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Abstract: In this paper, a multi-parameter proximal scaled gradient algorithm with outer
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1. Introduction

The superiorization method, which was introduced by Censor in 2010 [1], can solve a broad
class of nonlinear constrained optimal problems that result from many practical problems such as
computed tomography [2], medical image recovery [3,4], convex feasibility problems [5,6], inverse
problems of radiation therapy [7] and so on, which generates an automatic procedure based on the fact
that the basic algorithm has the property of bounded perturbation resilience so that it is expected to
get lower values of the objective function. In recent years, some researchers have focused on finding
more applications of superiorization methodology while some other researchers have investigated the
bounded perturbation resilience of algorithms—see, for examples, [8–17].

In this paper, we study the bounded perturbation resilience property and the corresponding
superiorization of a proximal scaled gradient algorithm with multi-parameters for solving the following
non-smooth composite optimization problem of the form

min
x∈H

[ f (x) + g(x)] =: min
x∈H

Φ(x), (1)

where H is a real Hilbert space endowed with an inner product < ·, · > and the induced norm ‖ · ‖.
f , g ∈ Γ0(H) with Γ0(H) defined by

Γ0(H) := { f : H → (−∞,+∞]| f is proper lower semicontinuous convex}.

In addition, f has L-Lipschitz continuous gredient ∇ f on H with L > 0.
The proximal gradient method is one of the popular iterative methods used for solving problem (1),

which has received a lot of attention in the recent past due to its fast theoretical convergence rates and
strong practical performance. Given an initial value x0 ∈ H, the proximal gradient method generates
the following sequence {xn}:
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xn+1 = proxγg(I − γ∇ f )(xn), ∀ n ≥ 0, (2)

where γ > 0 is the step size and proxγg is the proximal operator of g of order γ (please refer
to Definition 2, Section 2). Then, the generated sequence {xn} converges weakly to a solution of
problem (1) if the solution set S := Argmin[ f (x) + g(x)] 6= ∅ and 0 < γ < 2

L (see, for instance, [18],
Theorem 25.8).

Xu [19] raised the following more general proximal gradient algorithm:

xn+1 = proxγng(I − γn∇ f )(xn). (3)

The weak convergence of the generated sequence {xn} was obtained. If dim H = ∞, the strong
convergence can not be guaranteed.

The scaled method was proposed by Strand [20] for increasing the rate of convergence of
some algorithm. In a finite dimensional space, the selection of scaling matrices depends on the
particular problem [21,22]. Jin, Censor and Jiang [13] introduced the following projected scaled
gradient (PSG) algorithm:

xn+1 = PC(I − γnD∇ f )(xn), ∀n ≥ 0, (4)

where D(xn) is a diagonal scaling matrix for each xn, PC : Rn → C(⊂ Rn) is defined as PC(x) =

inf{‖x− y‖, ∀y ∈ C} for solving the following convex minimization problems:

minimize J(x) subject to x ∈ C, (5)

where C ⊂ Rn is a nonempty, closed and convex set, the objective function J : C → R is convex. With
the assumption that

∞

∑
n=0
‖∇ f (xn)− D(xn)∇ f (xn)‖ < ∞ (6)

and other conditions, the convergence of the PSG method in the presence of bounded perturbations
was proved.

Motivated by [13], Guo, Cui and Guo [23] discussed the proximal gradient algorithm
with perturbations:

xn+1 = proxλng(I − λnD∇ f + e)xn. (7)

They proved that the generated sequence {xn} converges weakly to the solution of problem (1).
After that, Guo and Cui [15] applied the convex combination of contraction operator and proximal
gradient operator to obtain the strong convergence of the generated sequence and discussed the
bounded perturbation resilience of the exact algorithm.

In this paper, we will study the following proximal scaled gradient algorithm with
multi-parameters:

xn+1 := tnh(xn) + γnxn + λn proxαng(xn − αnD(xn)∇ f (xn)) + en, n ≥ 0, (8)

which is a further generalization of the above algorithms. We will discuss the strong convergence of (8)
and the bounded perturbation resilience of its exact algorithm just like the algorithms named above.
In addition, we also study the superiorized version of the exact algorithm of (8).

The rest is organized as follows. In the next section, we introduce some basic concepts and
lemmas. In Section 3, we discuss the strong convergence results of the exact and non-exact algorithms.
In Section 4, we provide two numerical examples for illustrating the performances of the iterations.
Finally, we summarize the main points of this paper in Section 5.
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2. Preliminaries

Let H be a real Hilbert space endowed by an inner product < ·, · > and the induced norm ‖ · ‖. Let
{xn} be a sequence in H. z ∈ H is said to be a weak cluster point of {xn} if there exists a subsequence
{xnj} of {xn} that converges weakly to it. The set of all weak cluster points of {xn} is denoted by
ωw(xn). Let T : H → H be a nonlinear operator. Set Fix(T) := {x ∈ H : Tx = x}.

