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Abstract: The Kortweg–de Vries equations play an important role to model different physical
phenomena in nature. In this research article, we have investigated the analytical solution to system
of nonlinear fractional Kortweg–de Vries, partial differential equations. The Caputo operator is used
to define fractional derivatives. Some illustrative examples are considered to check the validity and
accuracy of the proposed method. The obtained results have shown the best agreement with the
exact solution for the problems. The solution graphs are in full support to confirm the authenticity of
the present method.

Keywords: Laplace–Adomian decomposition method; Fractional–order systems of non-linear partial
differential equations; Caputo operator; Laplace transformation; Mittag–Leffler function

1. Introduction

In the study of nonlinear dispersive waves, Kortweg–de Vries (KdV) is an important class of
differential equations. This class is derived by two great scientists Kortweg and de Vries in 1895 for
describing long wave propagation on shallow water. Although KdV equations are studied from a
decade, its physical behavior is still curious. The phenomena described by Russell can be expressed by
the KdV equation successfully [1]. This equation plays an important role in various fields of science
and technology, so a lot of research work has been devoted for this study [2]. Numerous physical
problems in different fields of mechanics, biology, hydrodynamics and plasma physics are successfully
modelled by a nonlinear coupled system of Partial Differential Equations (PDEs).

In nonlinear PDEs, the nonlinear term is completely responsible for the study of any physical
problem [3]. The exact solution of nonlinear PDEs may not be calculated easily, therefore various
analytical and numerical techniques have been suggested for the solution of such types of equations.
The well-known analytical approaches for the solution of coupled systems of differential equations are
iterative methods, perturbation methods and homotopy based methods, etc. Each approach has its
own merits and demerits. Some approaches for the solution of coupled system of differential equations
have been discussed successfully in [2].

Generalized Hirota–Satsuma coupled KdV equations have been solved, using the modified
decomposition method [4]. An exact approach has been suggested for the solution of coupled KdV,
using the homogenous balance method [5]. By using the differential transform method, the analytical
solutions of coupled KdV have been studied in [6]. The homotopy analysis method have been
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described in [7] for solving KdV equations. The exact solution of KdV has been investigated in [8]
using the variational iteration method. The analytical solution for a generalized coupled system of
Zakharov–Kuznetsov and KdV equations have been obtained in [9] using the modified extended
tanh method.

In 1980, George Adomian has introduced a new mathematical technique, known as the adomian
decomposition method (ADM) to solve nonlinear differential equations [10]. Similarly, another
powerful technique for solving PDEs discovered by Pierre-Simon Laplace is known as the Laplace
transform method, which transforms the original differential equations into an algebraic expression [11].
Among all these methods, the Laplace Adomian Decompostion Method (LADM) is an efficient
analytical method to solve nonlinear fractional partial differential equations. LADM is the combination
of two powerful techniques, Laplace transform and the Adomian Decomposition Method. Furthermore,
the proposed method has no requirement of predefined size declaration like Runge–Kutta methods.
Therefore, this technique is considered to be ideal for those equations that represent nonlinear models.
Compared to other analytical techniques, LADM have less numbers of parameters; therefore, LADM is
a perfect technique, requiring no discretization and linearization [12]. Non-linear Coupled PDE’s and
non-linear Blasius flow equation using Laplace decompostion method [13,14]. A comparison between
the LADM and ADM for the analysis of FPDEs is discussed in [15]. The Kundu–Eckhaus Equation
deals in the quantum field theory, and the analytical solution of this nonlinear PDEs has been derived
in [10] using LADM. The multi-step Laplace Adomian decomposition method has been described
in [16] for nonlinear fractional differential equations. Analysis of the fractional order smoke model
has been studied successfully by using LADM [17]. Such as Fractional Order Epidemic Model of a
Vector Born Disease [18], Multi dimensional of Navier–Stokes equation [19] and third-order dispersive
FPDE’s using LADM [20]. Motivated from the above studies, in this paper, we applied LADM to solve
the system of fractional KdV equations [21].

2. Definitions and Preliminary Concepts

Definition 1. R-L fractional integral

Iγ
x g(x) =

g(x), if γ = 0,
1

Γ(γ)

∫ x
0 (x− υ)γ−1g(υ)dυ if γ > 0,

where Γ denote the gamma function defined by

Γ(ω) =
∫ ∞

0
e−xxω−1dx ω ∈ C.

In this study, Caputo et al. [22] suggested a revised fractional derivative operator in order to
overcome inconsistency measured in the Riemann–Liouville derivative [23]. The above mathematical
statement described the Caputo fractional derivative operator of initial and boundary conditions for
fractional as well as integer order derivatives.

