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Abstract: This paper constructs the generalized viscosity implicit midpoint rule for nonexpansive
mappings in Banach space. It obtains strong convergence conclusions for the proposed algorithm
and promotes the related results in this field. Moreover, this paper gives some applications. Finally,
the paper gives six numerical examples to support the main results.
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1. Introduction

Let E be a Banach Space and E∗ the dual space. J denotes the normalized duality mapping from E
to 2E∗ and is defined by

J(x) =
{

f ∈ E∗ :< x, f >= ‖x‖2 = ‖ f ‖2
}
, x ∈ E.

It is well known that if E is a Hilbert space, then J is the identity mapping; if E is a smooth Banach
space, then J is single-valued and denoted by j. More information on the normalized duality mapping
can be found, for example, in [1,2].

Let C be a nonempty set of E. Mapping of f : C→ C is contractive if ‖ f (x) − f (y)‖ ≤ α‖x− y‖,
∀x, y ∈ C, and α ∈ [0, 1). Mapping of T : C→ C is nonexpansive if ‖T(x) − T(y)‖ ≤ ‖x− y‖ and
∀x, y ∈ C. Let F(T) denote the fixed point set of T. More information on nonexpansive mappings and
their fixed points can be found, for example, in [3].

The implicit midpoint rule can effectively solve ordinary differential equations (see [4–9] and
the references therein). Meanwhile, many authors have used viscosity iterative algorithms for
finding common fixed points for nonlinear operators and solutions of variational inequality problems
(see [10–17] and the references therein).

In 2004, Xu [10] proposed the explicit viscosity method for nonexpansive mappings in Hilbert
space or uniformly smooth Banach space:

xn+1 = αn f (xn) + (1− αn)Txn, n ≥ 0.

{xn} was generated by the above iterative algorithm and strongly converged to q ∈ F(T), where q
was the solution of variational inequality

〈
(I − f )q, x− q

〉
≥ 0 and x ∈ F(T).

In 2015, Xu et al. [18] constructed the viscosity implicit midpoint rule for nonexpansive mapping
in Hilbert space:

xn+1 = αn f (xn) + (1− αn)T
(xn + xn+1

2

)
, n ≥ 0.
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{xn} was generated by the above. Under many conditions of {αn}, {xn} strongly converged to
q ∈ F(T), where q was the solution of variational inequality

〈
(I − f )q, x− q

〉
≥ 0 and x ∈ F(T).

In 2015, Ke et al. [19] improved the results of Xu et al. [18] from the viscosity implicit midpoint
rule to generalized viscosity implicit rules for nonexpansive mappings in Hilbert spaces:

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1), n ≥ 0 (1)

and
xn+1 = αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1), n ≥ 0. (2)

Under some conditions of {αn}, they proved that {xn} generated by (1) and (2) all strongly converged
to q ∈ F(T), where q was the solution of variational inequality

〈
(I − f )q, x− q

〉
≥ 0 and x ∈ F(T).

In 2017, Luo et al. [20] generalized the conclusions of Xu et al. [18] from Hilbert space to uniformly
smooth Banach space:

xn+1 = αn f (xn) + (1− αn)T
(xn + xn+1

2

)
, n ≥ 0.

{xn} was generated by the above. Under many conditions, {xn} strongly converged to q ∈ F(T),
where q was the solution of variational inequality

〈
(I − f )q, j(x− q)

〉
≥ 0 and x ∈ F(T).

Motivated and inspired by Xu et al. [18], Ke et al. [19], and Luo et al. [20], this paper proposes the
generalized viscosity implicit rules for nonexpansive mappings in Banach space and proves strong
convergence results. Next, this paper applies the results to a general system of variational inequality
problems in Banach space and fixed-point problems of strict pseudocontractive mappings. Finally,
this paper gives numerical examples to support the main results.

2. Preliminaries

Let E be a Banach space. A mapping ρE : [0,∞)→ [0,∞) is defined by

ρE(t) = sup
{
‖x + y‖+ ‖x− y‖

2
− 1 : x ∈ S(E), ‖y‖ ≤ t

}
,

where S(E) is the modulus of smoothness of E. E is uniformly smooth if lim
t→0

ρE(t)
t = 0. For example,

Lp(p > 1) is uniformly smooth Banach space. E is q-uniformly smooth if c > 0 such that ρE(t) ≤ ctq.
We needed the following lemmas to prove our main results.

Lemma 1. ([10,21]) Assume {an} is a sequence of non-negative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑

n=0

αn = ∞; (ii) limsup
n→∞

δn

αn
≤ 0 or

∞∑
n=1

|δn| < ∞

Then, lim
n→∞

an = 0.