The following definitions are needed in proving our main results.

Definition 1. ([24], Proposition 2.1)
(i) T is non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H. (9)

(ii) T is L-Lipschitz continuous with L ≥ 0, if

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H. (10)

We call T a contractive mapping if 0 ≤ L < 1.
(iii) T is firmly non-expansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T)x− (I − T)y‖2. (11)

(iv) T is α-averaged if there exists a non-expansive operator S : H → H and α ∈ (0, 1), such that

T = (1− α)I + αS. (12)

In particular, a firmly non-expansive mapping is 1
2 -averaged.

(v) T is v-inverse strongly monotone (v-ism) with v > 0, if

〈Tx− Ty, x− y〉 ≥ v‖Tx− Ty‖2, ∀x, y ∈ H. (13)

Definition 2. ([25], Proximal Operator) Let g ∈ Γ0(H). The proximal operator of g is defined by

proxg(x) := arg min
y∈H
{‖y− x‖2

2
+ g(y)}, x ∈ H. (14)

The above definition is well defined since ‖y−x‖2

2 + g(y) has only one minimizer on H for each x ∈ H and for
given g ∈ Γ0(H) (see [18], Proposition 12.15).

The proximal operator of g of order α > 0 is defined as

proxαg(x) := arg min
y∈H
{‖y− x‖2

2α
+ g(y)}, x ∈ H. (15)

The following Lemmas 1–3 describe the properties of proximal operators.

Lemma 1. ([19,26], Lemma 2.4, Lemma 3.3) Let g ∈ Γ0(H), and α > 0, µ > 0. Then,

proxαg(x) = proxµg(
µ

α
x + (1− µ

α
)proxαgx). (16)

Moreover, if α < µ, we also have

‖x− proxαg(I − α∇ f )x‖ ≤ 2‖x− proxµg(I − µ∇ f )x‖, ∀x ∈ H. (17)
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Lemma 2. [18] (Non-expansiveness) Let g ∈ Γ0(H) and α > 0. Then, the proximal operator proxαg is
1
2 -averaged. We obtain the non-expansiveness of the proximal operator

‖proxαg(x)− proxαg(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H. (18)

Lemma 3. ([19], Propostion 3.2) Let f , g ∈ Γ0(H), f be differentiable and z ∈ H, α > 0. Then, z is a solution
to (1) if and only if z is the fixed point of the following equation:

z = proxαg(I − α∇ f )z. (19)

The following lemmas play important roles in proving the strong convergence result.

Lemma 4. ([18], Corollary 4.18) Let T : H → H be a non-expansive mapping with Fix(T) 6= ∅. If {xn} is a
sequence in H converging weakly to x and if {(I − T)xn} converges strongly to 0, then (I − T)x = 0.

Lemma 5. ([27], Lemma 2.5) Assume that {sn} is a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− γn)sn + γnδn + βn, n ≥ 0, (20)

where {γn} ⊂ [0, 1], {δn} ⊂ R such that
(i) ∑∞

n=0 γn = ∞;
(ii) lim supn→∞ δn ≤ 0;
(iii) ∑∞

n=0 βn < ∞.
Then, limn→∞ sn = 0.

Lemma 6. ([28], Lemma 2.4) Let x, y ∈ H and α, β ∈ R. Then,
(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖αx + βy‖2 = α(α + β)‖x‖2 + β(α + β)‖y‖2 − αβ‖x− y‖2;
(iii) ‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

Lemma 7. ([23], Proposition 3.3) Let f , g ∈ Γ0(H). For any 0 < α < 2
L , where L is the Lipschitz constant of

∇ f . proxαg(I − α∇ f ) is αL+2
4 -averaged. Hence, it is non-expansive.

3. The Convergence Analysis and the Superiorized Version

In this section, we prove that the sequence {vn} generated by the exact form of (8) converges
strongly to a solution of problem (1) at first. Then, we discuss the strong convergence of algorithm (8).
Finally, we investigate the bounded perturbation resilience of the exact iteration by viewing it as a
special case of algorithm (8). The superiorized version is also presented at the end of this section.

