iterative algorithm (11) with the
inertial extrapolation for solving the problem (SFPIP) and prove some strong convergence theorems
of the proposed algorithm to show the existence of a solution of the problem (SFPIP). Furthermore, as
applications, we consider our proposed algorithm for solving the variational inequality problem and
give some applications in game theory.

2. Preliminaries

In this section, we recall some definitions and results which will be used in the proof of the
main results.
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Let H1 and H2 be two real Hilbert spaces with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let
C be a nonempty closed and convex subset of H1 and D be a nonempty bounded subset of H1. Let
A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint of A.

Let {xn} be a sequence in H, we denote the strong and weak convergence of a sequence {xn} by
xn → x and xn ⇀ x, respectively.

Recall that a mapping T : C → C is said to be:

(1) Lipschitz if there exists a positive constant α such that, for all x, y ∈ C,

‖Tx− Ty‖ ≤ α‖x− y‖.

If α ∈ (0, 1) and α = 1, then the mapping T is contractive and nonexpansive, respectively.
(2) firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉

for all x, y ∈ C.

A mapping PC is said to be the metric projection of H1 onto C if, for all point x ∈ H1, there exists a
unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C.
It is well known that PC is nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≤ ‖PCx− PCy‖2

for all x, y ∈ H1. Moreover, PCx is characterized by the fact PCx ∈ C and

〈x− PCx, y− PCx〉 ≤ 0

for all y ∈ C and x ∈ H1 (see [6,22]).

A multi-valued mapping B1 : H1 → 2H1 is said to be monotone if, for all x, y ∈ H1, u ∈ B1(x) and
v ∈ B1(y),

〈x− y, u− v〉 ≥ 0.

A monotone mapping B1 : H1 → 2H1 is said to be maximal if the graph G(B1) of B1 is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping B1 is
maximal if and only if, for all (x, u) ∈ H1 × H1,

〈x− y, u− v〉 ≥ 0

for all (y, v) ∈ G(B1) implies that u ∈ B1(x).

Let B1 : H1 → 2H1 be a multi-valued maximal monotone mapping. Then the resolvent mapping
JB1
λ : H1 → H1 associated with B1 is defined by

JB1
λ (x) := (I + λB1)

−1(x)

for all x ∈ H1 and for some λ > 0, where I is the identity operator on H1. It is well known that, for any
λ > 0, the resolvent operator JB1

λ is single-valued firmly nonexpansive (see [2,5,6,14]).
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Definition 1. Suppose that { fn(x)} is a sequence of functions defined on a bounded set D. Then fn(x)
converges uniformly to the function f (x) on D if, for all x ∈ D,

fn(x)→ f (x) as n→ ∞.

Let fn : D → H1 be a uniformly convergent sequence of contraction mappings on D, i.e., there
exists µn ∈ (0, 1) such that

fn(x)− fn(y)‖ ≤ µn‖x− y‖

for all x, y ∈ D.

Let CB(H1) denote the family of nonempty closed and bounded subsets of H1. The Hausdorff
metric on CB(H1) is defined by

Ĥ(x, y) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}

for all A, B ∈ CB(H1) (see [18]).

Definition 2. [2] Let S : H1 → CB(H1) be a multi-valued mapping. Assume that p ∈ H1 is a fixed point of
S, that is, p ∈ Sp. The mapping S is said to be:

(1) nonexpansive if, for all x, y ∈ H1,
Ĥ(Sx, Sy) ≤ ‖x− y‖.

(2) quasi-nonexpansive if F(S) 6= ∅ and, for all x ∈ H1 and p ∈ F(S),

Ĥ(Sx, Sp) ≤ ‖x− p‖

Definition 3. [2] A single-valued mapping S : H → H is said to be demiclosed at the origin if, for any
sequence {xn} ⊂ H with xn ⇀ x and Sxn → 0, we have Sx = 0.

Definition 4. [2] A multi-valued mapping S : H1 → CB(H1) is said to be demiclosed at the origin if, for
any sequence {xn} ⊂ H with xn ⇀ x and d(xn, Sxn)→ 0, we have x ∈ Sx.

Lemma 1. [29,30] Let H be a Hilbert space. Then, for any x, y, z ∈ X and α, β, γ ∈ [0, 1] with α + β + γ = 1,
we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y− z‖2.

Lemma 2. [2,31] Let H be a real Hilbert space. Then the following results hold:

(1) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.
(2) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2.
(3) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H.

Lemma 3. [2,32,33] Let {an}, {cn} ⊂ R+, {σn} ⊂ (0, 1) and {bn} ⊂ R be sequences such that

an+1 ≤ (1− σn)an + bn + cn for all n ≥ 0.

Assume ∑∞
n=0 |cn| < ∞. Then the following results hold:

(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
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(2) If we have
∞

∑
n=0

σn = ∞ and lim sup
n→∞

bn

σn
≤ 0,

then limn→∞ an = 0.