Definition 2. The Caputo operator of order γ for fractional derivative is given by the following mathematical
expression for n ∈ N, x > 0, g ∈ Ct, t ≥ −1:

Dγg(x) =
∂γg(x)

∂tγ
=

In−γ
[

∂γg(x)
∂tγ

]
, if n− 1 < γ ≤ n, n ∈ N,

∂γg(x)
∂tγ .

Hence, we require the subsequent properties given in the next Lemma.
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Lemma 1. If n− 1 < γ ≤ n with n ∈ N and g ∈ Ct with t ≥ −1, then

Iγ Iag(x) = Iγ+ag(x), a, γ≥0.

Iγxλ =
Γ(λ + 1)

Γ(γ + λ + 1)
xγ+λ, γ > 0, λ > −1, x > 0.

IγDγg(x) = g(x)−
n−1

∑
k=0

g(k)(0+)
xk

k!
, for x > 0, n− 1 < γ ≤ n.

In the current study, the Caputo operator is reasonable as other fractional derivative operators
have certain disadvantages. Further information about fractional derivatives are found in [24].

Definition 3. The Laplace transform of h(t), t > 0 is defined by

H(s) = L[h(t)] =
∫ ∞

0
e−sth(t)dt.

Definition 4. The Laplace transform in term of convolution is given by

L[h1 ∗ h2] = L[h1(t)] ∗ L[h2(t)].

Here, h1 ∗ h2, define the convolution between h1 and h2 ,

(h1 ∗ h2)t =
∫ τ

0
h1(τ)h2(t− τ)dt.

Fractional derivative in terms of Laplace transform is

L
(

Dγ
t h(t)

)
= sγH(s)−

n−1

∑
k=0

sγ−1−kh(k)(0), n− 1 < γ < n,

where H(s) is the Laplace transform of h(t).

Definition 5. The Mittag–Leffler function, Eγ(p) for γ > 0 is represented as

Eγ(p) =
∞

∑
n=0

pn

Γ(γn + 1)
γ > 0, p ∈ C.

Theorem 1. Here, we will study the convergence analysis in the same manner as [25] of the LADM applied
to the fractional-order Kortweg–de Vries. Let us consider the Hilbert space H which may define by H =

L2((α, β)X[0, T]) the set of applications:

u : (α, β)X[0, T]→ with
∫
(α,β)X[0,T]

u2(x, s)dsdθ < +∞.

Now, we consider the fractional-order Kortweg–de Vries in the above assumptions and let us denote

L(u) =
∂γu
∂tγ

.

Then, the fractional dispersive PDE becomes in an operator form

L(u) = −ϕ
∂ν(x, t)

∂x
− w

∂3ν(x, t)
∂x3 .
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The LADM is convergence, if the following two hypotheses are satisfied:

(H1)(L(u)− L(v), u− v)≥k‖u− v‖2; k > 0, ∀u, vεH.

H(2) may be M > 0, and there exists a constant C(M) > 0 such that, for u, vεH with ‖u‖≤M, ‖v‖≤M,
we have (L(u)− L(v), u− v)≤C(M)‖u− v‖‖w‖ for every wεH.

3. Idea of Fractional Laplace–Adomian Decomposition Method

In this section, the Laplace–Adomian Decomposition Method is discussed for the solution
of FPDEs:

Dγu(x1, t1) + Lu(x1, t1) + Nu(x1, t1) = q(x1, t1), x1, t1 ≥ 0, m− 1 < γ < m, (1)

where Dγ = ∂γ

∂tγ
1

the Caputo Operator γ, m ∈ N, where L and N are linear and nonlinear functions, q is

the source function.
The initial condition is

u(x1, 0) = k(x1), 0 < γ ≤ 1, t1 > 0. (2)

Applying the Laplace transform to Equation (1), we have

L [Dγu(x1, t1)] + L [Lu(x1, t1) + Nu(x1, t1)] = L [q(x1, t1)] , (3)

and using the differentiation property of Laplace transform, we get

sγL [u(x1, t1)]− sγ−1u(x1, 0) = L [q(x1, t1)]−L [Lu(x1, t1) + Nu(x1, t1)] ,

L [u(x1, t1)] =
k(x1)

s
+

1
sγ
L [q(x1, t1)]−

1
sγ
L [Lu(x1, t1) + Nu(x1, t1)] . (4)

The LADM solution u(x1, t1) is represented by the following infinite series

u(x1, t1) =
∞

∑
j=0

uj(x1, t1), (5)

and the nonlinear terms (if any) in the problem are defined by the infinite series of Adomian polynomials,

Nu(x1, t1) =
∞

∑
j=0

Aj, (6)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjuj)

]]
λ=0

, j = 0, 1, 2... (7)

Substituting Equations (5) and (6) into Equation (4), we get

L
[

∞

∑
j=0

u(x1, t1)

]
=

k(x1)

s
+

1
sγ
L [q(x1, t1)]−

1
sγ
L
[

M
∞

∑
j=0

uj(x1, t1) +
∞

∑
j=0

Aj

]
. (8)

Applying the linearity of the Laplace transform,

L [u0(x1, t1)] =
u(x1, 0)

s
+

1
sγ
L [q(x1, t1)] = k(x1, s),
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L [u1(x1, t1)] = −
1
sγ
L [Lu0(x1, t1) + A0] .