3.1. The Exact Form of Algorithm (8)

Given the errors en ≡ 0, n ≥ 0 in (8), we get the exact version of (8):

vn+1 = tnh(vn) + γnvn + λn proxαng(vn − αnD(vn)∇ f (vn))

=: tnh(vn) + γnvn + λn proxαng(I − αnD∇ f )vn,
(21)

where {tn}, {γn}, {λn} ⊂ [0, 1] such that 0 < infn γn and tn + γn + λn = 1 for all n ≥ 0. h : H → H
is a ρ-contraction for some ρ ∈ [0, 1). f , g ∈ Γ0(H), f has the Lipschitz continuous gradient ∇ f with
Lipschitz constant L > 0. D(x) : H → H is a linear bounded operator for each x ∈ H with an upper
bound Nx and satisfies

∞

∑
n=0
‖∇ f (vn)− D(vn)∇ f (vn)‖ =:

∞

∑
n=0
‖θ(vn)‖ < ∞. (22)
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Provided that {tn}, {λn} and {αn} satisfy some additional conditions, we get the following
strong convergence result of algorithm (21).

Theorem 1. Suppose that the solution set S of (1) is not empty, (22) and the following conditions hold:
(i) 0 < α := infn αn ≤ αn < 2

L for all n;
(ii) limn→∞ tn = 0 and ∑∞

n=0 tn = ∞;
(iii) limn→∞

tn
λn

= 0.
The sequence {vn} generated by algorithm (21) converges strongly to a point z ∈ S, where z is the unique
solution of the following variational inequality problem:

〈(I − h)z, v− z〉 ≥ 0, v ∈ S. (23)

Proof of Theorem 1. We will complete the proof by three steps.
Step 1. {vn} is a bounded sequence in H.
Let z ∈ S, then we have z = proxαng(I− αn∇ f )z by Lemma 3. In view of Lemmas 2 and 7, we also

get that proxαng and proxαng(I − αn∇ f ) are non-expansive for n ≥ 0. Now, let us calculate

‖vn+1 − z‖
= ‖tn(h(vn)− z) + γn(vn − z) + λn(proxαng(I − αnD∇ f )vn − z)‖
≤ tn‖h(vn)− h(z) + h(z)− z‖+ γn‖vn − z‖
+λn‖proxαng(I − αnD∇ f )vn − proxαng(I − αn∇ f )z‖
≤ tnρ‖vn − z‖+ tn‖h(z)− z‖+ γn‖vn − z‖
+λn‖proxαng(I − αnD∇ f )vn − proxαng(I − αn∇ f )vn

+proxαng(I − αn∇ f )vn − proxαng(I − αn∇ f )z‖
≤ (1− tn(1− ρ))‖vn − z‖+ tn‖h(z)− z‖+ λnαn‖θ(vn)‖
= (1− tn(1− ρ))‖vn − z‖+ tn(1− ρ) 1

(1−ρ)
‖h(z)− z‖

+(1− tn − γn)αn‖θ(vn)‖
≤ (1− tn(1− ρ))‖vn − z‖+ tn(1− ρ) 1

(1−ρ)
‖h(z)− z‖

+(1− tn + tnρ)αn‖θ(vn)‖
= (1− tn(1− ρ))(‖vn − z‖+ αn‖θ(vn)‖) + tn(1− ρ) 1

(1−ρ)
‖h(z)− z‖

≤ max{‖vn − z‖+ αn‖θ(vn)‖, ‖h(z)−z‖
1−ρ }.

(24)

An induction argument shows that

‖vn+1 − z‖ ≤ max{‖v0 − z‖+ ∑n
k=0 αk‖θ(vk)‖,

‖h(z)−z‖
1−ρ }

≤ max{‖v0 − z‖+ M, ‖h(z)−z‖
1−ρ },

(25)

where M := ∑∞
n=0 αn‖θ(vn)‖ < ∞ as {αn} is bounded and ∑∞

n=0 ‖θ(vn)‖ < ∞. Hence, {vn} is
bounded. Consequently, {h(vn)} is bounded since h is a ρ-contraction.

Step 2. There exists a subsequence {vnj} ⊂ {vn} such that ωw(vnj) ⊂ S.
We denote by

Dn := proxαng(I − αnD∇ f ),

Tn := proxαng(I − αn∇ f ) (26)

for briefness.
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Using the notation ρn := λn
1−tn

, one has ρn ∈ (0, 1),

un : =
1

1− tn
(γnvn + λn proxαng(I − αnD∇ f )vn)

= (1− ρn)vn + ρnDnvn,

vn+1 : = tnh(vn) + (1− tn)un. (27)

Given z ∈ S, we consider by utilizing Lemma 6 (iii)

‖vn+1 − z‖2

= ‖tn(h(vn)− z) + (1− tn)(un − z)‖2

= ‖tn(h(vn)− h(z) + h(z)− z) + (1− tn)(un − z)‖2

≤ ‖tn(h(vn)− h(z)) + (1− tn)(un − z)‖2 + 2tn〈h(z)− z, vn+1 − z〉
≤ tnρ2‖vn − z‖2 + (1− tn)‖un − z‖2 + 2tn〈h(z)− z, vn+1 − z〉.