Lemma 4. [32,33] Let {sn} be a sequence of non-negative real numbers such that

sn+1 ≤ (1− λn)sn + λntn + rn

for each n ≥ 1, where

(a) {λn} ⊂ [0, 1] and ∑∞
n=1 λn = ∞;

(b) lim sup tn ≤ 0;
(c) rn ≥ 0 and ∑∞

n=1 rn < ∞.

Then sn → 0 as n→ ∞.

3. The Main Results

In this section, we prove some strong convergence theorems of the proposed algorithm for solving
the problem (SFPIP).

Theorem 1. Let H1, H2 be two real Hilbert spaces, A : H1 → H2 be bounded operator with adjoint operator A∗

and B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mappings. Let S : H1 → CB(H1) be a multi-valued
quasi-nonexpansive mapping and S be demiclosed at the origin. Let { fn} be a sequence of µn-contractions
fn : H1 → H1 with 0 < µ∗ ≤ µn ≤ µ∗ < 1 and { fn(x)} be uniformly convergent for any x in a bounded
subset D of H1. Suppose that F(S) ∩Ω 6= ∅. For any x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and
{xn} be generated by 

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξvn + (1− ξ)un, vn ∈ Sxn,

xn+1 = αn fn(xn) + βnxn + δnzn

(14)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then {xn} generated by (14) converges strongly to p ∈ F(S) ∩Ω, where p = PF(S)∩Ω f (p).

Proof. First, we show that {xn} is bounded. Let p = PF(S)∩Ω f (p). Then p ∈ F(S)∩Ω and so JB1
λ p = p

and JB2
λ Ap = Ap. By the triangle inequality, we get

‖yn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (15)
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By the Cauchy-Schwarz inequality and Lemma 2 (1) and (2), we get

‖yn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − p, xn − xn−1〉

≤ ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − xn−1‖‖xn − p‖. (16)

By using (15) and the fact that S is quasi-nonexpansive S, we get

‖zn − p‖ = ‖ξvn + (1− ξ)un − p‖
= ‖ξ(vn − p) + (1− ξ)(un − p)‖
≤ ξ‖vn − p‖+ (1− ξ)‖un − p‖
≤ ξd(vn, Sp) + (1− ξ)‖yn − p‖
≤ ξĤ(Sxn, Sp) + (1− ξ)[‖xn − p‖+ θn‖xn − xn−1‖]
≤ ξ‖xn − p‖+ (1− ξ)‖xn − p‖+ (1− ξ)θn‖xn − xn−1‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖, (17)

which implies that

‖zn − p‖2 ≤ (‖xn − p‖+ θn‖xn − xn−1‖)2

= ‖xn − p‖2 + 2θn‖xn − xn−1‖‖xn − p‖+ θ2
n‖xn − xn−1‖2. (18)

Since JB1
λ is nonexpansive, by Lemma 2 (2), we get

‖un − p‖2 = ‖JBI
λ (yn + γn A∗(JB2

λ − I)Ayn)− p‖2

= ‖JB1
λ (yn + γn A∗(JB2

λ − I)Ayn)− JB1
λ p‖2

≤ ‖yn + γn A∗(JB2
λ − I)Ayn − p‖2

= ‖yn − p‖2 + γ2
n‖A∗(JB2

λ − I)Ayn‖2 + 2γn〈yn − p, A∗(JB2
λ − I)Ayn〉. (19)

Again, by Lemma 2 (2), we get

〈yn − p, A∗(JB2
λ − I)Ayn〉

= 〈A(yn − p), (JB2
λ − I)Ayn〉

= 〈JB2
λ Ayn − Ap− (JB2

λ − I)Ayn, (JB2
λ − I)Ayn〉

= 〈JB2
λ Ayn − Ap, (JB2

λ − I)Ayn〉 − 〈(JB2
λ − I)Ayn, (JB2

λ − I)Ayn〉

= 〈JB2
λ Ayn − Ap, (JB2

λ − I)Ayn〉 − ‖(JB2
λ − I)Ayn‖2

=
1
2
(
‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2

− ‖JB2
λ Ayn − Ap− (JB2

λ − I)Ayn‖2)− ‖(JB2
λ − I)Ayn‖2

=
1
2
(
‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2 − ‖JB2

λ Ayn − Ap− JB2
λ Ayn + Ayn‖2)

− ‖(JB2
λ − I)Ayn‖2

=
1
2
(
‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2 − ‖Ayn − Ap‖2)− ‖(JB2

λ − I)Ayn‖2

=
1
2
(
‖JB2

λ Ayn − Ap‖2 − ‖Ayn − Ap‖2 − ‖(JB2
λ − I)Ayn‖2)

≤ 1
2
(
‖Ayn − Ap‖2 − ‖Ayn − Ap‖2 − ‖(JB2

λ − I)Ayn‖2)
= −1

2
‖(JB2

λ − I)Ayn‖2. (20)
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Using (20) into (19), we get

‖un − p‖2 ≤ ‖yn − p‖2 + γ2
n‖A∗(JB2

λ − I)Ayn‖2 − γn‖(JB2
λ − I)Ayn‖2

= ‖yn − p‖2 − γn
(
‖(JB2

λ − I)Ayn‖2 − γn‖A∗(JB2
λ − I)Ayn‖2). (21)

By the definition of γn, (21) can then be written as follows:

‖un − p‖2 ≤ ‖yn − p‖2 − γn(1− τn)‖(JB2
λ − I)Ayn‖2 ≤ ‖yn − p‖2.

