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Abstract: This paper constructs the generalized viscosity implicit midpoint rule for nonexpansive
mappings in Banach space. It obtains strong convergence conclusions for the proposed algorithm
and promotes the related results in this field. Moreover, this paper gives some applications. Finally,
the paper gives six numerical examples to support the main results.
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1. Introduction

Let E be a Banach Space and E* the dual space. | denotes the normalized duality mapping from E
to 2F" and is defined by

J(x) = {f € E" i< x, f >= Il = |IfIP}, x € E.

It is well known that if E is a Hilbert space, then ] is the identity mapping; if E is a smooth Banach
space, then ] is single-valued and denoted by j. More information on the normalized duality mapping
can be found, for example, in [1,2].

Let C be a nonempty set of E. Mapping of f: C — C is contractive if ||f(x) — f(y)|l < allx —yll,
Vx,y € C, and a € [0,1). Mapping of T:C — C is nonexpansive if [|T(x) - T(y)|l < [lx -yl and
Vx,y € C. Let F(T) denote the fixed point set of T. More information on nonexpansive mappings and
their fixed points can be found, for example, in [3].

The implicit midpoint rule can effectively solve ordinary differential equations (see [4-9] and
the references therein). Meanwhile, many authors have used viscosity iterative algorithms for
finding common fixed points for nonlinear operators and solutions of variational inequality problems
(see [10-17] and the references therein).

In 2004, Xu [10] proposed the explicit viscosity method for nonexpansive mappings in Hilbert
space or uniformly smooth Banach space:

Xpt1 = anf(xn) + (1 —ay)Tx,, n20.

{x,} was generated by the above iterative algorithm and strongly converged to q € F(T), where q
was the solution of variational inequality ((I - f)q,x —g) > 0 and x € F(T).
In 2015, Xu et al. [18] constructed the viscosity implicit midpoint rule for nonexpansive mapping

in Hilbert space:

(Xn + xn+1 )

X1 = anf(xn) + (1—an)T , 1> 0.
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{x,} was generated by the above. Under many conditions of {«a}, {x,} strongly converged to
q € F(T), where g was the solution of variational inequality (I - f)q,x —q) > 0 and x € F(T).

In 2015, Ke et al. [19] improved the results of Xu et al. [18] from the viscosity implicit midpoint
rule to generalized viscosity implicit rules for nonexpansive mappings in Hilbert spaces:

X1 = nf(xn) + (1= an)T(snxn + (1 =8p)xp41), >0 1)

and
X1 = WnXn + Buf (xn) + VT (snxn + (1 = Sp)xp41), n = 0. )

Under some conditions of {;,}, they proved that {x,} generated by (1) and (2) all strongly converged
to g € F(T), where g was the solution of variational inequality ((I - f)g,x —q) > 0 and x € F(T).

In 2017, Luo et al. [20] generalized the conclusions of Xu et al. [18] from Hilbert space to uniformly
smooth Banach space:

Xn + Xp41
&)/nzo.

Xpi1 = anf(xn) + (1 —an)T(

{xn} was generated by the above. Under many conditions, {x,} strongly converged to g € F(T),
where g was the solution of variational inequality ((I - f)q, j(x —¢q)) > 0 and x € F(T).

Motivated and inspired by Xu et al. [18], Ke et al. [19], and Luo et al. [20], this paper proposes the
generalized viscosity implicit rules for nonexpansive mappings in Banach space and proves strong
convergence results. Next, this paper applies the results to a general system of variational inequality
problems in Banach space and fixed-point problems of strict pseudocontractive mappings. Finally,
this paper gives numerical examples to support the main results.

2. Preliminaries

Let E be a Banach space. A mapping pg : [0, 00) — [0, 0) is defined by

llx + yll + llx =
pE(t) = sup{ Y . A _1:xeS(E), Iyl < t},
where S(E) is the modulus of smoothness of E. E is uniformly smooth if 1in8PET(t) = 0. For example,

L?(p > 1) is uniformly smooth Banach space. E is g-uniformly smooth if ¢ > 0 such that pg(t) < ct1.
We needed the following lemmas to prove our main results.