(28)

Meanwhile, we derive

‖un − z‖2

= ‖(1− ρn)vn + ρnDnvn − z‖2

= ‖vn − z + ρn(Dnvn − vn)‖2

= ‖vn − z‖2 + ρ2
n‖Dnvn − vn‖2 − 2ρn〈vn − z, vn − Dnvn〉

= ‖vn − z‖2 + ρ2
n‖Dnvn − vn‖2 − ρn(‖vn − z‖2 + ‖Dnvn − vn‖2 − ‖Dnvn − z‖2)

= (1− ρn)‖vn − z‖2 − ρn(1− ρn)‖Dnvn − vn‖2 + ρn‖Dnvn − z‖2.

(29)

Notice that
‖Dnvn − vn‖2

= ‖(Dn − Tn)vn + Tnvn − vn‖2

≤ α2
n‖θ(vn)‖2 + ‖Tnvn − vn‖2 + 2αn‖θ(vn)‖‖Tnvn − vn‖,

(30)

and that
‖Dnvn − z‖2

= ‖Dnvn − Tnvn + Tnvn − z‖2

≤ α2
n‖θ(vn)‖2 + ‖vn − z‖2 + 2αn‖θ(vn)‖‖Tnvn − z‖

≤ α2
n‖θ(vn)‖2 + ‖vn − z‖2 + 2αn‖θ(vn)‖‖vn − z‖

(31)

since Tn is non-expansive and z = Tnz (see Lemma 3). We then obtain by substituting (30) and (31)
into (29)

‖un − z‖2

= (1− ρn)‖vn − z‖2 − ρn(1− ρn)‖Dnvn − vn‖2 + ρn‖Dnvn − z‖2

≤ (1− ρn)‖vn − z‖2

−ρn(1− ρn)
(

α2
n‖θ(vn)‖2 + ‖Tnvn − vn‖2 + 2αn‖θ(vn)‖‖Tnvn − vn‖

)
+ρn

(
α2

n‖θ(vn)‖2 + ‖vn − z‖2 + 2αn‖θ(vn)‖‖vn − z‖
)

= ‖vn − z‖2 − ρn(1− ρn)‖Tnvn − vn‖2 + ρ2
nα2

n‖θ(vn)‖2

−2αnρn(1− ρn)‖θ(vn)‖‖Tnvn − vn‖+ 2ρnαn‖θ(vn)‖‖vn − z‖.

(32)
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Combining (28) and (32), we get

‖vn+1 − z‖2

≤ tnρ2‖vn − z‖2 + (1− tn)‖un − z‖2 + 2tn〈h(z)− z, vn+1 − z〉
≤ tnρ2‖vn − z‖2 + (1− tn)

[
‖vn − z‖2 − ρn(1− ρn)‖Tnvn − vn‖2 + ρ2

nα2
n‖θ(vn)‖2

−2αnρn(1− ρn)‖θ(vn)‖‖Tnvn − vn‖+ 2ρnαn‖θ(vn)‖‖vn − z‖
]

+2tn〈h(z)− z, vn+1 − z〉
= (tnρ2 + (1− tn))‖vn − z‖2 − ρn(1− ρn)(1− tn)‖Tnvn − vn‖2

+ρ2
n(1− tn)α2

n‖θ(vn)‖2 − 2αnλn(1− ρn)‖θ(vn)‖‖Tnvn − vn‖
+2λnαn‖θ(vn)‖‖vn − z‖+ 2tn〈h(z)− z, vn+1 − z〉
≤ (1− tn(1− ρ2))‖vn − z‖2 − λn(1− ρn)‖Tnvn − vn‖2

+ρ2
n(1− tn)α2

n‖θ(vn)‖2 + 2λnαn‖θ(vn)‖‖vn − z‖+ 2tn〈h(z)− z, vn+1 − z〉
= (1− t̄n)‖vn − z‖2 + ρnλnα2

n‖θ(vn)‖2 + 2λnαn‖θ(vn)‖‖vn − z‖
+t̄n

[
2

1−ρ2 〈h(z)− z, vn+1 − z〉 − λnγn
tn(1−tn)(1−ρ2)

‖Tnvn − vn‖2
]