Generally, we can write

L
[
uj+1(x1, t1)

]
= − 1

sγ
L
[
Luj(x1, t1) + Aj

]
, j ≥ 1. (9)

Applying the inverse Laplace transform, in Equation (9)

u0(x1, t1) = k(x1, t1)

uj+1(x1, t1) = −L−1
[

1
sγ
L
[
Luj(x1, t1) + Aj

]]
. (10)

4. Results

Example 1. Consider the nonlinear KdV system of time-fractional order

∂γu
∂tγ

1
= −a

∂3u
∂x3

1
− 6au

∂u
∂x1

+ 6v
∂v
∂x1

,

∂γv
∂tγ

1
= −a

∂3v
∂x3

1
− 3au

∂v
∂x1

, 0 < γ < 1,
(11)

with initial condition

u(x1, 0) = η2 sec h2(
α

2
+

ηx1

2
), v(x1, 0) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
). (12)

For γ = 1, the exact solutions of the KdV system Equation (11) are given by

u(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
− aη3t1

2
),

v(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
− aη3t1

2
),

(13)

where the constant a is a wave velocity and η,α are arbitrary constants.
Taking Laplace transform of Equation (11),

L
[

∂γu
∂tγ

1

]
= L

[
−a

∂3u
∂x3

1
− 6au

∂u
∂x1

+ 6v
∂v
∂x1

]
,

L
[

∂γv
∂tγ

1

]
= L

[
−a

∂3v
∂x3

1
− 3au

∂v
∂x1

]
,

sγL [u(x1, t1)]− sγ−1 [u(x1, 0)] = L
[
−a

∂3u
∂x3

1
− 6au

∂u
∂x1

+ 6v
∂v
∂x1

]
,

sγL [v(x1, t1)]− sγ−1 [v(x1, 0)] = L
[
−a

∂3v
∂x3

1
− 3au

∂v
∂x1

]
.
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Applying inverse Laplace transform

u(x1, t1) = L−1

[
u(x1, 0)

s
+

1
sγ
L
[
−a

∂3u
∂x3

1
− 6au

∂u
∂x1

+ 6v
∂v
∂x1

]]
,

v(x1, t1) = L−1

[
v(x1, 0)

s
+

1
sγ
L
[
−a

∂3v
∂x3

1
− 3au

∂v
∂x1

]]
,

u(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
) + L−1

[
1
sγ
L
[
−a

∂3u
∂x3

1
− 6au

∂u
∂x1

+ 6v
∂v
∂x1

]]
,

v(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
) + L−1

[
1
sγ
L
[
−a

∂3v
∂x3

1
− 3au

∂v
∂x1

]]
.

Using the ADM procedure, we get

∞

∑
j=0

uj(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
)

+ L−1

[
1
sγ
L
[
−a

∞

∑
j=0

∂3uj

∂x3
1
− 6a

∞

∑
j=0

Aj(u, ux1) + 6
∞

∑
j=0

Bj(v, vx1)

]]
,

∞

∑
j=0

vj(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
) + L−1

[
1
sγ
L
[
−a

∞

∑
j=0

∂3vj

∂x3
1
− 3a

∞

∑
j=0

Cj(u, vx1)

]]
,

where Aj(u, ux1), Bj(v, vx1) and Cj(u, vx1) are Adomian polynomials, represent nonlinear terms in above
equations. The components of the above Adomian polynomials are given below:

A0(u, ux1) = u0
∂u0

∂x1
,

A1(u, ux1) = u0
∂u1

∂x1
+ u1

∂u0

∂x1
,

A2(u, ux1) = u0
∂u2

∂x1
+ u1

∂u1

∂x1
+ u2

∂u0

∂x1
.

B0(v, vx1) = v0
∂v0

∂x1
,

B1(v, vx1) = v0
∂v1

∂x1
+ v1

∂v0

∂x1
,

B2(v, vx1) = v0
∂v2

∂x1
+ v1

∂v1

∂x1
+ v2

∂v0

∂x1
.