Lemma 1. ([10,21]) Assume {a,} is a sequence of non-negative real numbers such that
ai’l+1 S (1 - a?’l)a}’l + 6}’11 n 2 0/

where {ay} is a sequence in (0,1) and {0,} is a sequence in R such that

[ee)

e b
(i) Zan = oo; (ii) llmsupa—z <0or Zlénl < o0

n=0 n—c0 n=1

Then, lima, = 0.
n—oo
Lemma 2. ([10,22]) Let E be a uniformly smooth Banach space, C be a closed convex subset of E, T : C — C bea
nonexpansive mapping with F(T) # &,and f : C — C be a contractive mapping. Then the sequence {x;} defined
by x; = tf(x¢) + (1 —t)Tx; converges strongly to a point in F(T). If we define a mapping Q : I1c — F(T)
by Q(f) := %in(}xt, where Ic is the set of contractive mapping from C to itself, then Q(f) solves the following
variational inequality:

((I=£)Q(),j(Q(f) =p)) <0, ¥f ellc,p € F(T).
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Lemma 3. ([12]) Let C be a nonempty, closed convex subset of a real Banach space E, which has a uniformly
Gateaux differentiable norm, and T : C — C be a nonexpansive mapping with F(T) # &. Assume that {z;}
strongly converges to a fixed point z of T as t — 0, where {z;} is defined by zy = tf(z¢) + (1 — t)Tz¢. Suppose
{x,,} c C is bounded and lzm ||xn — Txyll = 0. Then limsup{f(z) —z, j(xy4+1—2)) < 0.

n—oo

3. Main Results

Theorem 1. Let E be a uniformly smooth Banach space, C be a closed convex subset of E, f : C — C be a
contractive mapping with « € [0,1), and T : C — C be a nonexpansive mapping with F(T) # @. {x,} is
generated by the generalized viscosity implicit midpoint rule

X1 = nf(xn) + (1= an)T(snxn + (1 =8p)xp41), 1 >0, 3)

where {ay}, {sn} C (0,1) and satisfies the conditions:

(i) lima, =0;

n—oo

(i) ¥ an= oo

n=0

n—oo n

(o)

(i) lim &L =1or ¥ |an+1 —an) < 00;
n=1

(iv) 0<e<s,;<8,41<1,V¥n=>0.

Then {x,} converges strongly to g € F(T), which is also the unique solution of the variational inequality
((I-f)q,j(x—q))=0,and x € F(T).

Proof. The proof is split into five steps.

Step 1: Show that {x,} is bounded.
Take p € F(T), then we have

ns1 =pll < aullf(xn) = pll + (1= an)IT(spxn + (1 = 81)Xn41) = pll
< aap|lxn = pll + anllf(p) = pll + (1 = an)snllxn = pll
+(1 _Ofn)(l _Sn)”xn+1 =7l
= [(1=an)sy + aan|llxy —pll + (1 = an) (1 =) llxu41 —pll
+anllf(p) - pll-

It follows that

(247! )Sn +aay

b1 = pll < Lo, — pl St If (p) — pll

_ (1-a)an (1-a)an Ilf (p)—pll
= (1~ et e =+ ety

Then we get ||x,,4+1 —pll < max{llxn pll, ||f1 )a)pll} By induction, we get

Iy, — pll < max{HXO pll, %} VYn > 0.

So, {x,} is bounded. Then {f(x,)} and {T(syx, + (1 —s,)x,+1)} are also bounded.
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Step 2: Show that lim |[x;, 1 — x| = 0.
n—o00
By (3), we have

g1 = xull = Nl f (xn) + (1 = an) T(suxn + (1= 80)%n11) — an1f(Xn-1)

—(1=ay-1)T(sp-12%p-1 + (1 = sp-1)xn)ll

< anllf (xn) = f(xu-0)ll + lan = ap-al - I1f (xn-1) = T(su-1%n-1 + (1 = 8p-1) %)l
+(1 = an)lIT(snxn + (1= 80)%n41) = T(Sp-1Xn—1 + (1 = 54-1)xu) |l

< aap|lxn = xp-1ll + lan = @y M + (1= an)ll[snxn + (1= 80)xp11]
=[sn-1%n-1 + (1 = s4-1) x4l

< aap|lxn = xp-1ll 4 lan = @1 IM + (1= a) (1 = s0) 211 = 2l
+(1 = an)sp-1llxn — x1ll

= (1=an) (1 =su)llcnr1 = xnll + [@ay + (1 = an)su-1]llxn = xp-1ll + lan — @y 1M,

where M > supl|f (xn) — T(snxn + (1 = 55)x541)l-

n>0

It follows that

aap~+(1-ay)s
tp1 —xnll < Wﬂxn Xy 1||+T)(15|an—04n—1|

_ (1-a)an+(1-an)(sn—sn- M
= [1— - (=) (1=51) - :|||xn_xn—1“+m|an_an—l|-

From 0 < ¢ < s, < sy41 < 1, wehave 0 < ¢ <5, < 1-(1-ay)(1-s,) < 1 and
(A-@)an+(1-an)(sn=sy-1)
1-(1-an)(1-sn)

> (1-a)ay. Then we get
M
X1 = xull < [1 = (1= a)an]llxn — xp-1ll + ?Iocn — a1l

From Z ay = 00, Z |an+1 ozn) < 00, and Lemma 1, we get hm ||xn+1 x4l = 0.