≤ (1− t̄n)‖vn − z‖2 + t̄nζn + Un,

(33)

where t̄n := tn(1− ρ2),

ζn :=
2

1− ρ2 〈h(z)− z, vn+1 − z〉 − λnγn

tn(1− tn)(1− ρ2)
‖Tnvn − vn‖2,

Un := ρnλnα2
n‖θ(vn)‖2 + 2λnαn‖θ(vn)‖‖vn − z‖. (34)

Obviously, we have

|ζn| ≤
1

1− ρ2 ‖h(z)− z‖‖vn − z‖ < ∞, (35)

which implies that lim supn→∞ ζn is a finite number. Thus, there exists a subsequence {ζnj} ⊂ {ζn}
such that lim supn→∞ ζn = limj→∞ ζnj . In addition, without loss of generality, we may assume that vnj

converges weakly to some v∗ ∈ H as j→ ∞ since {vn} is bounded. Notice that

‖vnj+1 − vnj‖ = ‖tnj(h(vnj)− vnj) + λnj(Dnj vnj − vnj)‖
≤ tnj‖h(vnj)− vnj‖+ λnj‖Dnj vnj − Tnj vnj + Tnj vnj − vnj‖
≤ tnj [‖h(vnj)‖+ ‖vnj‖] + λnj αnj‖θ(vnj)‖+ λnj‖Tnj vnj − vnj‖
→ 0, as j→ ∞.

(36)

We conclude that {vnj+1} also converges weakly to v∗. As a result, limn→∞〈h(z)− z, vnj+1 − z〉 exists.
Hence, we have

lim supn→∞ ζn = limj→∞ ζnj

= limj→∞

[
1

1−ρ2 〈h(z)− z, vnj+1 − z〉 −
λnj γnj

tnj (1−tnj )(1−ρ2)
‖Tnj vnj − vnj‖2

]
= 1

1−ρ2 〈h(z)− z, v∗ − z〉 − limj→∞
λnj γnj

tnj (1−tnj )(1−ρ2)
‖Tnj vnj − vnj‖2.

(37)

In light of the fact that {
γnj

1−tnj
} is bounded and infn

γnj
1−tnj

> 0, the sequence {
λnj
tnj
‖Tnj vnj − vnj‖2} is

bounded. Then, condition (iii) implies

lim
j→∞
‖Tnj vnj − vnj‖ = 0. (38)
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Set T := proxαg(I − α∇ f ) with α = infn αn > 0 and apply Lemma 1. We get

lim
j→∞
‖Tvnj − vnj‖ ≤ 2 lim

j→∞
‖Tnj vnj − vnj‖ = 0. (39)

Then, Lemma 4 guarantees that ωw(vnj) ⊂ S.
Step 3. {vn} converges strongly to z ∈ S.
Let us show that (33) satisfies the conditions of Lemma 5. From Step 2, it has vnj+1 ⇀ v∗(∈ S) as

j→ ∞. Therefore,

lim supn→∞ ζn ≤ 2
1−ρ2 lim supn→∞〈h(z)− z, vn+1 − z〉

= 2
1−ρ2 limj→∞〈h(z)− z, vnj+1 − z〉

= 2
1−ρ2 〈h(z)− z, v∗ − z〉

≤ 0.

(40)

In addition, it is obvious that ∑∞
n=0 Un < ∞ (see (34)) since {ρn}, {λn}, {αn}, {‖vn − z‖} are bounded

sequences and ∑∞
n=0 ‖θ(vn)‖ < ∞. Finally, we apply Lemma 5 to (33) to conclude that ‖vn − z‖ → 0,

as n→ ∞. This ends the proof.

3.2. The Strong Convergence of Algorithm (8)

Theorem 2. Suppose that the solution set S of (1) is not empty, (22) and the following conditions hold:
(i) 0 < α := infn αn ≤ αn < 2

L for all n;
(ii) limn→∞ tn = 0 and ∑∞

n=0 tn = ∞;
(iii) limn→∞

tn
λn

= 0;
(iv) ∑∞

n=0 ‖en‖ < ∞.
Then, the sequence {xn} generated by algorithms (8) converges strongly to a point z ∈ S.

Proof of Theorem 2. Let {xn}, {vn} be generated by (8) and (21), respectively. Then, {vn} converges
strongly to a solution of problem (1) according to Theorem 1. Thus, we only need to prove that
‖xn − vn‖ → 0 as n→ ∞.

