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Abstract: In this paper, we are concerned with the non-commutativity measure of quantum discord.
We first present an explicit expression of the non-commutativity measure of quantum discord in the
two-qubit case. Then we compare the geometric quantum discords for two dynamic models with their
non-commutativity measure of quantum discords. Furthermore, we show that the results conducted
by the non-commutativity measure of quantum discord are different from those conducted by both
or one of the Hilbert-Schmidt distance discord and trace distance discord. These intrinsic differences
indicate that the non-commutativity measure of quantum discord is incompatible with at least one of
the well-known geometric quantum discords in the quantitative and qualitative representation of
quantum correlations.
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1. Introduction

In recent years, because quantum information processing is superior to classical information
processing, quantum information theory and technology have developed dramatically (cf., e.g., [1–6]).
As an important resource in quantum computation, quantum correlations have been investigated
extensively in the last decades. So far, many forms of quantum correlations have been proposed;
for example, quantum discord [7], quantum deficit [8], quantum correlation derived from the distance
between the reduced states [9]. Among various quantum correlations, quantum discord and its derived
measures are important (cf., e.g., [3,5–8,10–13]). Most of them are not so hard to calculate and are
more robust against the effects of decoherence [10,14]. Quantum discord was initially introduced
by Ollivier and Zurek and by Henderson and Vedral [7,8]. In 2010, Dakic, Vedral and Brukner [12]
find a “Necessary and Sufficient Condition for Nonzero Quantum Discord” (geometric quantum
discord for the Hilbert-Schmidt norm). Since then, several equivalent measures have been introduced.
Recently, the non-commutativity measure of quantum discord has been discussed in [13]. In this
work, we first study the problem “how to give an explicit expression of the non-commutativity
measure of quantum discord in the two-qubit case?” Then we compare the geometric quantum
discords (the Hilbert-Schmidt distance discord and trace distance discord) for two dynamic models of
open quantum systems with their non-commutativity measure of quantum discords. We select open
quantum systems as our resource quantum systems since they are significant quantum systems and
they can induce occurrence of decoherence which can cause decreasing of quantum correlations and
may induce failure of the algorithms.

2. Non-Commutativity Measure of Quantum Discord and Geometric Quantum Discords

Consider a composite quantum systemHAB, which consists of two subsystems A and B. Quantum
discord is the difference of two natural quantum extensions of the classical mutual information. In [8],
the authors pointed out that the quantum discord reaches zero for and only for the classical-quantum
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state. So we can look at the quantum discord as the ’distance’ between the state ρ and the set of
classical-quantum states. The state ρ ∈ HAB is classical-quantum state if and only if ρ can be written
the following form (cf. [10]):

ρ = ∑
i
|i >< i|A ⊗ ρi

B,

where {|i >A} is any orthonormal basis of subsystem A and ρB is a quantum state of subsystem B.
It is known that if ρ ∈ HAB is a quantum state ρ ∈ HAB, then (cf. [13])

ρ = ∑
ij

Eij ⊗ Bij,

where Eij = |i >< j|A and Bij =< iA|ρ|jA >. In [13], two non-commutativity measures are
presented by:

D
′
N1(ρ) = ∑

Ω
||[Bij, Bi′ j′ ]||2, DN1(ρ) = ∑

Ω
||[Bij, Bi′ j′ ]||Tr, (1)

where Ω is the set of all the possible pairs (regardless of the order), [·,·] denotes the commutator,
|| · ||2 is the Hilbert-Schmidt norm (i.e., ‖A‖2 =

√
Tr(A† A)) and || · ||Tr is the trace norm

(i.e., ‖A‖Tr = Tr(
√

A† A)).
Clearly:

(1) DN1(ρ) = 0 and D
′
N1(ρ) = 0 if and only if ρ is a quantum-classical state.

(2) DN1 and D
′
N1 are invariant under local unitary operations.

Moreover, we see that if ρ = ∑ij Aij ⊗ E
′
ij. According to Equation (1), we have:

D
′
N(ρ) = ∑

Ω′
||[Aij, Ai′ j′ ]||2, DN(ρ) = ∑

Ω′
||[Aij, Ai′ j′ ]||Tr, (2)

where E
′
ij = |i >< j|B, Aij =< iB|ρ|jB > and {|i >B} is any orthonormal basis of subsystem B,

and DN(ρ) ( D
′
N(ρ)) equals zero if and only if ρ is a zero-discord state.

The Hilbert-Schmidt distance discord (cf., e.g., [12]) is defined by:

DHs (ρ) = min
χ∈CQ

dHs (ρ, χ) , dHs (ρ, χ) = ‖ρ− χ‖2
2 ,

where CQ is the set of classical-quantum states. The trace distance discord (cf., e.g., [15]) is defined by:

DTr (ρ) = min
χ∈CQ

dTr (ρ, χ) , dTr (ρ, χ) = ‖ρ− χ‖Tr ,

Both the Hilbert-Schmidt distance discord and the trace distance discord are geometric
quantum discords.