Step 3 Show that hm ||xn —Txyl| = 0.

[l = Txnll < llvn = Xpgall + 101 = TS0 + (1= 80) X001+ 1T (8020 + (1= 80) X0 41) — Tl
< Ml = X all + aull f (xn) = T(snxn + (1 = 5p) 20 10) 11+ (1 =80 l1xn = x4 1l
< (2=su)llxn = Xyl + @uM
< 2llxn = xp1ll + an M.

From lim 0y = 0 and Step 2, we get lim ||xn —Tx,|| = 0.
Step 4 Show that limsup(f(q) — (xnﬂ —-q)) <0.

n—oo

Let {x;} be defined by x; = tf (xt) + (1 —t)Tx;. Then, from Lemma 2, {x¢} converges strongly to
g € F(T), which is also the unique solution of the variational inequality ((I - f)gq, j(x —q)) = 0, x € F(T).
From Steps 1-3 and Lemma 3, we get limsup(f(q) — ¢, j(x,+1 —4)) < 0.
n—o0o



Mathematics 2019, 7, 512 50f 16

Step 5: Show that nh_r)r;o Xp = (.
s =gl = o (F(xn) =) + (1= @) (T(sn%n + (1= 81)Xn11) — 9)IP
= (1= an)(T(snxn + (1 =sn)Xn11) = 4, j(xn1 = q)) + an{f (xn) = q, j(Xn11 = q))
< (T=an)llsu(xn = q) + (1 =su) (xur1 = I - xns1 = qll + @anllxn — gl - 11 —qll
+an(f(q) =4, j(xns1-14))
< (1= an)sullen = qll - Ins1 = gll + (1= an) (1 = sp)lxns1 — gl* + aaullxn —gll - l1x1 — 4l
+an(f(q) = q,j(xns1-9))
= [(1 = an)sn + aan]llxn = qll - lIxng1 = gl + (1 = an) (1= sn)llxng1 — qI*
+an(f(q) =4, j(xns1—4))
< LBt (v, — g+ enr = 1) + (1= ) (1= ) i1 — 41
+an(f(q) = q,j(xns1-9))-

It follows that

Ty, (1—ap)sp+aay 2
||xn+1 q” S2—[(1—04,1)sn-&-oza,,]—Z(l—an)(1—5,1)”x" q”

20y .

+2—[(1—&,,)sn+aa,,]—2(1—an)(1—s,,) <f(q) -4 ](x”+1 - q»

_ 2(1-a)ay 2

- [1 - 2—[(1—an)sn+0¢an]—2(1—an)(l—s,,)]”xn —qll
4 2ay(1-a) (@) ~,j(xni1-9))

2-[(1—an)sn+aay]-2(1-ay) (1-s,) 1-a :
Because
2an(1-a) 200 (1 - ) 2-2a

2~ [(1=tn)sn + a@n] —2(1—an)(1=sn) _ an@-a) + (1—ctn)sn  3—a "

so, from ), a, = oo, Step 4, and Lemma 1, we get nlim Xy = q. This completes the proof. O
n:0 —00

It is well known that Hilbert space is uniformly smooth Banach space. So, we can get the main
results of [19].

Corollary 1. ([19]) Let C be a nonempty, closed convex subset of the real Hilbert space H. Let T : C — C bea
nonexpansive mapping with F(T) # @ and f : C — C be a contraction with coefficient 6 € [0,1). Pick any
xo € Cand let {x,} be a sequence generated by

Xpi1 = Anf(Xn) + (1= an)T(snxn + (1= 50)Xn41),

where {ay}, {sn} C (0,1) that satisfies the following conditions:

(1) lima, =0;

n—oo
(2) Y ay=o0;
n=0
3 X |a‘n+1 - an| < 0,
n=1
(4) 0<e<s;<sy,41<1,V¥n=0.

Then {x,} converges strongly to a fixed point x* of the nonexpansive mapping T, which is also the unique
solution of the variational inequality {(I - f)x,y —x) >0, Vy € F(T).

If welets, = %, we can get the main results of [20].
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Corollary 2. ([20]) Let C be a closed convex subset of a uniformly smooth Banach space E. Let T : C — C bea
nonexpansive mapping with F(T) # &, and f : C — C a contraction with coefficient o« € [0,1). Let {x,} be a
sequence generated by the following viscosity implicit midpoint rule:

Xn + Xnt1

y 20/
2 )”

Xt = () + (1= )T

where {a,} is a sequence in (0,1) such that:

(i) lima, = 0;
n—oo

o0
(i) )Y, ap = oo;
n=0

(o)
(iii) either Y, |an+1 - an| < ooor lim “;’(—“ =1.
n=1

n—oo “n
Then {x,} converges strongly to a fixed point of T, which also solves the following variational inequality:
(=), j(x=q)) 2 0,x € E(T).