We denote by Dn := proxαng(I − αnD∇ f ) and Tn := proxαng(I − αn∇ f ), respectively. Tn is
non-expansive according to Lemma 7. Then, we have

‖xn+1 − vn+1‖
= ‖tn(h(xn)− h(vn)) + γn(xn − vn) + λn[proxαng(I − αnD∇ f )xn

−proxαng(I − αnD∇ f )vn] + en‖
= ‖tn(h(xn)− h(vn)) + γn(xn − vn) + λn((Dn − Tn)(xn)− (Dn − Tn)(vn)

+Tn(xn)− Tn(vn)) + en‖
≤ tn‖h(xn)− h(vn)‖+ γn‖xn − vn‖+ λn(‖(Dn − Tn)(xn)‖+ ‖(Dn − Tn)(vn)‖
+‖Tn(xn)− Tn(vn)‖) + ‖en‖
≤ tnρ‖xn − vn‖+ γn‖xn − vn‖+ λn[αn(‖θ(xn)‖+ ‖θ(vn)‖) + ‖xn − vn‖] + ‖en‖
≤ (1− tn(1− ρ))‖xn − vn‖+ λnαn(‖θ(xn)‖+ ‖θ(vn)‖) + ‖en‖.

(41)

Applying Lemma 5 to inequality (41), we get ‖xn − vn‖ → 0 as n→ ∞. We then have completed the
proof owing to Theorem 1.

3.3. Bounded Perturbation Resilience

This subsection is devoted to verifying the bounded perturbation resilience property of
algorithm (21) and showing the superiorized version of it.

Given a problem Ψ, let A : H → H be a basic algorithm operator.
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Definition 3. [9] An algorithmic operator A is bounded perturbation resilient if the sequence {vn}, generated
by vn+1 = Avn with v0 ∈ H, converges to a solution to Ψ; then, any sequence {xn} generated by xn+1 =

A(xn + βnyn) with any x0 ∈ H, also converges to a solution of Ψ, where {yn}∞
n=0 ⊂ H is bounded, and

{βn}∞
n=0 ⊂ R are such that βn ≥ 0 for all n ≥ 0 and ∑∞

n=0 βn < ∞.
If we take algorithm (21) as the basic algorithm A, the following iteration is the bounded perturbation of it:

xn+1 := tnh(xn + βnyn) + γn(xn + βnyn) + λn proxαng(I − αnD∇ f )(xn + βnyn), n ≥ 0. (42)

We have the following result.

Theorem 3. Let H be a real Hilbert space, and h : H → H a ρ-contractive operator with ρ ∈ (0, 1), f ,
g ∈ Γ0(H). Assume that the solution set S to (1) is nonempty and that f has Lipschitz continuous gradient
∇ f on H with the Lipschitz constant L > 0. {βn}, {yn} satisfy the conditions in Definition 3, {tn}, {γn},
{λn} and {αn} satisfy the conditions in Theorem 1, respectively. Then, any sequence {xn} generated by (42)
converges strongly to a point x∗ in S. Thus, algorithm (21) is bounded perturbation resilient.

Proof of Theorem 3. We can rewrite algorithm (42) as

xn+1 = tnh(xn) + γnxn + λn proxαng(I − αnD∇ f )xn + ẽn (43)

with

ẽn := tn(h(xn + βnyn)− h(xn)) + γnβnyn

+ λn[proxαng(I − αnD∇ f )(xn + βnyn)− proxαng(I − αnD∇ f )xn], (44)

which is obviously the same form as (8) if we certify that ∑∞
n=0 ‖ẽn‖ < ∞. In fact, we have

‖ẽn‖ = ‖tn(h(xn + βnyn)− h(xn)) + γnβnyn

+λn[proxαng(I − αnD∇ f )(xn + βnyn)− proxαng(I − αnD∇ f )xn]‖
= ‖tn(h(xn + βnyn)− h(xn)) + γnβnyn

+λn[(Dn − Tn)(xn + βnyn)− (Dn − Tn)xn + Tn(xn + βnyn)− Tnxn]‖
≤ tnρβn‖yn‖+ γnβn‖yn‖
+λn[αn(‖θ(xn + βnyn)‖+ ‖θ(xn)‖) + βn‖yn‖]

= (1− tn(1− ρ))βn‖yn‖+ λnαn(‖θ(xn + βnyn)‖+ ‖θ(xn)‖),

(45)

where Dn and Tn are defined by (26), respectively. Then, it is easy to conclude that

∞

∑
n=0
‖ẽn‖ < ∞ (46)

since {βn}, {‖θ(xn + βnyn)‖}, {‖θ(xn)‖} are all summable. Hence, Theorem 2 guarantees that any
sequence {xn} generated by (42) converges strongly to a solution of (1). That is to say, algorithm (21) is
bounded perturbation resilient.