Lemma 2. ([10,22]) Let E be a uniformly smooth Banach space, C be a closed convex subset of E, T : C→ C be a
nonexpansive mapping with F(T) , ∅, and f : C→ C be a contractive mapping. Then the sequence {xt} defined
by xt = t f (xt) + (1 − t)Txt converges strongly to a point in F(T). If we define a mapping Q : ΠC → F(T)
by Q( f ) := lim

t→0
xt, where ΠC is the set of contractive mapping from C to itself, then Q( f ) solves the following

variational inequality: 〈
(I − f )Q( f ), j(Q( f ) − p)

〉
≤ 0, ∀ f ∈ ΠC, p ∈ F(T).
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Lemma 3. ([12]) Let C be a nonempty, closed convex subset of a real Banach space E, which has a uniformly
Gâteaux differentiable norm, and T : C→ C be a nonexpansive mapping with F(T) , ∅. Assume that {zt}

strongly converges to a fixed point z of T as t→ 0 , where {zt} is defined by zt = t f (zt) + (1− t)Tzt. Suppose
{xn} ⊂ C is bounded and lim

n→∞
‖xn − Txn‖ = 0. Then limsup

n→∞

〈
f (z) − z, j(xn+1 − z)

〉
≤ 0.

3. Main Results

Theorem 1. Let E be a uniformly smooth Banach space, C be a closed convex subset of E, f : C→ C be a
contractive mapping with α ∈ [0, 1), and T : C→ C be a nonexpansive mapping with F(T) , ∅. {xn} is
generated by the generalized viscosity implicit midpoint rule

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1), n ≥ 0, (3)

where {αn}, {sn} ⊂ (0, 1) and satisfies the conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞∑

n=0
αn = ∞;

(iii) lim
n→∞

αn+1
αn

= 1 or
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0.

Then {xn} converges strongly to q ∈ F(T), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(T).

Proof. The proof is split into five steps.

Step 1: Show that {xn} is bounded.
Take p ∈ F(T), then we have

‖xn+1 − p‖ ≤ αn‖ f (xn) − p‖+ (1− αn)‖T(snxn + (1− sn)xn+1) − p‖

≤ ααn‖xn − p‖+ αn‖ f (p) − p‖+ (1− αn)sn‖xn − p‖

+(1− αn)(1− sn)‖xn+1 − p‖

= [(1− αn)sn + ααn]‖xn − p‖+ (1− αn)(1− sn)‖xn+1 − p‖

+αn‖ f (p) − p‖.

It follows that

‖xn+1 − p‖ ≤ (1−αn)sn+ααn
1−(1−αn)(1−sn)

‖xn − p‖+ αn
1−(1−αn)(1−sn)

‖ f (p) − p‖

=
[
1− (1−α)αn

1−(1−αn)(1−sn)

]
‖xn − p‖+ (1−α)αn

1−(1−αn)(1−sn)
‖ f (p)−p‖
(1−α) .

Then we get ‖xn+1 − p‖ ≤ max
{
‖xn − p‖, ‖ f (p)−p‖

(1−α)

}
. By induction, we get

‖xn − p‖ ≤ max
{
‖x0 − p‖,

‖ f (p) − p‖
(1− α)

}
, ∀n ≥ 0.

So, {xn} is bounded. Then
{
f (xn)

}
and

{
T(snxn + (1− sn)xn+1)

}
are also bounded.
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Step 2: Show that lim
n→∞
‖xn+1 − xn‖ = 0.

By (3), we have

‖xn+1 − xn‖ = ‖αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1) − αn−1 f (xn−1)

−(1− αn−1)T(sn−1xn−1 + (1− sn−1)xn)‖

≤ αn‖ f (xn) − f (xn−1)‖+ |αn − αn−1| · ‖ f (xn−1) − T(sn−1xn−1 + (1− sn−1)xn)‖

+(1− αn)‖T(snxn + (1− sn)xn+1) − T(sn−1xn−1 + (1− sn−1)xn)‖

≤ ααn‖xn − xn−1‖+ |αn − αn−1|M + (1− αn)‖[snxn + (1− sn)xn+1]

−[sn−1xn−1 + (1− sn−1)xn]‖

≤ ααn‖xn − xn−1‖+ |αn − αn−1|M + (1− αn)(1− sn)‖xn+1 − xn‖

+(1− αn)sn−1‖xn − xn−1‖

= (1− αn)(1− sn)‖xn+1 − xn‖+ [ααn + (1− αn)sn−1]‖xn − xn−1‖+ |αn − αn−1|M,

where M ≥ sup
n≥0
‖ f (xn) − T(snxn + (1− sn)xn+1)‖.

It follows that

‖xn+1 − xn‖ ≤
ααn+(1−αn)sn−1
1−(1−αn)(1−sn)

‖xn − xn−1‖+
M

1−(1−αn)(1−sn)
|αn − αn−1|

=
[
1− (1−α)αn+(1−αn)(sn−sn−1)

1−(1−αn)(1−sn)

]
‖xn − xn−1‖+

M
1−(1−αn)(1−sn)

|αn − αn−1|.

From 0 < ε ≤ sn ≤ sn+1 < 1, we have 0 < ε ≤ sn ≤ 1 − (1 − αn)(1 − sn) < 1 and
(1−α)αn+(1−αn)(sn−sn−1)

1−(1−αn)(1−sn)
≥ (1− α)αn. Then we get

‖xn+1 − xn‖ ≤ [1− (1− α)αn]‖xn − xn−1‖+
M
ε
|αn − αn−1|.