Theorem 2. Let E be a uniformly smooth Banach space, C be a closed convex subset of E, f : C — C be a
contractive mapping with a € [0,1) and T : C — C be a nonexpansive mapping with F(T) # @. {x,} is
generated by the generalized viscosity implicit midpoint rule

Xp1 = AnXn + Buf (Xn) + VuT(snxn + (1 = $n)Xp11) +en, 120, 4)

where {an}, {Bn}, {yn}, {sn} € (0,1),{en} C E and satisfies the conditions:
(i) an +,Bn +Yn = 1, nll_Ii}O)/n =1
(i) Y, Pn =00,

n=0
(i) T |1 —an| < coand ¥ |Bus1 — Bu| < oo;

n=1 n=1
(iv) 0<e<s,<s,11<1,Vn>0;

(@) ¥ lleall < oo and |lexll = o(Bn).

n=0

Then {x,} converges strongly to q € F(T), which is also the unique solution of the variational inequality
((I-£)q,j(x—q)) >0, and x € F(T).
Proof. The proof is split into five steps.

Step 1: Show that {x,} is bounded.
Take p € F(T), then we have

X1 =Pl = llanxn + Buf (xn) + YuT(Snxn + (1 = sp)xp11) +en —pll
< anllen = pll + apullxn = pll + Ballf (p) = pll + Vnsullxn = pll
+Yn(L=sp)lIxnt1 = pll + llexll
= (an + aBn + yusn)llxn = pll + yu(1 = su)lIxny1 = pll + Bullf (p) — pll + llenl|.

It follows that

(1 =vu(1=su)|llxng1 = pll < (an + aPu + yusu)llxn = pll + Ballf (p) = pll + lleall.
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From ay, + By + yn = 1, we have
an+aPu+ynsn Bn [lexl
IXpr1 —pll < T” w—pll + T (1=sn )”f( ) p||+1—yne(Tsm)
1 n n n n
< |1 - St i, —pll + 1 () pll + L
_ 5n(1 “) Bu(1-a) Nf()=pll | lleall
= |1 e o =l + o T +
< max{||XO pll, ”f p) )p” + ”E””}
So, {x,} is bounded. Then {f(x,)} and {T(sux + (1 —s,)x,+1)} are also bounded.
Step 2: Show that nlim |[x41 — xull = 0.
By (4), we have
I¢ns1 = xall - = llanxn + Buf (xn) + ynT (snxn + (1= 5p)xpn41) + n — [@n-1%n-1 + Bu-1f (Xn-1)

FYn-1T(Sp—1%n-1 + (1 = 5,1)xn) + €n—1]ll
= |lan (2 = xp—1) + (@ = ap=1)Xp—1 + Bulf (xn) = f(xp=1)] + (Bn = Bn=1) f (Xn-1)
+ynlT(suxn + (1 =5n)%n11) = T(Sp-1%n-1 + (1 = 85-1)Xn)]
~[(an = an-1) + (Bn = 1) T(Sp—1Xn-1 + (1 = 5-1)xn) + €n — €1l
< anllxn = xp-1ll + lan = a1l - l10-1 = T(sp-1%n-1 + (1 = 8p—1) %)l
+Ballf (n) = F(tut)ll+ Br = B | - 1f (num1) = T(Snm1xm—1 + (1= Sp—1) )l
FYullT (snxn 4+ (1 =54)%n41) = T(Sn-1%n-1 + (1 = 5p—1) %) |l + llen — el
<l = X1l + lan = a1 My + aulln = xu-1ll + |Bu — Bt M1
FYnll (1 =s0) (Xpg1 = %) 4 551 (X0 = X521l + llew — el
< Yn(1=sp)llxng1 = xull + (an + aPu + yusn—1)llxn — X1l
+ (Il — a1l + [Bn = Bt |)M1 + 2llenll,

where M; > max{supllx,1 = T(spxn + (1 =sn)xp1)ll, supllf (xn) = T(spxn + (1 — s”)xn+1)||}.
n>0 n>0

It follows that
n+ n+ nen—
a 10;f1(1yss Loy — 26— 1II+—1 s (Ian Ay 1|+|ﬁn B 1()Jrzn(gn”

1 n n N on—
:[1 L ”]nxn—xn 1l + s (1 =l + B = Baca[) + 2l

IN

141 = xnll

From0<e<s,<s;,41 <1, wehave0<e<s, <1-(1-ay)(l-s,) <land mﬂt)fi”;gi”;s"’l) >
(1 - a)Bn. Then we get

M
b1 = xnll < [1= (1= @)Bulllen = u-all+ == (o = el + B = Bu-a]) + 2l

From Z Bn = oo, Z |an+1 —an} < 090, ): "Bnﬂ —,Bn' < oo, Z llexll < oo, and Lemma 1 we get
n=

hm 0 1241 — xnll =0.