The superiorized version is equipped with an optimization criterion, which is usually a function
φ : H → R, with the convention that, for x ∈ H, φ(x) being smaller is considered superior. To ensure
this, it needs a new concept, named nonascending direction for φ at x. A vector v ∈ H is called
nonascending for φ at x ∈ H if ‖v‖ ≤ 1, and there exists a constant δ > 0 such that, for all λ ∈ [0, δ],
φ(x + λv) ≤ φ(x). Such v at least exists one, namely, zero vector. The superiorization method then
provides us with an automatic way of turning the original iterative algorithm for solving problem
(1) into an algorithm, for which the value of the objective function at each iteration is not larger than
that under the original iterative algorithm. At the same time, the value of φ is smaller than it is under
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the original algorithm. Superiorization does this by assuming that there are a summable sequence
{βk} of positive real numbers and a bounded vector sequence {vk} ⊂ H (Each {vk} is a nonascending
direction for φ at some x ∈ H, and βkvk, together with the original iterative point, generates a new
iterative point), and further by depending on a I steering steps aimed at reducing the values of φ at
these iterative points. In addition, it makes use of a logical variable called loop. In this paper, we choose
the optimization criterion function as the objective function in problem (1). Then, the superiorized
version of (21) is as specified below:

4. Numerical Experiments

In this section, we solve the l1 − l2 norm problem by two numerical examples to illustrate
the performance of the proposed iterations. The concerned algorithms are Algorithm 1 (MPGAS),
the bounded perturbation algorithm (42) (MPGAB) and basic algorithm (21) (MPGA). All of these
experiments were done on a quad core Intel i7-8550U CPU @1.8 GHz with 16 GB DDR4 memory.

Algorithm 1: Superiorized Version of (21)

1: Given x0
2: set k = 0, l = −1
3: set xk = x0
4: set Error=Constant
5: while Error > ε
6: set n = 0
7: set xn

k = xk
8: while n ≤ I
9: set yn to be a nonascending vector for φ at xn

k
10: set loop=true
11: while loop
12: l = l + 1
13: set βn = cl

14: set zn = xn
k + βnyn

15: if φ(zn) ≤ φ(xn
k ) and Φ(zn) ≤ Φ(xn

k )
16: set n = n + 1
17: set xn

k = zn
18: set loop=false
19: end if
20: end while
21: end while
22: set xk+1 = tk ∗ h(xI

k) + γk ∗ xI
k + (1− tk − γk) ∗ proxαk g(I − αkD∇ f )(xI

k)
23: set Error=‖xk+1 − xk‖
24: set k = k + 1.

4.1. The l1 − l2 Norm Problem

Let bk, 1 ≤ k ≤ N be an orthogonal basis of RN , µk, 1 ≤ k ≤ N be strictly positive real numbers,
let A ∈ RM×N \ {0}, and d ∈ RM. The l1 − l2 problem has the following form:

min
x∈RN

N

∑
k=1

µk(|xTbk|) +
1
2
‖Ax− d‖2

2. (47)

In signal recovery problems, d is the observed signal and the original signal x is known to have a
sparse representation.

We take f (x) = 1
2‖Ax− b‖2

2, g(x) = ∑N
k=1 µk(|xTbk|). Then, ∇ f (x) = AT(Ax− b) with Lipschtz

constant L = ‖AT A‖, where AT refers to the transpose of A. The above l1 − l2 problem is a special
case to problem (1).
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In this case, the kth component of proxαng(x) is

[proxαng(x)]k =


xk + αnµk, xk < −αnµk,
0, xk ∈ [−αnµk, αnµk],
xk − αnµk, xk > αnµk,

(48)

where x = (x1, x2, · · · , xN)T ∈ RN . Then, given v0, x0 ∈ RN , arbitrarily, sequences {vn}, generated
by (21), and {xn}, generated by (42), can be rewritten as

vn+1 = tnh(vn) + γnvn + λn proxαng(vn − αnD(vn)AT(A(vn)− b)); (49)

xn+1 = tnh(xn + βnyn) + γn(xn + βnyn)

+ λn proxαng(xn + βnyn − αnD(xn + βnyn)AT(A(xn + βnyn)− b)), (50)

respectively.

4.2. Numerical Examples

Example 1. Let H = R2, µ1 = µ2 = 1,

A =

(
1 2
0 1

)
, d =

(
1
2

)
. (51)

A straightforward calculation shows that the solution set S = {(0, 0.6)T} to (47) and the minimum value of the
objective function for (47) is 1.6. We solve this problem with the algorithms proposed in this paper. The numerical
results can be found in Table 1.