Thus we have
‖un − p‖ ≤ ‖yn − p‖. (22)

Using the condition (C3) and (17), we get

‖xn+1 − p‖ = ‖αn fn(xn) + βnxn + δnzn − p‖
= ‖αn( fn(xn)− fn(p)) + αn( fn(p)− p) + βn(xn − p) + δn(zn − p)‖
≤ αn‖ fn(xn)− fn(p)‖+ αn‖ fn(p)− p‖+ βn‖xn − p‖+ δn‖zn − p‖
≤ αnµn‖xn − p‖+ αn‖ fn(p)− p‖+ βn‖xn − p‖+ δn(‖xn − p‖
+ (1− ξ)θn‖xn − xn−1‖)
≤ (αnµ∗ + (βn + δn))‖xn − p‖+ (1− ξ)δnθn‖xn − xn−1‖+ αn‖ fn(p)− p‖

= (1− αn(1− µ∗)‖xn − p‖+ (1− ξ)δnαn
θn

αn
‖xn − xn−1‖+ αn‖ fn(p)− p‖.

Since { fn} is the uniform convergence on D, there exists a constant M > 0 such that

‖ fn(p)− p‖ ≤ M

for each n ≥ 1. So we can choose β :=
M

1− µ∗
and set

an := ‖xn − p‖, bn := αn‖ fn(p)− p‖,

cn := (1− ξ)δnαn
θn

αn
‖xn − xn−1‖, σn := αn(1− µ∗).

By Lemma 3 (1) and our assumptions, it follows that {xn} is bounded. Moreover, {un} and {yn} are
also bounded.
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Now, by Lemma 2, we get

‖xn+1 − p‖2

= ‖αn( fn(xn)− fn(p)) + αn( fn(p)− p) + βn(xn − p) + δn(zn − p)‖2

≤ ‖αn( fn(xn)− fn(p)) + βn(xn − p) + δn(zn − p)‖2 + 2αn〈 fn(p)− p, xn+1 − p〉
= ‖βn(xn − p) + δn(zn − p)‖2 + α2

n‖ fn(xn)− fn(p)‖2

+ 2αn〈 fn(xn)− fn(p), βn(xn − p) + δn(zn − p)〉+ 2αn〈 fn(p)− p, xn+1 − p〉
≤ β2

n‖xn − p‖2 + δ2
n‖zn − p‖2 + 2βnδn〈xn − p, zn − p〉+ α2

nµ2
n‖xn − p‖2

+ 2αn〈 fn(p)− p, xn+1 − p〉+ 2αn‖ fn(xn)− fn(p)‖‖βn(xn − p) + δn(zn − p)‖

≤ β2
n‖xn − p‖2 + δ2

n‖zn − p‖2 + βnδn

(
‖xn − p‖2 + ‖zn − p‖2 − ‖xn − zn‖2

)
+ α2

nµ∗2‖xn − p‖2 + 2αnµn‖xn − p‖ (βn‖xn − p‖+ δn‖zn − p‖)
+ 2αn〈 fn(p)− p, xn+1 − p〉
≤ βn(βn + δn)‖xn − p‖2 + δn(βn + δn)‖zn − p‖2 − βnδn‖xn − zn‖2 + α2

nµ∗2‖xn − p‖2

+ 2µ∗αn(βn + δn)‖xn − p‖2 + 2µ∗αn(1− ξ)δnθn‖xn − xn−1‖‖xn − p‖
+ 2αn〈 fn(p)− p, xn+1 − p〉
≤ βn(βn + δn)‖xn − p‖2 + δn(βn + δn)

(
‖xn − p‖2 + θ2

n‖xn − xn−1‖2

+ 2θn‖xn − xn−1‖‖xn − p‖
)
− βnδn‖xn − zn‖2 + α2

nµ∗2‖xn − p‖2

+ 2µ∗αn(βn + δn)‖xn − p‖2 + 2µ∗αn(1− ξ)δnθn‖xn − xn−1‖‖xn − p‖
+ 2αn〈 fn(p)− p, xn+1 − p〉

=
(
(1− αn)

2 + α2
nµ∗2 + 2µ∗αn(1− αn)

)
‖xn − p‖2 − βnδn‖xn − zn‖2

+ 2
(
1− αn(1− µ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖+ (1− αn)δnθ2

n‖xn − xn−1‖2

+ 2αn〈 fn(p)− p, xn+1 − p〉. (23)

Now, we consider two steps for the proof as follows:

Case 1. Suppose that there exists n0 ∈ N such that {‖xn − p‖}∞
n=n0

is non-increasing and then
{‖xn − p‖} converges. By Lemma 1, we get

‖xn+1 − p‖2 = ‖αn fn(xn) + βnxn + δnzn − p‖2

= αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2 − αnβn‖ fn(xn)− xn‖2

− αnγn‖ fn(xn)− zn‖2 − βnγn‖xn − zn‖2

≤ αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2

≤ αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn
(
ξ‖xn − p‖2 + (1− ξ)‖un − p‖2)

≤ αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 + (1− ξ)δn‖un − p‖2,

which implies that

−‖un − p‖2 ≤ 1
(1− ξ)δn

(
αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2). (24)
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Applying (16) and (24) to (21), we get

γn(‖(JB2
λ − I)Ayn‖2 − γn‖A∗(JB2

λ − I)Ayn‖2)

≤ ‖yn − p‖2 − ‖un − p‖2

≤ ‖xn − p‖2 + 2θn‖xn−1 − p‖‖xn − p‖+ θ2
n‖xn − xn−1‖2

+
1

(1− ξ)δn
(αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2)

=
βn + δn

(1− ξ)δn
‖xn − p‖2 +

αn

(1− ξ)δn
‖ fn(xn)− p‖2 − 1

(1− ξ)δn
‖xn+1 − p‖2

+ θn‖xn − xn−1‖ (2‖xn − p‖+ θn‖xn − xn−1‖)

≤ 1
(1− ξ)ε2

(‖xn − p‖2 − ‖xn+1 − p‖2) +
αn

(1− ξ)ε2

(
‖ fn(xn)− p‖2 − ‖xn − p‖2

+
θn

αn
‖xn − xn−1‖

(
2‖xn − p‖+ αn

θn

αn
‖xn − xn−1‖

))
.

Since {‖xn − p‖} is convergent, we have ‖xn − p‖ − ‖xn+1 − p‖ → 0 as n → ∞. By the conditions
(C2) and (C4), we get

γn(‖(JB2
λ − I)Ayn‖2 − γn‖A∗(JB2

λ − I)Ayn‖2)→ 0 as n→ ∞.

From the definition of γn, we get

τn(1− τn)‖(JB2
λ − I)Ayn‖4

‖A∗(JB2
λ − I)Ayn‖2

→ 0 as n→ ∞

or
‖(JB2

λ − I)Ayn‖2

‖A∗(JB2
λ − I)Ayn‖

→ 0 as n→ ∞.

Since

‖A∗(JB2
λ − I)Ayn‖ ≤ ‖A∗‖‖(JB2

λ − I)Ayn‖ = ‖A‖‖(JB2
λ − I)Ayn‖,

it is easy to see that

‖(JB2
λ − I)Ayn‖ ≤ ‖A‖

‖(JB2
λ − I)Ayn‖2

‖A∗(JB2
λ − I)Ayn‖

.

Consequently, we get

‖(JB2
λ − I)Ayn‖ → 0 as n→ ∞ (25)

and also
‖A∗(JB2

λ − I)Ayn‖ → 0 as n→ ∞. (26)
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Similarly, from (23) and our assumptions, we get

‖xn − zn‖2

=
1

βnδn

{
‖xn − p‖2 − ‖xn+1 − p‖2 + (1− αn)δnθ2

n‖xn − xn−1‖2

+ 2
(
1− αn(1− µ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖

+ αn
[(

αn(1 + µ∗2)− 2(1− µ∗(1− αn))
)
‖xn − p‖2 + 2〈 fn(p)− p, xn+1 − p〉

]}
≤ 1

ε1ε2

{
‖xn − p‖2 − ‖xn+1 − p‖2 +

θn

αn
‖xn − xn−1‖

[
δn(1− αn)α

2
n

θn

αn
‖xn − xn−1‖

+ 2δn
(
1− αn(1− µ∗(1− ξ))

)
θn‖xn − p‖

]
+ αn

[
2〈 fn(p)− p, xn+1 − p〉

+
(
αn(1 + µ∗2)− 2(1− µ∗(1− αn))

)
‖xn − p‖2]}→ 0 as n→ ∞.

Therefore, we have

‖xn − zn‖ → 0 as n→ ∞. (27)

By the condition (C2) and (27), we get

‖xn+1 − xn‖ = ‖αn fn(xn) + βnxn + δnzn − xn‖
≤ αn‖ fn(xn)− xn‖+ δn‖xn − zn‖ → 0 as n→ ∞.

Thus we have

‖xn+1 − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn‖ → 0 as n→ ∞.