Mathematics 2019, 7, 512 8 of 16

Step 3: Show that lim |[x,, — Tx,|| = 0.
n—o00

[l = Txnll < lxn = Xpgall + 1601 = T80 + (1= 80) X1 0) 11+ 1T (802 + (1= 80) X0 41) — Tl
< Ml = X all + aullxn = T(snxn + (1= 80) X4 1)l + (1= 80)llxn — X114l
FBullf (xn) = T(snxn + (1= sn) x50l -+ lleall
< (2 =su)llen = xpq1ll + (@ + ) My + lleall
< 2/lxn = X1l 4+ (1= yu) My + lleall.

From 11myn =1, Z llex|l < oo and Step 2, we get hm IIxn Tx,|| = 0.
=1
Step 4: Show that hmsup(f( )—q,j(xut1—9q)) <0.

Let {x;} be defined by xp = tf (xt) (1 —t)Tx;. Then, from Lemma 2, {x;} converges strongly to
g € F(T), which is also the unique solution of the variational inequality ((I - f)qg, j(x —¢)) > 0 and
x € F(T). From Steps 1-3 and Lemma 3, we get limsup(f(q) — ¢4, j(x,41 —¢)) < 0.

n—00
We have

e — xull> = (1= £){Sx¢ — Satyy + Sty — X, J (21 — X)) + B X — x5 + X — X, J (21 — X))
< (L= )llxe = xul® + (1= 1)1 = xull - e =
e = xall® + 6 fxe = x1, ] (36 = xn))
= [lxt = xall® + (1= )l1Sxn = xull - l1xe = xll+-Hllxe = xal® + £ fxe = x2, J (20 = X))

It follows that (fx;—xg, J(xt—x,)) < %IIan —xnll - llxt —xull.  From Step 3, we get
limsup(£(7) = 4, rs1 = 1)) < 0.
Step 5: Show that nh_r)rolo Xn = q.

xu1 = qIP = llan(xn =) + Bu(F(xn) = q) + Y (T(sp2n + (1= 50)x011) =) + enll®
= n(xn — 4, j(Xnr1 = 9)) + Bulf (xn) =4, j(Xu1—-9))
‘H/n(T(Snxn + (1 =su)xpi1) = q/](xn-H —q)) +<en, j(xn11—9))
< anlln = qll - 11 = gl + aBullxn — qll - a1 = qll + Bu{f(7) =4, j(Xu1—9))
+yallsn(xn —q) + (1 =sn) (xn1 = @I Ixg1 — 4l + llenll - len+1 Ul
< (an + B + yusn) Il = qll - Ixus1 =gl + (1= s2)yallxn 1 — gl
+Bu{f(9) = 4, j(xu1 —q)) + lleall - 11 — 4l
mnx — glP [ (1 5y Ik - gl

Bl f(9) =4, j(xn1 =) + lleall - [Ixn11 — 4.

<

It follows that

2 Ay +afn+ynsn YA
”xn+1 ‘1|| = 2 (@n+0Ba+yusn)—2yn(1—5n ||xn q”

26, 2My ey
+2_(an+aﬁn+)’nsn 2}/}1 1 sn <f( ) (Xn+1 - )>+ an+a‘3n+)/nsn) Zyn(l—sn)

— 2(1-a)Bn
- [1 - 2—(an+aﬁ,l+ynsn)—2yn(l—sn)]”x” - q“

I 2(1-a)y @-2,i(n1-9))
2—(an+aBu+ynsn)—2yn(1-s4) 1-a

+ 2Mp|lenll
2—(an+aPu+ynsn)—2yn(1-s,)

where M, > max{supllxn+1 - qll}

n>0
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Because
2B, (1-a) . 2Bn(1-ar)
2_(0411 +apn +Vn5n)_2]/n (1_Sn) T 2-—an—aPn—2yn+ynsn
— 2pn(1-a)
T I+ 1-ap—aBu—yn—Yn+Ynsn
_ 28, (1-a) 2 2a
- ﬂnr

1+(1—a)ﬁn—(1—sn)yn

so from Z Bn = 0, |lexll = 0(Bn), Step 4, and Lemma 1, we get hm 0 Xy = q. This completes the proof. O

n=0

If oy = 0, we can get Theorem 1. So, Theorem 2 is a generalization of Theorem 1.
And, the computational efficiency of Theorem 2 is better than Theorem 1.