Suppose that the contraction h(x) = 1
3 x, and the diagonal scaling matrix D(xn) = diag{dii(xn)} =

diag{(1 + 1
n2 )}. We choose tn = 1

3n , γn = 0.01 + 1
3k , λn = 1 − tn − γn, and the step size sequence

αn = n
L(n+1) . For algorithm (21) with bounded perturbations, we choose the bounded sequence {yn} as

yn =

−
xn
‖xn‖1

, if xn 6= 0,

0, if xn = 0,
(52)

the summable nonnegative real sequence {βn} as βn = cn for some c ∈ (0, 1). For the superiorized version
of (21), we take the function φ as the objective function in problem (47), that is

φ(x) =
2

∑
k=1

(|xTbk|) +
1
2
‖Ax− d‖2

2. (53)

The iteration numbers (“Iter"), the values of xn (“xn"), the values of the objective function (“Obj") are reported
in Table 1 when the stopping criterion

Err := ‖xn − (0, 0.6)T‖2 < 10−3 (54)

is reached.

Table 1. Results for Example 1.

Methods
x0 = (0, 0)T x0 = 2 ∗ rand(2, 1)

Iter xn Obj Iter xn Obj

MPGAS 9 [0.0000, 0.6000]T 1.600 9 [0.0000, 0.6000]T 1.600
MPGAB 9 [0.0000, 0.6000]T 1.600 9 [0.0000, 0.6001]T 1.600
MPGA 47 [0.0000, 0.599044]T 1.600 47 [0.0000, 0.599044]T 1.600
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The following Figure 1 is for x0 = 2 ∗ rand(2, 1).

0 10 20 30 40 50
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−3

10
−2
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−1
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0

Numbers of iterations

lo
g

1
0
||
x

n
−

(0
,0

.6
)T

||

 

 

MPGAS

MPGAB

MPGA

Figure 1. The number of iterations with Algorithm 1(MPGAS), algorithm (42)(MPGAB) and algorithm
(21)(MPGA).

From Table 1 and Figure 1 above, we see that the superiorized version and the bounded
perturbation algorithm of (21) arrived at the minimum and the unique minimum point by nine
iterations while the original algorithm (21) took 47 iterations to attain the same minimum with the zero
initial value. Similar results were also obtained with the initial value x0 from uniform distribution.

We now discuss a general case of problem (47) by the above-mentioned algorithms.

Example 2. Let the system matrix A ∈ R50×200 be stimulated by standard Gaussian distribution, µk = 1, k =

1, 2, · · · , 200. Let the vector d ∈ R50 be generated from a uniform distribution in the interval [−2,2]. Solve the
optimal problem (47) with the above-mentioned algorithms.

We take the parameters in the algorithms as follows:

1. Algorithm parameters:

The contraction h(x) = x/3. The diagonal scaling matrix

D(xn) = diag{dii(xn)} = diag{1− 1
n2 }. (55)

tn = 1
3n , γn = 0.01 + 1

2n , then λn = 1− tn − γn. The step size sequence αn = n
L(n+1) .

2. Algorithm parameters for the superiorized version:

The summable nonnegative real sequence {βn}: βn = cn for some c ∈ (0, 1) and I = 10. We set φ as the
objective function in problem (47).

The iteration numbers “Iter”, the computing time in seconds (“CPU(s)"), the error’s values (“Err") are
reported in Table 2 with a random initial guess x0 = 2 ∗ rand(200, 1) when the stopping criterion

Err := ‖xn+1 − xn‖2 < ε (56)

is reached, where ε is a given small positive constant.
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Table 2. Results for Example 2 with x0 = 2 ∗ rand(200, 1).

Methods
Err < 10−4 Err < 10−6

Iter CPU(s) Obj Iter CPU(s) Obj

MPGAS 367 4.265625 27.127 1652 3.343750 22.790
MPGAB 1154 5.812500 28.563 2354 7.593750 22.793
MPGA 2084 9.781250 32.386 2354 8.046875 22.793

We find from Table 2 that there is no increase in the execution time of the computer by running
the superiorized version, MPGAS, of original algorithm (21). In contrast, compared to the algorithms
MPGAB and MPGA, MPGAS even reduces the operation time to get a smaller objective function value
under the same stop criterions and initial value x0.

5. Conclusions

In this paper, we have proposed a proximal scaled gradient algorithm with multi-parameters
and studied the strong convergence of it in a real Hilbert space for solving a composite optimization
problem. We have investigated the bounded perturbation resilience and the superiorized version
of it as well. The validity of the proposed algorithm and the comparison of the original iteration,
the bounded perturbation form and the superiorized version of it were illustrated by numerical
examples. The results and numerical examples in this paper are a new attempt or application of a
newly developed superiorization method. It shows that this method works well to some degree for
the proposed algorithm.
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