Since JB1
λ is firmly nonexpansive, we have

‖un − p‖2

= ‖JB1
λ (yn + γn A∗(JB2

λ − I)Ayn)− JB1
λ p‖2

≤ 〈un − p, yn + γn A∗(JB2
λ − I)Ayn − p〉

=
1
2
(
‖un − p‖2 + ‖yn + γn A∗(JB2

λ − I)Ayn − p‖2 − ‖un − yn − γn A∗(JB2
λ − I)Ayn‖2)

=
1
2
(
‖un − p‖2 + ‖yn − p‖2 + γ2

n‖A∗(JB2
λ − I)Ayn‖2 + 2〈yn − p, γn A∗(JB2

λ − I)Ayn〉

− ‖un − yn‖2 − γ2
n‖A∗(JB2

λ − I)Ayn‖2 + 2〈un − yn, γn A∗(JB2
λ − I)Ayn〉

)
≤ 1

2
(
‖yn − p‖2 + ‖yn − p‖2 − ‖un − yn‖2 + 2〈un − p, γn A∗(JB2

λ − I)Ayn〉
)

≤ 1
2
(
2‖yn − p‖2 − ‖un − yn‖2 + 2γn‖un − p‖‖A∗(JB2

λ − I)Ayn‖
)

≤ ‖yn − p‖2 − 1
2
‖un − yn‖2 + γn‖un − p‖‖A∗(JB2

λ − I)Ayn‖

or
‖un − yn‖2 ≤ 2

(
‖yn − p‖2 − ‖un − p‖2 + γn‖un − p‖‖A∗(JB2

λ − 1)Ayn‖
)
. (28)
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From (28), (16), (24) and (26) and our assumptions, it follows that

‖un − yn‖2 ≤ 2
[
‖xn − p‖2 + 2θn‖xn − xn−1‖‖xn − p‖+ θ2

n‖xn − xn−1‖2

+
1

(1− ξ)δn

(
αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2)

+ γn‖un − p‖‖A∗(JB2
λ − 1)Ayn‖

]
= 2

[ 1
(1− ξ)ε2

(
‖xn − p‖2 − ‖xn+1 − p‖2)+ γn‖un − p‖‖A∗(JB2

λ − 1)Ayn‖

+
αn

(1− ξ)ε2

(
‖ fn(xn)− p‖2 − ‖xn − p‖2

+
θn

αn
‖xn − xn−1‖

(
2‖xn − p‖+ αn

θn

αn
‖xn − xn−1‖

))]
→ 0 as n→ ∞,

that is, we have
‖un − yn‖ → 0 as n→ ∞. (29)

From yn := xn + θn(xn − xn−1), we get

‖yn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖ = αn
θn

αn
‖xn − xn−1‖,

which, with the condition (C4), implies that

‖yn − xn‖ → 0 as n→ ∞. (30)

In addition, using (27), (29) and (30), we obtain

‖zn − un‖ ≤ ‖un − yn‖+ ‖yn − zn‖
≤ ‖un − yn‖+ ‖yn − xn‖+ ‖xn − zn‖ → 0 as n→ ∞.

From zn := ξvn + (1− ξ)un, we get

‖vn − un‖ =
1
ξ
‖zn − un‖ → 0 as n→ ∞. (31)

Thus, by (29)–(31), we also get

‖xn − vn‖ ≤ ‖xn − un‖+ ‖un − vn‖
≤ ‖xn − yn‖+ ‖yn − un‖+ ‖un − vn‖ → 0 as n→ ∞.

Therefore, we have
d(xn, Sxn) ≤ ‖xn − vn‖ → 0 as n→ ∞. (32)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ H1 and,
consequently, {unk} and {ynk} converge weakly to the point x∗.

From (32), Lemma 4 and the demiclosedness principle for a multi-valued mapping S at the origin,
we get x∗ ∈ Sx∗, which implies that

x∗ ∈ F(S).

Next, we show that x∗ ∈ Ω. Let (v, z) ∈ G(B1), that is, z ∈ B1(v). On the other hand,
unk = JB1

λ (ynk + γnk A∗(JB2
λ − I)Aynk ) can be written as

ynk + γnk A∗(JB1
λ − I)Aynk ∈ unk + λB1(unk ),
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or, equivalently,
(ynk − unK ) + γnk A∗(JB1

λ − I)Aynk

λ
∈ B1(unk ).

Since B1 is maximal monotone, we get

〈
v− unk , z−

(ynk − unk ) + γnk A∗(JB2
λ − I)Aynk

λ

〉
≥ 0.

Therefore, we have

〈v− unk , z〉 ≥
〈

v− unk ,
(ynk − unk ) + γnk A∗(JB2

λ − I)Aynk

λ

〉
=
〈

v− unk ,
ynk − unk

λ

〉
+
〈

v− unk ,
γnk A∗(JB2

λ − I)Aynk

λ

〉
. (33)

Since unk ⇀ x∗, we have
lim
k→∞
〈v− unk , z〉 = 〈v− x∗, z〉.

By (26) and (29), it follows that (33) becomes 〈v− x∗, z〉 ≥ 0, which implies that

0 ∈ B1(x∗).

Moreover, from (29), we know that {Aynk} converges weakly to Ax∗ and, by (25), the fact that JB2
λ

is nonexpansive and the demiclosedness principle for a multi-valued mapping, we have

0 ∈ B2(Ax∗),

which implies that x∗ ∈ Ω. Thus x∗ ∈ F(S) ∩Ω. Since { fn(x)} is uniformly convergent on D, we get

lim sup
n→∞

〈 fn(p)− p, xn+1 − p〉 = lim sup
j→∞

〈 fnj(p)− p, xnj+1 − p〉

= 〈 f (p)− p, x∗ − p〉 ≤ 0.