3. An Explicit Expression of The Non-Commutativity Measure of Quantum Discord in the
Two-Qubit Case

Since the non-commutativity measures of quantum discord are invariant under local unitary
operations, every state ρ is locally unitary equivalent to:

ρ =
1
4
(I ⊗ I + Xσ⊗ I + I ⊗Yσ + ∑

i
ciσi ⊗ σi), (3)
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where X = (x1, x2.x3), Y = (y1, y2, y3), σ =

σ1

σ2

σ3

 in two qubits, and σi (i = 1, 2, 3) are the three Pauli

matrices (cf. [5]), which is called Bloch’s representation. Therefore, if the state ρ satisfies Equation (3),
we deduce that:

A00 =
1
4

(
1 + x3 + yy3 + c3 x1 − ix2

x1 + ix2 1− x3 + yy3− c3

)
, A01 =

1
4

(
y1 − iy2 c1 − c2

c1 + c2 y1 − iy2

)
,

A10 =
1
4

(
y1 + iy2 c1 + c2

c1 − c2 y1 + iy2

)
, A11 =

1
4

(
1 + x3 − yy3− c3 x1 − ix2

x1 + ix2 1− x3 − yy3 + c3

)
.

[A00, A01]
†[A00, A01] =

1
64

(
u2 + K2

+(c1 + c2)
2 2c1c2K+(x1 − ix2)

2c1c2K+(x1 + ix2) c2
1y2

2 + c2
2y2

1 + K2
+(c1 − c2)

2

)
,

[A00, A10]
†[A00, A10] =

1
64

(
u2 + K2

+(c1 − c2)
2 −2c1c2K+(x1 − ix2)

−2c1c2K+(x1 + ix2) c2
1y2

2 + c2
2y2

1 + K2
+(c1 + c2)

2

)
,

[A00, A11]
†[A00, A11] =

1
16

(
(x2

1 + x2
2)c

2
3 0

0 (x2
1 + x2

2)c
2
3

)
,

[A01, A10]
†[A01, A10] =

1
16

(
c2

1c2
2 0

0 c2
1c2

2

)
,

[A01, A11]
†[A01, A11] =

1
64

(
u2 + K2

−(c1 + c2)
2 −2c1c2K−(x1 − ix2)

−2c1c2K−(x1 + ix2) c2
1y2

2 + c2
2y2

1 + K2
−(c1 − c2)

2

)
,

[A10, A11]
†[A10, A11] =

1
64

(
u2 + K2

−(c1 − c2)
2 2c1c2K−(x1 − ix2)

2c1c2K−(x1 + ix2) c2
1y2

2 + c2
2y2

1 + K2
−(c1 + c2)

2

)
.

Finally, we obtain:

DN(ρ) =
∑4

i=1 µi + 4|c1c2|+ |c3|
√

x2
1 + x2

2

8
,

D
′
N(ρ) =

√
u2 + K2

−(c
2
1 + c2

2) +
√

u2 + K2
+(c

2
1 + c2

2) + |c1c2|+ |c3|
√

x2
1 + x2

2

2
√

2

in Equation (2), where:

K± = c3± x3, u =
√

c2
1y2

2 + c2
2y2

1,

µ1,2 =

√
|u2 + K2

+ ± 2c1c2K+

√
K2
+ + (x2

1 + x2
2)|,

µ3,4 =

√
|u2 + K2

− ± 2c1c2K−
√

K2
− + (x2

1 + x2
2)|.

4. Comparisons between Two Geometric Quantum Discords for Two Dynamic Models of Open
Quantum Systems and Corresponding Non-Commutativity Measure of Quantum Discords

It is known that a real physical system is never perfectly closed. Environment acting on the
quantum system are regarded as noise. In mathematics, it means that there exist a series of operators
(referred to as { Eu }) acting on the density matrix. In this way, quantum operations can be represented
in an elegant form known as the operator-sum (Kraus) representation, and by [16] we see that:

∑u,vE†
u,vEu,v = I, Eu,v = EuA ⊗ EvB .
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Thus, the related density matrix can be written in the following form:

ρ(t) = ∑u,vEu,vρ(0)E†
u,v. (4)

Dephasing channel. It is known that the dephasing channel is the only channel that has possibility of
having no energy penalty when quantum information loses. If two qubits pass through the dephasing
channel respectively, the Hamiltonian ([16]):

H = h̄qa†a(b† + b)

where a and a†, and b and b† are the annihilation operator and creation operator of A and B respectively,
and the Kraus operators are:

E0 =

(
1 0
0
√

1− h̄q

)
E1 =

(
0 0
0
√

h̄q,

)
(5)

E0 = E0A = E0B , E1 = E1A = E1B

where q = 1− e−2γt is photon scattering rate for the system, and γ is phase damping dissipation rate.
In this paper, we suppose h̄ = 1.