C0(u, vx1) = u0
∂v0

∂x1
,

C1(u, vx1) = u0
∂v1

∂x1
+ u1

∂v0

∂x1
,

C2(u, vx1) = u0
∂v2

∂x1
+ u1

∂v1

∂x1
+ u2

∂v0

∂x1
.

u0(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
),

v0(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
),

(14)

uj+1(x1, t1) = L−1

[
1
sγ
L
[
−a

∞

∑
j=0

∂3uj

∂x3
1
− 6a

∞

∑
j=0

Aj(u, ux1) + 6
∞

∑
j=0

Bj(v, vx1)

]]
,
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vj+1(x1, t1) = L−1

[
1
sγ
L
[
−a

∞

∑
j=0

∂3vj

∂x3
1
− 3a

∞

∑
j=0

Cj(u, vx1)

]]
,

for j = 0, 1, 2, ..

u1(x1, t1) = L−1

[
1
sγ
L
[
−a

∂3u0

∂x3
1
− 6au0

∂u0

∂x1
+ 6v0

∂v0

∂x1

]]
,

u1(x1, t1) = η5a tan h(
α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)L−1

[
1

sγ+1

]
= η5a tan h(

α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)

tγ
1

Γ(γ + 1)
,

v1(x1, t1) = L−1

[
1
sγ
L
[
−a

∂3v0

∂x3
1
− 3au0

∂v0

∂x1

]]
,

v1(x1, t1) =
η5a

3
2

√
2

tan h(
α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)L−1

[
1

sγ+1

]
=

η5a
3
2

√
2

tan h(
α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)

tγ
1

Γ(γ + 1)
.

(15)

The subsequent terms are

u2(x1, t1) = L−1

[
1
sγ
L
[
−a

∂3u1

∂x3
1
− 6au0

∂u1

∂x1
− 6au1

∂u0

∂x1
+ 6v0

∂v1

∂x1
+ 6v1

∂v0

∂x1

]]
,

=
η8a2

2
[2 cos h2(

α

2
+

ηx1

2
)− 3] sec h4(

α

2
+

ηx1

2
)

t2γ
1

Γ(2γ + 1)
,

v2(x1, t1) = L−1

[
1
sγ
L
[
−a

∂3v1

∂x3
1
− 3au0

∂v1

∂x1
− 3au1

∂v0

∂x1

]]
,

=
η5a

5
2
√

2
4

[2 cos h2(
α

2
+

ηx1

2
)− 3] sec h4(

α

2
+

ηx1

2
)

t2γ
1

Γ(2γ + 1)
.

u3(x1, t1) = L−1[
1
sγ
L[−a

∂3u2

∂x3
1
− 6au0

∂u2

∂x1
− 6au1

∂u1

∂x1
− 6au2

∂u0

∂x1

+ 6v0
∂v2

∂x1
+ 6v1

∂v1

∂x1
+ 6v2

∂v0

∂x1
]],

=
sin h( α

2 + ηx1
2 )t3γ

1 a3η4

2Γ(3γ + 1)Γ(γ + 1)2 cos h7( α
2 + ηx1

2 )
[2Γ(γ + 1)2 cos h4(

α

2
+

ηx1

2
)

− 18Γ(γ + 1)2 cos h2(
α

2
+

ηx1

2
) + 6Γ(2γ + 1) cos h2(

α

2
+

ηx1

2
) + 18Γ(γ + 1)2 − 9Γ(2γ + 1)]

v3(x1, t1) = L−1

[
1
sγ
L
[
−a

∂3v2

∂x3
1
− 3au0

∂v2

∂x1
− 3au1

∂v1

∂x1
− 3au2

∂v0

∂x1

]]
,

=

√
2 sin h( α

2 + ηx1
2 )t3γ

1 a
7
2 η11

4Γ(3γ + 1)Γ(γ + 1)2 cos h7( α
2 + ηx1

2 )
[2Γ(γ + 1)2 cos h4(

α

2
+

ηx1

2
)

− 18Γ(γ + 1)2 cos h2(
α

2
+

ηx1

2
) + 6Γ(2γ + 1) cos h2(

α

2
+

ηx1

2
) + 18Γ(γ + 1)2 − 9Γ(2γ + 1)].

(16)

The LADM solution for Example 1 is

u(x1, t1) = u0(x1, t1) + u1(x1, t1) + u2(x1, t1) + u3(x1, t1) + ...,

v(x1, t1) = v0(x1, t1) + v1(x1, t1) + v2(x1, t1) + v3(x1, t1) + ...,
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u(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
) + η5a tan h(

α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)

tγ
1

Γ(γ + 1)

+
η8a2

2
[2 cos h2(

α

2
+

ηx1

2
)− 3] sec h4(

α

2
+

ηx1

2
)

t2γ
1

Γ(2γ + 1)

+
sin h( α

2 + ηx1
2 )t3γ

1 a3η4

2Γ(3γ + 1)Γ(γ + 1)2 cos h7( α
2 + ηx1

2 )
[2Γ(γ + 1)2 cos h4(

α

2
+

ηx1

2
)