From (23), we get

‖xn+1 − p‖2 ≤
(
1− 2αn(1− µ∗(1− αn)) + α2

n(1 + µ∗2)
)
‖xn − p‖2 − βnδn‖xn − zn‖2

+ 2
(
1− αn(1− µ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖

+ (1− αn)δnθ2
n‖xn − xn−1‖2 + 2αn〈 fn(p)− p, xn+1 − p〉

≤
(
1− 2αn(1− µ∗)

)
‖xn − p‖2 + 2αn(1− µ∗)

〈 fn(p)− p, xn+1 − p〉
1− µ∗

+ αn
[
δn

θn

αn
‖xn − xn−1‖

(
2
(
1− αn(1− µ∗(1− ξ))

)
‖xn − p‖

+
(
(1− αn)αn

θn

αn
‖xn − xn−1‖

)
+ αn(1 + µ∗2)‖xn − p‖2].

By Lemma 4, we obtain
lim

n→∞
xn = p.

Case 2. Suppose that {‖xn − p‖}∞
n=n0

is not a monotonically decreasing sequence for some n0 large
enough. Set Γn = ‖xn − p‖2 and let τ : B→ N be a mapping defined by

τ(n) := max{k ∈ N : k ≤ n, Γk ≤ Γk+1}
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for all n ≥ n0. Obviously, τ is a non-decreasing sequence. Thus we have

0 ≤ Γτ(n) ≤ Γτ(n)+1

for all n ≥ n0. That is, ‖xτ(n) − p‖ ≤ ‖xτ(n)+1 − p‖ for all n ≥ n0. Thus limn→∞ ‖xτ(n) − p‖ exists.
As in Case 1, we can show that

lim
n→∞

‖(JB2
λ − I)Ayτ(n)‖ = 0, lim

n→∞
‖A∗(JB2

λ − I)Ayτ(n)‖ = 0, (34)

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0, lim
n→∞

‖uτ(n) − xτ(n)‖ = 0, (35)

lim
n→∞

‖vτ(n) − uτ(n)‖ = 0, lim
n→∞

‖xτ(n) − vτ(n)‖ = 0. (36)

Therefore, we have
d(xτ(n), Sxτ(n)) ≤ ‖xτ(n) − vτ(n)‖ → 0 as n→ ∞. (37)

Since {xτ(n)} is bounded, there exists a subsequence {uτ(n)} of {xτ(n)} that converges weakly to a
point x∗ ∈ H1. From ‖uτ(n) − xτ(n)‖ → 0, it follows that uτ(n) ⇀ x∗ ∈ H1.

Moreover, as in Case 1, we show that x∗ ∈ F(S) ∩Ω. Furthermore, since { fn(x)} is uniformly
convergent on D ⊂ H1, we obtain that

lim sup
n→∞

〈 fτ(n)(p)− p, xτ(n)+1 − p〉 ≤ 0.

From (23), we get

‖xτ(n)+1 − p‖2 ≤
(
1− 2ατ(n)(1− µ∗(1− ατ(n))) + α2

τ(n)(1 + µ∗2)
)
‖xτ(n) − p‖2

− βτ(n)δτ(n)‖xτ(n) − zτ(n)‖2 + 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉

+ 2
(
1− ατ(n)(1− µ∗(1− ξ))

)
δτ(n)θτ(n)‖xτ(n) − xτ(n)−1‖‖xτ(n) − p‖

+ (1− ατ(n))δτ(n)θ
2
τ(n)‖xτ(n) − xτ(n)−1‖2

≤
(
1− 2ατ(n)(1− µ∗)

)
‖xτ(n) − p‖2 + α2

τ(n)(1 + µ∗2)‖xτ(n) − p‖2

+ δτ(n)θn‖xτ(n) − xτ(n)−1‖
(
2(1− ατ(n)(1− µ∗))‖xτ(n) − p‖

+ (1− ατ(n))θτ(n)‖xτ(n) − xτ(n)−1‖
)
+ 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉,

which implies that

2ατ(n)(1− µ∗)‖xτ(n) − p‖2 ≤ ‖xτ(n) − p‖2 − ‖xτ(n)+1 − p‖2 + α2
τ(n)(1 + µ∗2)‖xτ(n) − p‖2

+ δτ(n)θn‖xτ(n) − xτ(n)−1‖
(
2(1− ατ(n)(1− µ∗))‖xτ(n) − p‖

+ (1− ατ(n))θτ(n)‖xτ(n) − xτ(n)−1‖
)

+ 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉,

or

2(1− µ∗)‖xτ(n) − p‖2 ≤ ατ(n)(1 + µ∗2)‖xτ(n) − p‖2 + 2〈 fτ(n)(p)− p, xτ(n)+1 − p〉

+ δτ(n)
θτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

(
2(1− ατ(n)(1− µ∗))‖xτ(n) − p‖

+ (1− ατ(n))ατ(n)
θτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

)
.
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Thus we have
lim sup

n→∞
‖xτ(n) − p‖ ≤ 0

and so
lim

n→∞
‖xτ(n) − p‖ = 0. (38)

By (35) and (38), we get

‖xτ(n)+1 − p‖ ≤ ‖xτ(n)+1 − xτ(n)‖+ ‖xτ(n) − p‖ → 0, n→ ∞.