From
∞∑

n=0
αn = ∞,

∞∑
n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞, and Lemma 1, we get lim

n→∞
‖xn+1 − xn‖ = 0.

Step 3: Show that lim
n→∞
‖xn − Txn‖ = 0.

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T(snxn + (1− sn)xn+1)‖+ ‖T(snxn + (1− sn)xn+1) − Txn‖

≤ ‖xn − xn+1‖+ αn‖ f (xn) − T(snxn + (1− sn)xn+1)‖+ (1− sn)‖xn − xn+1‖

≤ (2− sn)‖xn − xn+1‖+ αnM

≤ 2‖xn − xn+1‖+ αnM.

From lim
n→∞

αn = 0 and Step 2, we get lim
n→∞
‖xn − Txn‖ = 0.

Step 4: Show that limsup
n→∞

〈
f (q) − q, j(xn+1 − q)

〉
≤ 0.

Let {xt} be defined by xt = t f (xt) + (1− t)Txt. Then, from Lemma 2, {xt} converges strongly to
q ∈ F(T), which is also the unique solution of the variational inequality

〈
(I − f )q, j(x− q)

〉
≥ 0, x ∈ F(T).

From Steps 1–3 and Lemma 3, we get limsup
n→∞

〈
f (q) − q, j(xn+1 − q)

〉
≤ 0.
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Step 5: Show that lim
n→∞

xn = q.

‖xn+1 − q‖2 = ‖αn( f (xn) − q) + (1− αn)(T(snxn + (1− sn)xn+1) − q)‖2

= (1− αn)
〈
T(snxn + (1− sn)xn+1) − q, j(xn+1 − q)

〉
+ αn

〈
f (xn) − q, j(xn+1 − q)

〉
≤ (1− αn)‖sn(xn − q) + (1− sn)(xn+1 − q)‖ · ‖xn+1 − q‖+ ααn‖xn − q‖ · ‖xn+1 − q‖

+αn
〈

f (q) − q, j(xn+1 − q)
〉

≤ (1− αn)sn‖xn − q‖ · ‖xn+1 − q‖+ (1− αn)(1− sn)‖xn+1 − q‖2 + ααn‖xn − q‖ · ‖xn+1 − q‖

+αn
〈

f (q) − q, j(xn+1 − q)
〉

= [(1− αn)sn + ααn]‖xn − q‖ · ‖xn+1 − q‖+ (1− αn)(1− sn)‖xn+1 − q‖2

+αn
〈

f (q) − q, j(xn+1 − q)
〉

≤
(1−αn)sn+ααn

2

(
‖xn − q‖2 + ‖xn+1 − q‖2

)
+ (1− αn)(1− sn)‖xn+1 − q‖2

+αn
〈

f (q) − q, j(xn+1 − q)
〉
.

It follows that

‖xn+1 − q‖2 ≤
(1−αn)sn+ααn

2−[(1−αn)sn+ααn]−2(1−αn)(1−sn)
‖xn − q‖2

+ 2αn
2−[(1−αn)sn+ααn]−2(1−αn)(1−sn)

〈
f (q) − q, j(xn+1 − q)

〉
=

[
1− 2(1−α)αn

2−[(1−αn)sn+ααn]−2(1−αn)(1−sn)

]
‖xn − q‖2

+
2αn(1−α)

2−[(1−αn)sn+ααn]−2(1−αn)(1−sn)
〈 f (q)−q, j(xn+1−q)〉

1−α .

Because

2αn(1− α)
2− [(1− αn)sn + ααn] − 2(1− αn)(1− sn)

=
2αn(1− α)

αn(2− α) + (1− αn)sn
>

2− 2α
3− α

αn,

so, from
∞∑

n=0
αn = ∞, Step 4, and Lemma 1, we get lim

n→∞
xn = q. This completes the proof. �

It is well known that Hilbert space is uniformly smooth Banach space. So, we can get the main
results of [19].

Corollary 1. ([19]) Let C be a nonempty, closed convex subset of the real Hilbert space H. Let T : C→ C be a
nonexpansive mapping with F(T) , ∅ and f : C→ C be a contraction with coefficient θ ∈ [0, 1). Pick any
x0 ∈ C and let {xn} be a sequence generated by

xn+1 = αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1),

where {αn}, {sn} ⊂ (0, 1) that satisfies the following conditions:

(1) lim
n→∞

αn = 0;

(2)
∞∑

n=0
αn = ∞;

(3)
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞;

(4) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which is also the unique
solution of the variational inequality

〈
(I − f )x, y− x

〉
≥ 0, ∀y ∈ F(T).

If we let sn = 1
2 , we can get the main results of [20].
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Corollary 2. ([20]) Let C be a closed convex subset of a uniformly smooth Banach space E. Let T : C→ C be a
nonexpansive mapping with F(T) , ∅, and f : C→ C a contraction with coefficient α ∈ [0, 1). Let {xn} be a
sequence generated by the following viscosity implicit midpoint rule:

xn+1 = αn f (xn) + (1− αn)T
(xn + xn+1

2

)
, n ≥ 0,

where {αn} is a sequence in (0, 1) such that:

(i) lim
n→∞

αn = 0;

(ii)
∞∑

n=0
αn = ∞;

(iii) either
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞ or lim

n→∞
αn+1
αn

= 1.