− 18Γ(γ + 1)2 cos h2(
α

2
+

ηx1

2
) + 6Γ(2γ + 1) cos h2(

α

2
+

ηx1

2
)

+ 18Γ(γ + 1)2 − 9Γ(2γ + 1)] + ...,

v(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
) +

η5a
3
2

√
2

tan h(
α

2
+

ηx1

2
) sec h2(

α

2
+

ηx1

2
)

tγ
1

Γ(γ + 1)

+
η8a2

2
[2 cos h2(

α

2
+

ηx1

2
)− 3] sec h4(

α

2
+

ηx1

2
)

t2γ
1

Γ(2γ + 1)

+

√
2 sin h( α

2 + ηx1
2 )t3γ

1 a
7
2 η11

4Γ(3γ + 1)Γ(γ + 1)2 cos h7( α
2 + ηx1

2 )
[2Γ(γ + 1)2 cos h4(

α

2
+

ηx1

2
)

− 18Γ(γ + 1)2 cos h2(
α

2
+

ηx1

2
) + 6Γ(2γ + 1) cos h2(

α

2
+

ηx1

2
)

+ 18Γ(γ + 1)2 − 9Γ(2γ + 1)] + ...,

For γ = 1, the exact solutions of the KdV system Equation (11) are given by

u(x1, t1) = η2 sec h2(
α

2
+

ηx1

2
− aη3t1

2
),

v(x1, t1) =

√
a
2

η2 sec h2(
α

2
+

ηx1

2
− aη3t1

2
).

(17)

The numerical values of Example 1 show the accuracy and efficiency of the LADM at different values
of x1, t1 in Table 1. In Figures 1 and 2 and Table 1, we consider fixed values a = η = 0.5, α = 1 and fixed
order γ = 1 for piecewise approximation values of x1, t1 in the domain −10 ≤ x1 ≤ 10 and 0.20 ≤ t1 ≤ 1.
Figure 1a,b represent the graphs of LADM solution at γ = 1, and error graphs a and b at γ = 1 in Figure 2
respectively of Example 1. It is clear from the Figure 1a,b that LADM solutions are in good agreement with the
exact solution of the problems. There is a small difference from the solutions graph of the problem because the
solution of the fractional-order problems creates a little deviation from the solution at the integer order problem.
The a and b in Figure 2 show the variation of the error for different values of the variables x1 and t1.

Table 1. Solution of LADM for different values of γ when η = 0.001 and Absolute Error (AE) of
Example 1.

LADM γ = 0.55 γ = 1 Ex(γ = 1) AE

x1 t1 uLADM vLADM uLADM vLADM uEX vEX uEX − uapp vEX − vapp

−10 0.1 0.017635 0.002788 0.017654 0.002791 0.017661 0.002791 7.449 × 10−6 4.928 × 10−7

0.3 0.017613 0.002785 0.017637 0.002789 0.017659 0.002787 2.238 × 10−5 1.478 × 10−6

0.5 0.017597 0.002783 0.017620 0.002786 0.017657 0.002784 3.727 × 10−5 2.464 × 10−6

0 0.1 0.196755 0.031107 0.196657 0.031093 0.196617 0.031096 3.975 × 10−5 2.629 × 10−6

0.3 0.196875 0.031123 0.196748 0.031106 0.196628 0.031114 1.192 × 10−4 7.889 × 10−6

0.5 0.196961 0.031135 0.196839 0.031118 0.196640 0.031131 1.987 × 10−4 1.314 × 10−5

10 0.1 0.002470 0.000390 0.002467 0.000390 0.002466 0.000390 1.073 × 10−6 7.100 × 10−8

0.3 0.002473 0.000390 0.002470 0.000390 0.002466 0.000390 3.221 × 10−6 2.131 × 10−7

0.5 0.002475 0.000391 0.002472 0.000390 0.002467 0.000391 5.368 × 10−6 3.552 × 10−7
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Figure 1. The LADM solution of (a) u(x1, t1) and (b) v(x1, t1) of Example 1 at γ = 1.

Figure 2. The error plots of (a) u(x1, t1) and (b) v(x1, t1) of Example 1.

Example 2. Consider the nonlinear dispersive long wave system of time fractional order

∂γu
∂tγ

1
= − ∂v

∂x1
− 1

2
∂u2

∂x1
,

∂γv
∂tγ

1
= − ∂u

∂x1
− ∂3u

∂x3
1
− ∂uv

∂x1
, 0 < γ < 1,

(18)

with initial condition

u(x1, 0) = a[tan h(
η

2
+

ax1

2
) + 1], v(x1, 0) = −1 +

1
2

a2 sec h2(
η

2
+

ax1

2
). (19)

Taking Laplace transform of Equation (17),

L
[

∂γu
∂tγ

1

]
= L

[
− ∂v

∂x1
− 1

2
∂u2

∂x1

]
,
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L
[

∂γv
∂tγ

1

]
= L

[
− ∂u

∂x1
− ∂3u

∂x3
1
− ∂uv

∂x1

]
,

sγL [u(x1, t1)]− sγ−1 [u(x1, 0)] = L
[
− ∂v

∂x1
− 1

2
∂u2

∂x1

]
,

sγL [v(x1, t1)]− sγ−1 [v(x1, 0)] = L
[
− ∂u

∂x1
− ∂3u

∂x3
1
− ∂uv

∂x1

]
.