It is well known that Hilbert space is uniformly smooth Banach space. So, we can get the main
results of [19].

Corollary 3. ([19]) Let C be a nonempty, closed convex subset of the real Hilbert space H. Let T : C — C bea
nonexpansive mapping with F(T) # & and f : C — C be a contraction with coefficient 6 € [0,1). Pick any
xp € Cand let {x,} be a sequence generated by

Xpg1 = anXn + P f (Xn) + yuT (suxn + (1= 80)Xn41),

where {ay}, {Bn}, {yn}, (s} € (0,1) that satisfies the following conditions:
(1) an+ Bn+yn= 1171131;107/71 =1
(2) Z ﬁn = 0o,

n=0
(3) Zl|an+1 - an| < oo and Zl|ﬁn+1 _ﬁn| < 09,

n= n—=
(4 0<e<s;<sy41<1,¥n=0.

Then {x,} converges strongly to a fixed point x* of the nonexpansive mapping T, which is also the unique
solution of the variational inequality {(I - f)x,y —x) > 0and Yy € F(T).

If welets, = % and a,; = 0, we can also get the main results of [20]. The results of Theorem 2
generalize the relevant results of [23].

Corollary 4. ([23]) Let E be a uniformly smooth Banach space and C a nonempty closed convex subset of E.
Let T : C — C be a nonexpansive mapping with F(T) # @ and f : C — C a generalized contraction mapping.
Pick any xo € C. Let {x,} be a sequence generated by

Xnt1 = nXn + Puf (Xn) + YuT(Snxn + (1 =8n)xn11),
where {ay}, {Bn}, and {y,} are three sequences in |0, 1] satisfying the following conditions:
(i) an+Putyn=1
(ii) E Bn = oo, limﬁn =0;

(ii) hm ‘Oln+1 - an| = 0and 0 < liminfa,, < limsupay, < 1;
(iv) 0<ée<s,<sypq<1forall nn;o(;. o

Then {x,} converges strongly to a fixed point x* of the nonexpansive mapping T, which is also the solution
of the variational inequality ((I — f)x*, j(y —x*)) =2 0 forall y € F(T).
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4. Applications
(1) A fixed point problem for strict pseudocontractive mapping.

If there exists A € (0, 1) such that
(Tx =Ty, j(x—vy)) < llx—yI? = Al(I-T)x— (I-T)yl?, ¥x,y € C,

then T : C — C is called A-strict pseudocontractive mapping.
Zhou [24] obtained the relationship between nonexpansive mapping and A-strict
pseudocontractive mapping.

Lemma 4. ([24]) Let C be a nonempty, closed convex subset of a real 2-uniformly smooth Banach space E
and T : C — C be a A-strict pseudocontractive mapping. For a € (0,1), we define Tox := (1 —a)x + aTx.
Then, a € (0, %], where K is the 2-uniformly smooth constant. Then, T, : C — C is nonexpansive such
that F(T,) = F(T).

So Ty : C — C is nonexpansive, and then we can get the following results.

Theorem 3. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, f : C — C bea
contractive mapping with k € [0,1), T : C — C be a A-strict pseudocontractive mapping, and Ty : C — C be
defined by Tox := (1 —a)x + aTx with a € (0, %] {xn} is generated by the generalized viscosity implicit
midpoint rule

Xni1 = Anf(xn) + (1= an)Ta(snxn + (1 —sp)xp41), 120, (5)

where {ay}, {sn} € (0,1) and satisfies the conditions:

(i) lima, =0;

n—oo
(o)

(i) Y, ap = oo;
n=0

An

(iii)  lim = =Tor Y, |an+1 —an) < oo;

n—oo n n=1
(ilv) 0<e<s;<8;,41<1,¥n>0.

Then {x,} converges strongly to g € F(T), which is also the unique solution of the variational inequality
((I-f)q,j(x—q))=0,and x € F(T).

Theorem 4. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, f : C — C bea
contractive mapping with k € [0,1), T : C — C be a A-strict pseudocontractive mapping, and Ty : C — C be
defined by Tox := (1 —a)x + aTx with a € (0, %] {xn} is generated by the generalized viscosity implicit
midpoint rule

Xpt1 = WnXn + Buf (xXn) + VuTa(Snxn + (1 = 54)Xp41) +€n, n >0, (6)
where {an}, {Bn}, {yn}, {sn} € (0,1),{en} C E and satisfies the conditions:

(i) ocn+ﬁn+yn=l,nli_rggoyn=1;

(i) Y, Pn =00
n=0

(i) Y |ani1 —an| < coand ¥ |Bus1 = Bu| < oo;
n=1 n=1

(iv) 0<e<s,<s,41<1,Vn>0;

@ X lleall < o and lleall = o().