Then {xn} converges strongly to a fixed point of T, which also solves the following variational inequality:〈
(I − f )q, j(x− q)

〉
≥ 0, x ∈ F(T).

Theorem 2. Let E be a uniformly smooth Banach space, C be a closed convex subset of E, f : C→ C be a
contractive mapping with α ∈ [0, 1) and T : C→ C be a nonexpansive mapping with F(T) , ∅. {xn} is
generated by the generalized viscosity implicit midpoint rule

xn+1 = αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1) + en, n ≥ 0, (4)

where {αn},
{
βn

}
,
{
γn

}
, {sn} ⊂ (0, 1), {en} ⊂ E and satisfies the conditions:

(i) αn + βn + γn = 1, lim
n→∞

γn = 1;

(ii)
∞∑

n=0
βn = ∞;

(iii)
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞ and

∞∑
n=1

∣∣∣βn+1 − βn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0;

(v)
∞∑

n=0
‖en‖ < ∞ and ‖en‖ = o(βn).

Then {xn} converges strongly to q ∈ F(T), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(T).

Proof. The proof is split into five steps.

Step 1: Show that {xn} is bounded.
Take p ∈ F(T), then we have

‖xn+1 − p‖ = ‖αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1) + en − p‖

≤ αn‖xn − p‖+ αβn‖xn − p‖+ βn‖ f (p) − p‖+ γnsn‖xn − p‖

+γn(1− sn)‖xn+1 − p‖+ ‖en‖

= (αn + αβn + γnsn)‖xn − p‖+ γn(1− sn)‖xn+1 − p‖+ βn‖ f (p) − p‖+ ‖en‖.

It follows that

[1− γn(1− sn)]‖xn+1 − p‖ ≤ (αn + αβn + γnsn)‖xn − p‖+ βn‖ f (p) − p‖+ ‖en‖.
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From αn + βn + γn = 1, we have

‖xn+1 − p‖ ≤ αn+αβn+γnsn
1−γn(1−sn)

‖xn − p‖+ βn
1−γn(1−sn)

‖ f (p) − p‖+ ‖en‖
1−γn(1−sn)

≤

[
1− 1−αn−γn−αβn

1−γn(1−sn)

]
‖xn − p‖+ βn

1−γn(1−sn)
‖ f (p) − p‖+ ‖en‖

ε

=
[
1− βn(1−α)

1−γn(1−sn)

]
‖xn − p‖+ βn(1−α)

1−γn(1−sn)
‖ f (p)−p‖
(1−α) + ‖en‖

ε

≤ max
{
‖x0 − p‖, ‖ f (p)−p‖

(1−α) + ‖en‖
ε

}
.

So, {xn} is bounded. Then
{
f (xn)

}
and

{
T(snxn + (1− sn)xn+1)

}
are also bounded.

Step 2: Show that lim
n→∞
‖xn+1 − xn‖ = 0.

By (4), we have

‖xn+1 − xn‖ = ‖αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1) + en − [αn−1xn−1 + βn−1 f (xn−1)

+γn−1T(sn−1xn−1 + (1− sn−1)xn) + en−1]‖

= ‖αn(xn − xn−1) + (αn − αn−1)xn−1 + βn[ f (xn) − f (xn−1)] + (βn − βn−1) f (xn−1)

+γn[T(snxn + (1− sn)xn+1) − T(sn−1xn−1 + (1− sn−1)xn)]

−[(αn − αn−1) + (βn − βn−1)]T(sn−1xn−1 + (1− sn−1)xn) + en − en−1‖

≤ αn‖xn − xn−1‖+ |αn − αn−1| · ‖xn−1 − T(sn−1xn−1 + (1− sn−1)xn)‖

+βn‖ f (xn) − f (xn−1)‖+
∣∣∣βn − βn−1

∣∣∣ · ‖ f (xn−1) − T(sn−1xn−1 + (1− sn−1)xn)‖

+γn‖T(snxn + (1− sn)xn+1) − T(sn−1xn−1 + (1− sn−1)xn)‖+ ‖en − en−1‖

≤ αn‖xn − xn−1‖+ |αn − αn−1|M1 + αβn‖xn − xn−1‖+
∣∣∣βn − βn−1

∣∣∣M1

+γn‖(1− sn)(xn+1 − xn) + sn−1(xn − xn−1)‖+ ‖en − en−1‖

≤ γn(1− sn)‖xn+1 − xn‖+ (αn + αβn + γnsn−1)‖xn − xn−1‖

+(|αn − αn−1|+
∣∣∣βn − βn−1

∣∣∣)M1 + 2‖en‖,

where M1 ≥ max
{

sup
n≥0
‖xn − T(snxn + (1− sn)xn+1)‖, sup

n≥0
‖ f (xn) − T(snxn + (1− sn)xn+1)‖

}
.