Applying inverse Laplace transform

u(x1, t1) = L−1
[

u(x1, 0)
s

+
1
sγ
L
[
− ∂v

∂x1
− 1

2
∂u2

∂x1

]]
,

v(x1, t1) = L−1

[
v(x1, 0)

s
+

1
sγ
L
[
− ∂u

∂x1
− ∂3u

∂x3
1
− ∂uv

∂x1

]]
,

u(x1, t1) = a[tan h(
η

2
+

ax1

2
) + 1] + L−1

[
1
sγ
L
[
− ∂v

∂x1
− 1

2
∂u2

∂x1

]]
,

v(x1, t1) = −1 +
1
2

a2 sec h2(
η

2
+

ax1

2
) + L−1

[
1
sγ
L
[
− ∂u

∂x1
− ∂3u

∂x3
1
− ∂uv

∂x1

]]
.

Using the ADM procedure, we get

∞

∑
j=0

uj(x1, t1) = a[tan h(
η

2
+

ax1

2
) + 1]

+ L−1

[
1
sγ
L
[
−

∞

∑
j=0

∂vj

∂x1
− 1

2

∞

∑
j=0

∂u2
j

∂x1

]]
,

∞

∑
j=0

vj(x1, t1) = −1 +
1
2

a2 sec h2(
η

2
+

ax1

2
)

+ L−1

[
1
sγ
L
[
−

∞

∑
j=0

∂uj

∂x1
−

∞

∑
j=0

∂3uj

∂x3
1
−

∞

∑
j=0

Aj(u, v)x1

]]
,

where Aj(u, v)x1 is Adomian polynomials, representing nonlinear terms in the above equations. The components
of the above Adomian polynomials are given below

u0(x1, t1) = a[tan h(
η

2
+

ax1

2
) + 1],

v0(x1, t1) = −1 +
1
2

a2 sec h2(
η

2
+

ax1

2
),

(20)

uj+1(x1, t1) = L−1

[
1
sγ
L
[
−

∞

∑
j=0

∂vj

∂x1
− 1

2

∞

∑
j=0

∂u2
j

∂x1

]]
,

vj+1(x1, t1) = L−1

[
1
sγ
L
[
−

∞

∑
j=0

∂uj

∂x1
−

∞

∑
j=0

∂3uj

∂x3
1
−

∞

∑
j=0

Aj(u, v)x1

]]
,



Mathematics 2019, 7, 505 11 of 16

for j = 0, 1, 2, ..

u1(x1, t1) = L−1
[

1
sγ
L
[
− ∂v0

∂x1
− 1

2
∂u0

2

∂x1

]]
,

u1(x1, t1) = −
a3

2
sec h2(

η

2
+

ax1

2
)L−1

[
1

sγ+1

]
= − a2

2
sec h2(

η

2
+

ax1

2
)

tγ

Γ(γ + 1)
,

v1(x1, t1) = L−1
[

1
sγ
L
[
−∂u0

∂x1
− ∂3u0

∂x1
3 −

∂(u0v0)

∂x1

]]
,

v1(x1, t1) =
a4

2
sin h(

η

2
+

ax1

2
) sec h3(

η

2
+

ax1

2
)L−1

[
1

sγ+1

]
=

a3

2
sin h(

η

2
+

ax1

2
) sec h3(

η

2
+

ax1

2
)

tγ
1

Γ(γ + 1)
.

(21)

The subsequent terms are

u2(x1, t1) = L−1
[

1
sγ
L
[
− ∂v1

∂x1
− 1

2
∂u1

2

∂x1

]]
,

= − a5

4
sec h2(

η

2
+

ax1

2
)

t2γ

Γ(2γ + 1)
+

3a5

4
sin h2(

η

2
+

ax1

2
) sec h4(

η

2
+

ax1

2
)

t2γ

Γ(2γ + 1)

+
a7

4
sin h(

η

2
+

ax1

2
) sec h5(

η

2
+

ax1

2
)

Γ(2γ + 1)t3γ

Γ(3γ + 1)Γ(γ + 1)2

v2(x1, t1) = L−1
[

1
sγ
L
[
−∂u1

∂x1
− ∂3u1

∂x1
3 −

∂(u0v1)

∂x1
− ∂(u1v0)

∂x1

]]
,

=
a6

4
[2 cos h2(

η

2
+

ax1

2
)− 3] sec h4(

η

2
+

ax1

2
)

t2γ
1

Γ(2γ + 1)
.