Furthermore, for all n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n) (that is, τ(n) < n)
because of Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. Consequently, it follows that, for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n), Γτ(n)+1} = Γτ(n)+1.

Therefore, lim Γn = 0, that is, {xn} converges strongly to the point x∗. This completes the proof.

Remark 1. [22] The condition (C4) is easily implemented in numerical results because the value of ‖xn− xn−1‖
is known before choosing θn. Indeed, we can choose the parameter θn such as

θn =

min
{

ω̄, ωn
‖xn−xn−1‖

}
, if ‖xn − xn−1‖ 6= 0,

ω̄, otherwise,

where {ωn} is a positive sequence such that ωn = o(αn). Moreover, in the condition (C4), we can take

αn =
1

n + 1
, ω̄ =

4
5

and

θn =

min
{

ω̄, α2
n

‖xn−xn−1‖

}
, if ‖xn − xn−1‖ 6= 0,

ω̄, otherwise,

or

θn =

min
{

4
5 , 1

(n+1)2‖xn−xn−1‖

}
, if ‖xn − xn−1‖ 6= 0,

4
5 , otherwise.

If the multi-valued quasi-nonexpansive mapping S in Theorem 1 is a single-valued
quasi-nonexpansive mapping, then we obtain the following:

Corollary 1. Let H1 and H2 be two real Hilbert spaces. Suppose that A : H1 → H2 is a bounded linear operator
with adjoint operator A∗. Let { fn} be a sequence of µn-contractions fn : H1 → H1 with 0 < µ∗ ≤ µn ≤ µ∗ <

1 and { fn(x)} be uniformly convergent for any x in a bounded subset D of H1. Suppose that S : H1 → H1 is
a single-valued quasi-nonexpansive mapping, I − S is demiclosed at the origin and F(S) ∩Ω 6= ∅. For any
x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and {xn} be generated by

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξSxn + (1− ξ)un,

xn+1 = αn fn(xn) + βnxn + δnzn

(39)



Mathematics 2019, 7, 560 17 of 22

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by (39) converges strongly to a point p ∈ F(S)∩Ω, where p = PF(S)∩Ω f (p).

Remark 2. If θn = 0, then the iterative scheme (14) in Theorem 1 reduces to the iterative (11).

4. Applications

In this section, we give some applications of the problem (SFPIP) in the variational inequality
problem and game theory. First, we introduce variational inequality problem in [34] and game theory
(see [35]).

4.1. The Variational Inequality Problem

Let C be a nonempty closed and convex subset of a real Hilbert space H1. Suppose that an operator
F : H1 → H1 is monotone.

Now, we consider the following variational inequality problem (VIP):

Find a point x∗ ∈ C such that 〈Fx∗, y− x∗〉 ≥ 0 for all y ∈ C. (40)

The solution set of the problem (VIP) is denoted by Γ.
Moreover, it is well-known that x∗ is a solution of the problem (VIP) if and only if x∗ is a solution

of the problem (FPP) [34], that is, for any γ > 0,

x∗ = PC(x∗ − γFx∗).

The following lemma is extracted from [2,36]. This lemma is used for finding a solution of the
split inclusion problem and the variational inequality problem:

Lemma 5. Let H1 be a real Hilbert space, F : H1 → H1 be a monotone and L-Lipschitz operator on a nonempty
closed and convex subset C of H1. For any γ > 0, let T = PC(I − γF(PC(I − γF))). Then, for any y ∈ Γ and
Lγ < 1, we have

‖Tx− Ty‖ ≤ ‖x− y‖,

I − T is demiclosed at the origin and F(T) = Γ.

Now, we apply our Theorem 1, by combining with Lemma 5, to find a solution of the problem
(VIP), that is, a point in the set Γ.

let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone mappings defined on H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator with its adjoint A∗.

Now, we consider the split fixed point variational inclusion problem (SFPVIP) as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗), x∗ ∈ Γ (41)

and
y∗ = Ax∗ ∈ H2 such that 0 ∈ B2(y∗). (42)
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Theorem 2. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear operator with
its adjoint A∗. Let { fn} be a sequence of µn-contractions fn : H1 → H1 with 0 < µ∗ ≤ µn ≤ µ∗ < 1
and { fn(x)} be uniformly convergent for any x in a bounded subset D of H1. For any λ > 0, let T =

PC(I − γF(PC(I − γF))) with Lγ < 1, where F : H1 → H1 is a L-Lipschitz and monotone operator on
C ⊂ H1 and F(T) ∩ Ω 6= ∅. For any x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and {xn} be
generated by 

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξTxn + (1− ξ)un,

xn+1 = αn fn(xn) + βnxn + δnzn

(43)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn, 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by (43) converges strongly to a point p ∈ F(T) ∩ Ω = Γ ∩ Ω, where
p = PΓ∩Ω f (p).