It follows that

‖xn+1 − xn‖ ≤
αn+αβn+γnsn−1

1−γn(1−sn)
‖xn − xn−1‖+

M1
1−γn(1−sn)

(
|αn − αn−1|+

∣∣∣βn − βn−1
∣∣∣)+ 2‖en‖

=
[
1− (1−α)βn+γn(sn−sn−1)

1−γn(1−sn)

]
‖xn − xn−1‖+

M1
1−γn(1−sn)

(
|αn − αn−1|+

∣∣∣βn − βn−1
∣∣∣)+ 2‖en‖

From 0 < ε ≤ sn ≤ sn+1 < 1, we have 0 < ε ≤ sn ≤ 1− (1− αn)(1− sn) < 1 and (1−α)βn+γn(sn−sn−1)
1−γn(1−sn)

≥

(1− α)βn. Then we get

‖xn+1 − xn‖ ≤ [1− (1− α)βn]‖xn − xn−1‖+
M1

ε

(
|αn − αn−1|+

∣∣∣βn − βn−1
∣∣∣)+ 2‖en‖.

From
∞∑

n=0
βn = ∞,

∞∑
n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞,

∞∑
n=1

∣∣∣βn+1 − βn
∣∣∣ < ∞,

∞∑
n=1
‖en‖ < ∞, and Lemma 1 we get

lim
n→∞
‖xn+1 − xn‖ = 0.
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Step 3: Show that lim
n→∞
‖xn − Txn‖ = 0.

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T(snxn + (1− sn)xn+1)‖+ ‖T(snxn + (1− sn)xn+1) − Txn‖

≤ ‖xn − xn+1‖+ αn‖xn − T(snxn + (1− sn)xn+1)‖+ (1− sn)‖xn − xn+1‖

+βn‖ f (xn) − T(snxn + (1− sn)xn+1)‖+ ‖en‖

≤ (2− sn)‖xn − xn+1‖+ (αn + βn)M1 + ‖en‖

≤ 2‖xn − xn+1‖+ (1− γn)M1 + ‖en‖.

From lim
n→∞

γn = 1,
∞∑

n=1
‖en‖ < ∞ and Step 2, we get lim

n→∞
‖xn − Txn‖ = 0.

Step 4: Show that limsup
n→∞

〈
f (q) − q, j(xn+1 − q)

〉
≤ 0.

Let {xt} be defined by xt = t f (xt) + (1− t)Txt. Then, from Lemma 2, {xt} converges strongly to
q ∈ F(T), which is also the unique solution of the variational inequality

〈
(I − f )q, j(x− q)

〉
≥ 0 and

x ∈ F(T). From Steps 1–3 and Lemma 3, we get limsup
n→∞

〈
f (q) − q, j(xn+1 − q)

〉
≤ 0.

We have

‖xt − xn‖
2 = (1− t)

〈
Sxt − Sxn + Sxn − xn, J(xt − xn)

〉
+ t

〈
f xt − xt + xt − xn, J(xt − xn)

〉
≤ (1− t)‖xt − xn‖

2 + (1− t)‖Sxn − xn‖ · ‖xt − xn‖

+t‖xt − xn‖
2 + t

〈
f xt − xt, J(xt − xn)

〉
= ‖xt − xn‖

2 + (1− t)‖Sxn − xn‖ · ‖xt − xn‖+t‖xt − xn‖
2 + t

〈
f xt − xt, J(xt − xn)

〉
.

It follows that
〈

f xt − xt, J(xt − xn)
〉
≤

1−t
t ‖Sxn − xn‖ · ‖xt − xn‖. From Step 3, we get

limsup
n→∞

〈
f (q) − q, j(xn+1 − q)

〉
≤ 0.

Step 5: Show that lim
n→∞

xn = q.

‖xn+1 − q‖2 = ‖αn(xn − q) + βn( f (xn) − q) + γn(T(snxn + (1− sn)xn+1) − q) + en‖
2

= αn
〈
xn − q, j(xn+1 − q)

〉
+ βn

〈
f (xn) − q, j(xn+1 − q)

〉
+γn

〈
T(snxn + (1− sn)xn+1) − q, j(xn+1 − q)

〉
+

〈
en, j(xn+1 − q)

〉
≤ αn‖xn − q‖ · ‖xn+1 − q‖+ αβn‖xn − q‖ · ‖xn+1 − q‖+ βn

〈
f (q) − q, j(xn+1 − q)

〉
+γn‖sn(xn − q) + (1− sn)(xn+1 − q)‖ · ‖xn+1 − q‖+ ‖en‖ · ‖xn+1 − q‖

≤ (αn + αβn + γnsn)‖xn − q‖ · ‖xn+1 − q‖+ (1− sn)γn‖xn+1 − q‖2

+βn
〈

f (q) − q, j(xn+1 − q)
〉
+ ‖en‖ · ‖xn+1 − q‖

≤
αn+αβn+γnsn

2 ‖xn − q‖2 +
[αn+αβn+γnsn

2 + (1− sn)γn
]
‖xn+1 − q‖2

+βn
〈

f (q) − q, j(xn+1 − q)
〉
+ ‖en‖ · ‖xn+1 − q‖.