(22)

The LADM solution for Example 2 is

u(x1, t1) = u0(x1, t1) + u1(x1, t1) + u2(x1, t1) + u3(x1, t1) + ...,

v(x1, t1) = v0(x1, t1) + v1(x1, t1) + v2(x1, t1) + v3(x1, t1) + ...,

u(x1, t1) = a[tan h(
η

2
+

ax1

2
) + 1]− a3

2
sec h2(

η

2
+

ax1

2
)

tγ

Γ(γ + 1)

− a5

4
sec h2(

η

2
+

ax1

2
)

t2γ

Γ(2γ + 1)
+

3a5

4
sin h2(

η

2
+

ax1

2
) sec h4(

η

2
+

ax1

2
)

t2γ

Γ(2γ + 1)

+
a7

4
sin h(

η

2
+

ax1

2
) sec h5(

η

2
+

ax1

2
)

Γ(2γ + 1)t3γ

Γ(3γ + 1)Γ(γ + 1)2 + ...,

v(x1, t1) = −1 +
1
2

a2 sec h2(
η

2
+

ax1

2
) +

a4

2
sin h(

η

2
+

ax1

2
) sec h3(

η

2
+

ax1

2
)

tγ
1

Γ(γ + 1)

a6

4
[2 cos h2(

η

2
+

ax1

2
)− 3] sec h4(

η

2
+

ax1

2
)

t2γ
1

Γ(2γ + 1)
+ ...,

For γ = 1, the exact solutions of the KdV system Equation (17) are given by

u(x1, t1) = a[tan h(
η

2
+

ax1

2
− a2t1

2
) + 1],

v(x1, t1) = −1 +
1
2

a2 sec h2(
η

2
+

ax1

2
− a2t1

2
),

(23)
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where a,η are arbitrary constants.
Similarly, the numerical values of the Example 2 show the accuracy and efficiency of the LADM at different

values of x1, t1 in Table 2. In Figures 3 and 4 and Table 2, we consider fixed values a = η = 0.5, α = 1 and fixed
order γ = 1 for piecewise approximation values of x1, t1 in the domain −10 ≤ x1 ≤ 10 and 0.20 ≤ t1 ≤ 1.
The a and b in Figure 3 represent the graphs of LADM solution at γ = 1, and error graphs a and b at γ = 1 in
Figure 4, respectively, of Example 2. It is clear from the Figure 3a,b that LADM solutions are in good agreement
with the exact solution of the problems. The small difference from the solutions graph of the problem because the
solution of the fractional-order problems creates a little deviation from the solution at integer order problems.
The a and b in Figure 4 show the variation of the error for different values of the variables x1 and t1.

Table 2. Solution of LADM for different value of γ when η = 0.001 and Absolute Error of Example 2.

LADM γ = 0.55 γ = 1 Ex(γ = 1) AE

x1 t1 uLADM vLADM uLADM vLADM uEX vEX uEX − uapp vEX − vapp

−10 0.1 0.010173 −0.98953 0.010718 −0.98926 0.010718 −0.98939 1.210 × 10−7 1.312 × 10−4

0.3 0.009571 −0.98982 0.010200 −0.98951 0.010201 −0.98990 6.351 × 10−7 3.848 × 10−4

0.5 0.009181 −0.99001 0.009707 −0.98975 0.009708 −0.99038 5.301 × 10−7 6.274 × 10−4

0 0.1 0.603381 −0.76294 0.616554 −0.76429 0.616566 −0.76358 1.230 × 10−5 7.041 × 10−4

0.3 0.586890 −0.76158 0.604564 −0.76297 0.604679 −0.76095 1.141 × 10−4 2.015 × 10−3

0.5 0.574744 −0.76081 0.592339 −0.76177 0.592666 −0.75858 3.267 × 10−4 3.188 × 10−3

10 0.1 0.995627 −0.99577 0.995829 −0.99589 0.995827 −0.99584 2.502 × 10−6 5.088 × 10−5

0.3 0.995404 −0.99562 0.995636 −0.99579 0.995614 −0.99563 2.271 × 10−5 1.566 × 10−4

0.5 0.995261 −0.99550 0.995454 −0.99567 0.995390 −0.99541 6.364 × 10−5 2.680 × 10−4

Figure 3. The LADM solution of (a) u(x1, t1) and (b) v(x1, t1) of Example 2 at γ = 1.
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Figure 4. The error plots of (a) u(x1, t1) and (b) v(x1, t1) of Example 2.