Proof. Since I − T is demiclosed at the origin and F(T) = Γ, by using Lemma (5) and Corollary (1),
the sequence {xn} converges strongly to a point p ∈ F(T) ∩Ω, that is, the sequence {xn} converges
strongly to a point p ∈ Γ.

4.2. Game Theory

Now, we consider a game of N players in strategic form

G = (pi, Si),

where i = 1, · · · , N, pi : S = S1 × S2 × · · · × SN → R is the pay-off function (continuous) of the ith
player and Si ∈ RMi is the set of strategy of the ith player such that Mi = |Si|.

Let Si be nonempty compact and convex set, si ∈ Si be the strategy of the ith player and
s = (s1, s2, · · · , sN) be the collective strategy of all players. For any s ∈ S and zi ∈ Si of the ith player
for each i, the symbols S−i, s−i and (zi, s−i) are defined by

• S−i := (S1 × · · · × Si−1 × Si+1 × · · · × SN) is the set of strategies of the remaining players when
si was chosen by ith player,

• s−i := (s1, · · · , si−1, si+1, · · · , sN) is the strategies of the remaining players when ith player has si
and

• (zi, s−i) := (s1, · · · , si−1, zi, si+1, · · · , sN) is the strategies of the situation that zi was chosen by ith
player when the rest of the remaining players have chosen s−i.

Moreover, s̄i is a special strategy of the ith player, supporting the player to maximize his pay-off,
which equivalent to the following:

pi(s̄i, s−i) = max
zi∈Si

pi(zi, s−i).
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Definition 5. [37,38] Given a game of N players in strategic form, the collective strategies s∗ ∈ S is said to be
a Nash equilibrium point if

pi(s∗) = max
zi∈Si

pi(zi, s∗i )

for all i = 1, · · · , N and s∗i ∈ S−i.

If no player can change his strategy to bring advantages, then the collective strategies s∗ = (s∗i , s∗−i)

is a Nash equilibrium point. Furthermore, a Nash equilibrium point is the collective strategies of all
players, i.e., s∗i (for each i ≥ 1) is the best response of ith player. There is a multi-valued mapping
Ti : S−i → 2Si such that

Ti(s−i) = arg max pi(zi, s−i)

= {si ∈ Si : pi(si, s−i) = max
zi∈Si

pi(zi, s−i)}

for all s−i ∈ S−i. Therefore, we can define the mapping T : S→ 2S by

T := T1 × T2 × · · · × TN

such that the Nash equilibrium point is the collective strategies s∗, where s∗ ∈ F(T). Note that
s∗ ∈ F(T) is equivalent to s∗i ∈ T(s∗−i).

Let H1 and H2 be two real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 be multi-valued
mappings. Suppose S is nonempty compact and convex subset of H1 = RMN , H2 = R and the rest of
the players have made their best responses s∗−i. For each s ∈ S, define a mapping A : S→ H2 by

As = pi(s)− pi(zi, s∗−i),

where pi is linear, bounded and convex. Indeed, A is also linear, bounded and convex.

The Nash equilibrium problem (NEP) is the following:

Find a point s∗ ∈ S such that As∗ > 0, 0 ∈ H2. (44)

However, the solution to the problem (NEP) may not be single-valued. Then the problem (NEP)
reduces to finding the fixed point problem (FPP) of a multi-valued mapping, i.e.,

Find a point s∗ ∈ S such that s∗ ∈ Ts∗, (45)

where T is multi-valued pay-off function.
Now, we apply our Theorem 1 to find a solution to the problem (FPP).

Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone mappings defined on H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator with its adjoint A∗.

Now, we consider the following problem:

Find a point s∗ ∈ H1 such that 0 ∈ B1(s∗), s∗ ∈ Ts∗ (46)

and
y∗ = As∗ ∈ H2 such that 0 ∈ B2(y∗). (47)

Theorem 3. Assume that B1 and B2 are maximal monotone mappings defined on Hilbert spaces H1 and H2,
respectively. Let T : S → CB(S) be a multi-valued quasi-nonexpansive mapping such that T is demiclosed
at the origin. Let { fn} be a sequence of µn-contractions fn : H1 → H1 with 0 < µ∗ ≤ µn ≤ µ∗ < 1 and
{ fn(x)} be uniformly convergent for any x in a bounded subset D of H1. Suppose that the problem (NEP) has
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a nonempty solution and F(T) ∩Ω 6= ∅. For arbitrarily chosen x0, x1 ∈ H1, let the sequences {yn}, {un},
{zn} and {xn} be generated by 

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξvn + (1− ξ)un, vn ∈ Txn,

xn+1 = αn fn(xn) + βnxn + δnzn

(48)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Equation (48) converges strongly to Nash equilibrium point.

Proof. By Theorem 1, the sequence {xn} converges strongly to a point p ∈ F(T)∩Ω, then the sequence
{xn} converges strongly to a Nash equilibrium point.
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