It follows that

‖xn+1 − q‖2 ≤
αn+αβn+γnsn

2−(αn+αβn+γnsn)−2γn(1−sn)
‖xn − q‖2

+
2βn

2−(αn+αβn+γnsn)−2γn(1−sn)

〈
f (q) − q, j(xn+1 − q)

〉
+ 2M2‖en‖

2−(αn+αβn+γnsn)−2γn(1−sn)

=
[
1− 2(1−α)βn

2−(αn+αβn+γnsn)−2γn(1−sn)

]
‖xn − q‖2

+
2(1−α)βn

2−(αn+αβn+γnsn)−2γn(1−sn)
〈 f (q)−q, j(xn+1−q)〉

1−α + 2M2‖en‖
2−(αn+αβn+γnsn)−2γn(1−sn)

where M2 ≥ max
{

sup
n≥0
‖xn+1 − q‖

}
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Because
2βn(1−α)

2−(αn+αβn+γnsn)−2γn(1−sn)
=

2βn(1−α)
2−αn−αβn−2γn+γnsn

=
2βn(1−α)

1+1−αn−αβn−γn−γn+γnsn

=
2βn(1−α)

1+(1−α)βn−(1−sn)γn
> 2−2α

2−α βn,

so from
∞∑

n=0
βn = ∞, ‖en‖ = o(βn), Step 4, and Lemma 1, we get lim

n→∞
xn = q. This completes the proof. �

If αn = 0, we can get Theorem 1. So, Theorem 2 is a generalization of Theorem 1.
And, the computational efficiency of Theorem 2 is better than Theorem 1.

It is well known that Hilbert space is uniformly smooth Banach space. So, we can get the main
results of [19].

Corollary 3. ([19]) Let C be a nonempty, closed convex subset of the real Hilbert space H. Let T : C→ C be a
nonexpansive mapping with F(T) , ∅ and f : C→ C be a contraction with coefficient θ ∈ [0, 1). Pick any
x0 ∈ C and let {xn} be a sequence generated by

xn+1 = αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1),

where {αn},
{
βn

}
,
{
γn

}
, {sn} ⊂ (0, 1) that satisfies the following conditions:

(1) αn + βn + γn = 1, lim
n→∞

γn = 1;

(2)
∞∑

n=0
βn = ∞;

(3)
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞ and

∞∑
n=1

∣∣∣βn+1 − βn
∣∣∣ < ∞;

(4) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which is also the unique
solution of the variational inequality

〈
(I − f )x, y− x

〉
≥ 0 and ∀y ∈ F(T).

If we let sn = 1
2 and αn = 0, we can also get the main results of [20]. The results of Theorem 2

generalize the relevant results of [23].

Corollary 4. ([23]) Let E be a uniformly smooth Banach space and C a nonempty closed convex subset of E.
Let T : C→ C be a nonexpansive mapping with F(T) , ∅ and f : C→ C a generalized contraction mapping.
Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1),

where {αn},
{
βn

}
, and

{
γn

}
are three sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∞∑

n=0
βn = ∞, lim

n→∞
βn = 0;

(iii) lim
n→∞

∣∣∣αn+1 − αn
∣∣∣ = 0 and 0 < liminf

n→∞
αn ≤ limsup

n→∞
αn < 1;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which is also the solution
of the variational inequality

〈
(I − f )x∗, j(y− x∗)

〉
≥ 0 for all y ∈ F(T).
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4. Applications

(1) A fixed point problem for strict pseudocontractive mapping.

If there exists λ ∈ (0, 1) such that〈
Tx− Ty, j(x− y)

〉
≤ ‖x− y‖2 − λ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ C,

then T : C→ C is called λ-strict pseudocontractive mapping.
Zhou [24] obtained the relationship between nonexpansive mapping and λ-strict

pseudocontractive mapping.

Lemma 4. ([24]) Let C be a nonempty, closed convex subset of a real 2-uniformly smooth Banach space E
and T : C→ C be a λ-strict pseudocontractive mapping. For α ∈ (0, 1), we define Tαx := (1− α)x + αTx.
Then, α ∈ (0, λ

K2

]
, where K is the 2-uniformly smooth constant. Then, Tα : C→ C is nonexpansive such

that F(Tα) = F(T).

So Tα : C→ C is nonexpansive, and then we can get the following results.

Theorem 3. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, f : C→ C be a
contractive mapping with k ∈ [0, 1), T : C→ C be a λ-strict pseudocontractive mapping, and Tα : C→ C be
defined by Tαx := (1 − α)x + αTx with α ∈ (0, λ

K2

]
. {xn} is generated by the generalized viscosity implicit

midpoint rule
xn+1 = αn f (xn) + (1− αn)Tα(snxn + (1− sn)xn+1), n ≥ 0, (5)

where {αn}, {sn} ⊂ (0, 1) and satisfies the conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞∑

n=0
αn = ∞;

(iii) lim
n→∞

αn+1
αn

= 1 or
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0.