Example 3. Consider the nonlinear KdV of time-fractional order as given in [26]:

∂γu
∂tγ

1
= 6u

∂u
∂x1
− ∂3u

∂x3
1

, 0 < γ < 1, (24)

with initial condition

u(x1, 0) = −2 sec h2(x1). (25)

Taking Laplace transform of Equation (24),

L
[

∂γu
∂tγ

1

]
= L

[
6u

∂u
∂x1
− ∂3u

∂x3
1

]
,

sγL [u(x1, t1)]− sγ−1 [u(x1, 0)] = L
[

6u
∂u
∂x1
− ∂3u

∂x3
1

]
,

Applying inverse Laplace transform

u(x1, t1) = L−1

[
u(x1, 0)

s
+

1
sγ
L
[

6u
∂u
∂x1
− ∂3u

∂x3
1

]]
,

u(x1, t1) = −2 sec h2(x1) + L−1

[
1
sγ
L
[

6u
∂u
∂x1
− ∂3u

∂x3
1

]]
.

Using ADM procedure, we get

∞

∑
j=0

uj(x1, t1) = −2 sec h2(x1) + L−1

[
1
sγ
L
[

6
∞

∑
j=0

Dj(u, ux1)−
∞

∑
j=0

∂3uj

∂x3
1

]]
,
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where Dj(u, ux1) are Adomian polynomials, representing nonlinear terms in the above equations.
The components of above Adomian polynomials are given below:

D0(u, ux1) = u0
∂u0

∂x1
,

D1(u, ux1) = u0
∂u1

∂x1
+ u1

∂u0

∂x1
,

D2(u, ux1) = u0
∂u2

∂x1
+ u1

∂u1

∂x1
+ u2

∂u0

∂x1
,

u0(x1, t1) = −2 sec h2(x1), (26)

∞

∑
j=0

uj(x1, t1) = L−1

[
1
sγ
L
[

6
∞

∑
j=0

Dj(u, ux1)−
∞

∑
j=0

∂3uj

∂x3
1

]]
,

for j = 0, 1, 2, ..

u1(x1, t1) = L−1

[
1
sγ
L
[

6u0
∂u0

∂x1
− ∂3u0

∂x3
1

]]
,

u1(x1, t1) = −16 sec h2(x1) tan h2(x1)L−1
[

1
sγ+1

]
= −16 sec h2(x1) tan h2(x1)

tγ
1

Γ(γ + 1)
.

(27)

The subsequent terms are

u2(x1, t1) = L−1

[
1
sγ
L
[

6u0
∂u1

∂x1
+ 6u1

∂u0

∂x1
− ∂3u1

∂x3
1

]]
,

u2(x1, t1) = −64 sec h4(x1)(−3 + 2 cos h2(x1))
t2γ

Γ(2γ + 1)
,

u3(x1, t1) = L−1

[
1
sγ
L
[

6u0
∂u2

∂x1
+ 6u1

∂u1

∂x1
+ 6u2

∂u0

∂x1
− ∂3u1

∂x3
1

]]
,

u3(x1, t1) = −512 sec h6 tan h(x1)(−18Γ(γ + 1)2 cos h2 + 18Γ(γ + 1)2 + 2Γ(γ + 1)2 cos h4

+ 6Γ(2γ + 1) cos h2 − 9Γ(2γ + 1))
t3γ

Γ(γ + 1)2Γ(3γ + 1)
.

(28)

The LADM solution for Example 3 is

u(x1, t1) = u0(x1, t1) + u1(x1, t1) + u2(x1, t1) + u3(x1, t1) + ...,

u(x1, t1) = −2 sec h2(x1)− 16 sec h2(x1) tan h2(x1)
tγ
1

Γ(γ + 1)
− 64 sec h4(x1)(−3 + 2 cos h2(x1))

t2γ

Γ(2γ + 1)
− 512 sec h6 tan h(x1)(−18Γ(γ + 1)2 cos h2 + 18Γ(γ + 1)2 + 2Γ(γ + 1)2 cos h4

+ 6Γ(2γ + 1) cos h2 − 9Γ(2γ + 1))
t3γ

Γ(γ + 1)2Γ(3γ + 1)
.

The exact solution of u(x1, t1) is in a closed form as

u(x1, t1) = −2 sec h2(x1 − 4t1). (29)



Mathematics 2019, 7, 505 15 of 16

5. Conclusions

In this research article, we applied the Laplace–Adomian Decomposition Method for the solution
of the fractional KdV type system of partial differential equations. The fractional derivatives are
represented by the Caputo operator. The results of the proposed method are obtained for both
fractional and integer order problems successfully. The solutions of fractional order problems are
convergent to the integer order problem as fractional order approaches to integer order. Moreover, the
behavior of the method is explained through graphs of different numerical examples. The analysis has
confirmed that the results obtained by this method are in good contact with the exact solutions for
the problems.
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