For the Hilbert-Schmidt distance discord and trace distance discord, the dephasing channel has
an important property: the freezing phenomenon (or the semi-freezing phenomenon). However,
the non-commutativity measures of quantum discord is different. Actually, if we consider the
initial state:

ρ1(0) =
1
4
(I ⊗ I + ∑

i
ci(0)σi ⊗ σi)

with Equations (4) and (5), we have:

ρ1(t) =
1
4
(I ⊗ I + ∑

i
ci(t)σi ⊗ σi)

where:
c1(t) = c1(0)e−2γt, c2(t) = c2(0)e−2γt, c3(t) = c3(0).

In Figure 1, we plot the time evolution of four different quantum discords for c1(0) = 0.6,
c2(0) = 0, c3(0) = 0.2. The plot clearly shows that the Hilbert-Schmidt distance discord and trace
distance discord have the sharp transition when t

′
= 0.5493/γ. If t < t

′
, their values keep constant.

If we change the initial condition (mainly about c3), we can increase the time of the values keeping
constant. However, the non-commutativity measures of quantum discord do not have this feature.
They are strictly monotonous decreasing and strictly convex with time growing. Moreover, no matter
what value of c3 (except zero) could be, they still remain strictly monotonous decreasing.

Multimode vacuum field coupling the qubits. Consider a system consists of two qubits, with ω being
the transition frequency and two-level energy separated by the energy gap h̄ω. The qubits are coupled
to a multimode radiation field whose modes are initially in the vacuum state |0 >. The evolution
system in time is governed by the following master equation (cf., e.g., [17–19]):

∂ρ

∂t
= −iω

2

∑
i=1

[σi
3, ρ]− i

2

∑
i 6=j

ξij[σ
i
+σ

j
−, ρ] +

1
2

2

∑
i,j=1

ζij(2σ
j
−ρσi

+ − {σ
j
+σi
−, ρ}) (6)

where σi
± are the raising and lowering operators and σi

3 is the energy operator (Pauli operator) of the
ith qubit. The spontaneous decay rates of the qubits caused by the vacuum field γ

′
= ξii coupling
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with the qubits. If i 6= j, ξij and ζij in Equation (6) are described by the collective damping and the
“dipole-dipole” interaction, and take the forms:

ξij =
3
2

γ
′
[
sin(krij)

krij
+

cos(krij)

(krij)2 −
sin(krij)

(krij)3 ]

ζij =
3
4

γ
′
[−

cos(krij)

krij
+

sin(krij)

(krij)2 +
cos(krij)

(krij)3 ]

where k = 2π
λ is the wave vector with λ being the atomic resonant wavelength and rij = |ri − rj| is the

distance between the qubits, we assume that the atomic dipole moments are parallel to each other and
are polarized in the direction perpendicular to the interatomic axis.

Figure 1. A two-qubit system under the operation of Dephasing channel where c1(0) = 0.6, c2(0) = 0,
c3(0) = 0.2, and NC means non-commutativity.

For this model, we consider initial state:

ρ2(0) = |Ψ >< Ψ|, |Ψ >=
√

α|11 > +
√

1− α|00 > .
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Then ρ2(t) in the standard basis {|11 >, |10 >, |01 >, |00 >} take the following forms:

ρ
(2)
11 (t) = αe−2γ

′
t

ρ
(2)
13,41(t) =

√
α(1− α)e−γ

′
t

ρ
(2)
22,33(t) = a1[e−ξ+12t − e−2γ

′
t] + a2[e−ξ−12t − e−2γ

′
t]

ρ
(2)
23,32(t) = a1[e−ξ+12t − e−2γ

′
t] + a2[e−ξ−12t − e−2γ

′
t]

ρ
(2)
44 (t) = 1− ρ2

11(t)− ρ2
22(t)− ρ2

33(t)

where ξ±12 = γ
′ ± ξ12, a1,2 = αξ±12/ξ∓12. In Figure 2, we show the change of the discord with respect to

γt and α as ξij = 0, where the values are normalized.

Figure 2. Change of the initial state |Ψ > with respect to γt and α as the interatomic distance is ξij = 0.

For this model, the trace distance discord is symmetrical about α = 0.5. Moreover, compared
to the trace distance discord, we find that the non-commutativity measure of quantum discord and
the Hilbert-Schmidt distance discord have more similar properties at different α values. On the
other hand, the Hilbert-Schmidt distance discord will revive after α large enough. In this aspect,
the non-commutativity measure of quantum discord are closer to the trace distance discord.
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5. Conclusions

In conclusion, we present an explicit expression of the non-commutativity measure of quantum
discord in the two-qubit case. We also compare the non-commutativity measure of quantum discord
with the geometric quantum discord in the models of two qubits passing through the dephasing
channel and the multimode vacuum field coupling the qubits, respectively. Our study shows that
the non-commutativity measures of quantum discord lose some important features of the geometric
quantum discords, such as the freezing phenomenon in the dephasing channel and the revival in the
multimode vacuum field coupling the qubits.
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