Then {xn} converges strongly to q ∈ F(T), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(T).

Theorem 4. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, f : C→ C be a
contractive mapping with k ∈ [0, 1), T : C→ C be a λ-strict pseudocontractive mapping, and Tα : C→ C be
defined by Tαx := (1 − α)x + αTx with α ∈ (0, λ

K2

]
. {xn} is generated by the generalized viscosity implicit

midpoint rule
xn+1 = αnxn + βn f (xn) + γnTα(snxn + (1− sn)xn+1) + en, n ≥ 0, (6)

where {αn},
{
βn

}
,
{
γn

}
, {sn} ⊂ (0, 1), {en} ⊂ E and satisfies the conditions:

(i) αn + βn + γn = 1, lim
n→∞

γn = 1;

(ii)
∞∑

n=0
βn = ∞;

(iii)
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞ and

∞∑
n=1

∣∣∣βn+1 − βn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0;

(v)
∞∑

n=0
‖en‖ < ∞ and ‖en‖ = o(βn).

Then {xn} converges strongly to q ∈ F(T), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(T).
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(2) A general system of a variational inequality problem in Banach space.

The problem of finding (x∗, y∗) ∈ C×C such that{ 〈
λAy∗ + x∗ − y∗, j(x− x∗)

〉
≥ 0,∀x ∈ C,〈

µBx∗ + y∗ − x∗, j(x− y∗)
〉
≥ 0,∀x ∈ C,

is called the general system of variational inequalities in Banach space, where λ,µ > 0 and A, B are two
nonlinear mappings.

If there exists j(x − y) ∈ J(x − y) satisfying
〈
Ax−Ay, j(x− y)

〉
≥ 0,∀x, y ∈ C, then A : C→ E

is called accretive. If there exists j(x − y) ∈ J(x − y) and α > 0 satisfying
〈
Ax−Ay, j(x− y)

〉
≥

α‖Ax−Ay‖2,∀x, y ∈ C, then A : C→ E is called α-inverse-strongly accretive.

Lemma 5. ([25]) Let C be a nonempty, closed convex subset of a real 2-uniformly smooth Banach space
E. Let QC be the sunny, nonexpansive retraction from E onto C. Let A, B : C→ E be α-inverse-strongly
accretive and β-inverse-strongly accretive, respectively. Let G : C→ C be a mapping defined by G(x) =

QC[QC(x− µBx) − λAQC(x− µBx)], ∀x ∈ C. If 0 < λ ≤ α
K2 and 0 < µ ≤ α

K2 , then G : C→ C is
nonexpansive.

Thus, G : C→ C is nonexpansive, and we can get the following results. More information on
nonexpansive retracts and retractions can be found in [26,27].

Theorem 5. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, A, B : C→ E be,
respectively, α-inverse-strongly accretive and β-inverse-strongly accretive, f : C→ C be a contractive mapping
with k ∈ [0, 1), and G : C→ C be defined by Lemma 5. {xn} is generated by the generalized viscosity implicit
midpoint rule

xn+1 = αn f (xn) + (1− αn)G(snxn + (1− sn)xn+1), n ≥ 0, (7)

where {αn}, {sn} ⊂ (0, 1) and satisfies the conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞∑

n=0
αn = ∞;

(iii) lim
n→∞

αn+1
αn

= 1 or
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0.

Then {xn} converges strongly to q ∈ F(G), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(G).

Theorem 6. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, A, B : C→ E be,
respectively, α-inverse-strongly accretive and β-inverse-strongly accretive, f : C→ C be a contractive mapping
with k ∈ [0, 1), and G : C→ C be defined by Lemma 5. {xn} is generated by the generalized viscosity implicit
midpoint rule

xn+1 = αnxn + βn f (xn) + γnG(snxn + (1− sn)xn+1) + en, n ≥ 0, (8)

where {αn},
{
βn

}
,
{
γn

}
, {sn} ⊂ (0, 1), {en} ⊂ E and satisfies the conditions:

(i) αn + βn + γn = 1, lim
n→∞

γn = 1;

(ii)
∞∑

n=0
βn = ∞;

(iii)
∞∑

n=1

∣∣∣αn+1 − αn
∣∣∣ < ∞ and

∞∑
n=1

∣∣∣βn+1 − βn
∣∣∣ < ∞;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1, ∀n ≥ 0;
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(v)
∞∑

n=0
‖en‖ < ∞ and ‖en‖ = o(βn).

Then {xn} converges strongly to q ∈ F(G), which is also the unique solution of the variational inequality〈
(I − f )q, j(x− q)

〉
≥ 0, and x ∈ F(G).

5. Numerical Examples

We give six numerical examples to support the main results.

Example 1. Let R be the real line with Euclidean norm, f : R→ R be defined by f (x) = x
4 , T : R→ R be

defined by T(x) = x
2 , αn = 1

n , and sn = 1 − 1
n . So, F(T) = {0}. {xn} is generated by (3). From Theorem 1,

{xn} converges strongly to 0.