Then {x,} converges strongly to q € F(T), which is also the unique solution of the variational inequality

((I-1)g,j(x—q))=0,and x € F(T).
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(2) A general system of a variational inequality problem in Banach space.

The problem of finding (x*, y*) € C x C such that

My +x =y, j(x=x")) 2 0,¥x € C,
(UBx* +y* =2, j(x—y)) 2 0,¥x € C,

is called the general system of variational inequalities in Banach space, where A, u > 0 and A, B are two
nonlinear mappings.

If there exists j(x —y) € J(x —y) satisfying (Ax — Ay, j(x—y)) =2 0,¥x,y € C, then A:C— E
is called accretive. If there exists j(x —y) € J(x —y) and a > 0 satisfying (Ax—Ay, j(x—y)) >
al|Ax — Ayllz, Vx,y € C, then A : C — E is called a-inverse-strongly accretive.

Lemma 5. ([25]) Let C be a nonempty, closed convex subset of a real 2-uniformly smooth Banach space
E. Let Qc be the sunny, nonexpansive retraction from E onto C. Let A,B:C — E be a-inverse-strongly
accretive and B-inverse-strongly accretive, respectively. Let G : C — C be a mapping defined by G(x) =
QclQc(x— uBx) —AAQc(x— uBx)], Vx € C. If0 < A < wad 0 < p < &, then G:C— C is
nonexpansive.

Thus, G: C — C is nonexpansive, and we can get the following results. More information on
nonexpansive retracts and retractions can be found in [26,27].

Theorem 5. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, A,B: C — E be,
respectively, a-inverse-strongly accretive and B-inverse-strongly accretive, f : C — C be a contractive mapping
withk € [0,1), and G : C — C be defined by Lemma 5. {x,} is generated by the generalized viscosity implicit
midpoint rule

Xp1 = @nf(xXn) + (1= an)G(spxn + (1 =80)Xp41), 120, ()

where {ay}, {sn} € (0,1) and satisfies the conditions:

(i) lima, =0;
n—o00

(i1) Z ay = 0,
n=0

Ant1
an

(iii) lim =1or ¥ |ani1 —an| < oo
n—-oo n=1
(iv) 0<e<sy,<s,41<1,V¥n>0.
Then {x,} converges strongly to q € F(G), which is also the unique solution of the variational inequality

(1= £)q,j(x~4)) = 0, and x € F(G).

Theorem 6. Let E be a 2-uniformly smooth Banach space, C be a closed convex subset of E, A,B: C — E be,
respectively, a-inverse-strongly accretive and B-inverse-strongly accretive, f : C — C be a contractive mapping
withk € [0,1), and G : C — C be defined by Lemma 5. {x,} is generated by the generalized viscosity implicit
midpoint rule

Xpa1 = QnXn + Buf (xn) +YuG(spxy + (1 =54)Xp41) +en, 120, 8)

where {an}, {Bu}, {yn), Asn} € (0,1),{en} C E and satisfies the conditions:
(i) ay+ Bntyn=1, nlgl;)/n =1
(i) Y. Pn =0
n=0
(ii) Zl|an+1 - an| < oo and Zl|ﬁn+1 —ﬁn| < 00;
n= n=

(ilv) 0<e<s,;<8;,41<1,V¥n>0;
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(v) Z llexll < oo and |le,|| = o(ﬁn)-

n=0

Then {x,} converges strongly to q € F(G), which is also the unique solution of the variational inequality
((I-£)q,j(x=q))>0,and x € F(G).

5. Numerical Examples

We give six numerical examples to support the main results.

Example 1. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = 3, T:R — R be
defined by T(x) = 5, ay = %, and s, = 1— % So, F(T) = {0}. {x} is generated by (3). From Theorem 1,

{xn} converges strongly to 0.
Next, we simplify the form of (3) and get

2—4n+2n+nd
6n2 — 2n3

X )

Xp+1 =

Next, we take xp = 1 into (9). Finally, we get the following numerical results in Figure 1.

r o
r °

4l ° i
r °

2, —
L °

° °
°

0 .'.'.‘-aaaaeaeeea
r °
[ [

20 . ]
F °
[ °

4l i
ol ® e | | L | |
0 5 10 15 20 25 30

Figure 1. Numerical results.

Example 2. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = 3, T: R — R be
defined by T(x) = 5, an = %,ﬂn = %, Yn=1- %,en = 7%, ands, =1— % So, F(T) = {0}. {x,} is generated
by (4). From Theorem 2, {x;,} converges strongly to 0.

Next, we simplify the form of (4) and get

4—n+2n? 2
Xn .
4 —2n + 4n? 2—n+2n?

Xn+1 = (10)

Next, we take xg = 1 into (10). Finally, we get the following numerical results in Figure 2.
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10F o6 " & 7

0.8+

0.6+

0.4

02} .

°
00}, ‘ ‘....f.O..QOOOOQOOQOQOOQOQ—
0 5 10 15 20 25 30 35

Figure 2. Numerical results.

Example 3. Let {-,-) : R3 x R> — R be the inner product and defined by
(X, y) = x1y1 + X2y2 + X213.

Let ||-]| : R® — R be the usual norm and defined by ||x|| = x% + x% + x%for any x = (x1,xp,x3). Forany

x € R3, let f:R3 — R3 be defined by f(x) = % and T : R — R® be defined by T(x) = %. So, F(T) = {0}.

Let ay = L ands, = 1— 1, then they satisfy the conditions of Theorem 1.{x,,} is generated by (3). From Theorem

—n
1, {xu} converges strongly to 0.

Next, we simplify the form of (3) and get

3 —4n + 3n?

= = T i, 11
3-3n+12n2"" (11)

Xpn+1 =

Next, we take x; = (1,2, 3) into (11). Finally, we get the following numerical results in Figure 3.

5. 10 7 .
.l
4. 107 *n
Tt ] 2
3. 10 . 2
2. 10 7¢
.3
1. 107 ‘. *n
oL Upesessosmasenssssssssmmerasosssosssaperaseses

Figure 3. Numerical results.

Example 4. Let (-, : R3X R® — R be the inner product and defined by

(x,y) = x11 + X212 + X2V3.
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Let || ]| : R3 — R be the usual norm and defined by ||x|| = x% + x% + x%for any x = (x1,xp,x3). Forany
x € R3, let f:R3 — R3 be defined by f(x) = % and T : R®> — R® be defined by T(x) = %. So, F(T) = {0}.
Let ay, = %, Bn = %,yn =1- %,en = n%, and s, =1- %, then they satisfy the conditions of Theorem 2. {x,} is
generated by (4). From Theorem 2, {x,} converges strongly to 0.

Next, we simplify the form of (4) and get

6+5n—|—3n2x N 4
6-3n+12n2"" " 2—n+4n2?”

Xnt1 = (12)

Next, we take x; = (1,2, 3) into (12). Finally, we get the following numerical results in Figure 4.

H
0.015 !
® 1
[ ] xn
0.010 ‘
' " © X
0.005 | ] 3
.."'\____L "
0.000 L. ‘ ‘ : ]
0 20 40 60 80

Figure 4. Numerical results.

Example 5. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = §, T: R — R be
defined by T(x) = 5 +1,a, = %, and s, =1 - % So, F(T) = {2}. {xy} is generated by (3). From Theorem 1,
{xn} converges strongly to 2.

Next, we simplify the form of (3) and get

2 —3n+2n? 2n% —2n
Xn .
2 —2n+4n? 1-n+2n2

Xn4+1 = (13)

Next, we take xp = 1 into (13). Finally, we get the following numerical results in Figure 5.

1.9 f
192 —
190 |
1.88 f

186 [

Ll T L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1

0 50 100 150 200 250

Figure 5. Numerical results.
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Example 6. Let R be the real line with Euclidean norm, f : R — R be defined by f(x) = 3, T:R — R be

defined by T(x) = 5 +1, ay = %, Bn = %, yn=1- %, ey = %, and sy, = 1 - % So, F(T) = {2}. {xu}is
generated by (4). From Theorem 2, {x,} converges strongly to 2.

Next, we simplify the form of (4) and get

4—n+2n? 2(n—1)>
= . 14
= T o, + " Ty + 2n? 14

Next, we take xp = 1 into (14). Finally, we get the following numerical results in Figure 6.

¢

198 [

19 L

Figure 6. Numerical results.

6. Conclusions

This paper proposes the generalized viscosity implicit rules for nonexpansive mappings in Banach
space and concretely constructs two iterative algorithms:

Xpp1= anf (xn) + (1= an) T(suxn + (1= 50)xp41),
Xn41= AnXn + Brf (Xn) + YT (snxn + (1 = 54)Xp41) + €n.

This paper obtains strong convergence results. Results promote the work of Ke etal. [19], Luo et al. [20],
and Yan et al. [23] from Hilbert spaces to a general Banach spaces and their iterative algorithms and
relevant conclusions. In the end, this paper gives six numerical examples to support the main results.
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