Next, we simplify the form of (3) and get

xn+1 =
2− 4n + 2n2 + n3

6n2 − 2n3 xn. (9)

Next, we take x0 = 1 into (9). Finally, we get the following numerical results in Figure 1.Mathematics 2019, 7, x FOR PEER REVIEW 15 of 19 
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Example 2. Let R be the real line with Euclidean norm, f : R→ R be defined by f (x) = x
4 , T : R→ R be

defined by T(x) = x
2 , αn = 1

n , βn = 1
n , γn = 1− 2

n , en = 1
n2 , and sn = 1− 1

n . So, F(T) = {0}. {xn} is generated
by (4). From Theorem 2, {xn} converges strongly to 0.

Next, we simplify the form of (4) and get

xn+1 =
4− n + 2n2

4− 2n + 4n2 xn +
2

2− n + 2n2 . (10)

Next, we take x0 = 1 into (10). Finally, we get the following numerical results in Figure 2.
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Example 3. Let 〈·, ·〉 : R3
×R3

→ R be the inner product and defined by〈
x, y

〉
= x1y1 + x2y2 + x2y3.

Let ‖ · ‖ : R3
→ R be the usual norm and defined by ‖x‖ =

√
x2

1 + x2
2 + x2

3 for any x = (x1, x2, x3). For any

x ∈ R3, let f : R3
→ R3 be defined by f (x) = x

6 and T : R3
→ R3 be defined by T(x) = x

4 . So, F(T) = {0}.
Let αn = 1

n and sn = 1− 1
n , then they satisfy the conditions of Theorem 1.{xn} is generated by (3). From Theorem

1, {xn} converges strongly to 0.

Next, we simplify the form of (3) and get

xn+1 =
3− 4n + 3n2

3− 3n + 12n2 xn. (11)

Next, we take x1 = (1, 2, 3) into (11). Finally, we get the following numerical results in Figure 3.
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Example 4. Let 〈·, ·〉 : R3
×R3

→ R be the inner product and defined by〈
x, y

〉
= x1y1 + x2y2 + x2y3.
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Let ‖ · ‖ : R3
→ R be the usual norm and defined by ‖x‖ =

√
x2

1 + x2
2 + x2

3 for any x = (x1, x2, x3). For any

x ∈ R3, let f : R3
→ R3 be defined by f (x) = x

6 and T : R3
→ R3 be defined by T(x) = x

4 . So, F(T) = {0}.
Let αn = 1

n , βn = 1
n ,γn = 1− 2

n , en = 1
n2 , and sn = 1− 1

n , then they satisfy the conditions of Theorem 2. {xn} is
generated by (4). From Theorem 2, {xn} converges strongly to 0.

Next, we simplify the form of (4) and get

xn+1 =
6 + 5n + 3n2

6− 3n + 12n2 xn +
4

2− n + 4n2 . (12)

Next, we take x1 = (1, 2, 3) into (12). Finally, we get the following numerical results in Figure 4.Mathematics 2019, 7, x FOR PEER REVIEW 17 of 19 
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Example 5. Let R be the real line with Euclidean norm, f : R→ R be defined by f (x) = x
4 , T : R→ R be

defined by T(x) = x
2 + 1, αn = 1

n , and sn = 1− 1
n . So, F(T) = {2}. {xn} is generated by (3). From Theorem 1,

{xn} converges strongly to 2.

Next, we simplify the form of (3) and get

xn+1 =
2− 3n + 2n2

2− 2n + 4n2 xn +
2n2
− 2n

1− n + 2n2 . (13)

Next, we take x0 = 1 into (13). Finally, we get the following numerical results in Figure 5.
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Example 6. Let R be the real line with Euclidean norm, f : R→ R be defined by f (x) = x
4 , T : R→ R be

defined by T(x) = x
2 + 1, αn = 1

n , βn = 1
n , γn = 1 − 2

n , en = 1
n2 , and sn = 1 − 1

n . So, F(T) = {2}. {xn} is
generated by (4). From Theorem 2, {xn} converges strongly to 2.

Next, we simplify the form of (4) and get

xn+1 =
4− n + 2n2

4− 2n + 4n2 xn +
2(n− 1)2

2− n + 2n2 . (14)

Next, we take x0 = 1 into (14). Finally, we get the following numerical results in Figure 6.Mathematics 2019, 7, x FOR PEER REVIEW 18 of 19 
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6. Conclusions

This paper proposes the generalized viscosity implicit rules for nonexpansive mappings in Banach
space and concretely constructs two iterative algorithms:

xn+1= αn f (xn) + (1− αn)T(snxn + (1− sn)xn+1),

xn+1= αnxn + βn f (xn) + γnT(snxn + (1− sn)xn+1) + en.

This paper obtains strong convergence results. Results promote the work of Ke et al. [19], Luo et al. [20],
and Yan et al. [23] from Hilbert spaces to a general Banach spaces and their iterative algorithms and
relevant conclusions. In the end, this paper gives six numerical examples to support the main results.
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