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Abstract: As the level of potassium can interfere with the normal circulation process of biosphere
materials, the available potassium is an important index to measure the ability of soil to supply
potassium to crops. There are rarely studies on the inversion of available potassium content using
ground hyperspectral remote sensing and Landsat 8 multispectral satellite data. Pretreatment of
saline soil field hyperspectral data based on fractional differential has rarely been reported, and the
corresponding relationship between spectrum and available potassium content has not yet been
reported. Because traditional integer-order differential preprocessing methods ignore important
spectral information at fractional-order, it is easy to reduce the accuracy of inversion model. This paper
explores spectral preprocessing effect based on Grünwald–Letnikov fractional differential (order
interval is 0.2) between zero-order and second-order. Field spectra of saline soil were collected
in Fukang City of Xinjiang. The maximum absolute of correlation coefficient between ground
hyperspectral reflectance and available potassium content for five mathematical transformations
appears in the fractional-order. We also studied the tendency of correlation coefficient under different
fractional-order based on seven bands corresponding to the Landsat 8 image. We found that fractional
derivative can significantly improve the correlation, and the maximum absolute of correlation
coefficient under five spectral transformations is in Band 2, which is 0.715766 for the band at 467 nm.
This study deeply mined the potential information of spectra and made up for the gap of fractional
differential for field hyperspectral data, providing a new perspective for field hyperspectral technology
to monitor the content of soil available potassium.

Keywords: field spectrum; fractional calculus; desert soil; available potassium; correlation analysis

1. Introduction

Precision agricultural variable fertilizer depends on the understanding of soil nutrient distribution in
farmland. Acquiring soil nutrient is the basis for implementing precision agriculture. Available potassium
plays an important role in supplying potassium for crops, and it is a necessary nutrient for plant growth
and development [1,2]. Excessive potassium content in the soil can result in waste of resources, soil
environmental pollution, water pollution, and imbalance of soil nutrient distribution [3]. The rapid and
accurate nondestructive determination of soil available potassium content is of great significance for the
development of agriculture [4–7]. Traditional laboratory chemical detection methods have the problems
of being expensive and time-consuming, while hyperspectral analysis technology has the advantages
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of convenience, speed, and high precision [8–10]. Visible, near-infrared and mid-infrared spectroscopy
technologies have been widely applied in soil science.

In recent years, domestic and foreign scholars have conducted extensive research on soil salinity,
moisture, organic matter, and total nitrogen in different types of ecosystems, such as wetlands, forests,
grasslands, and farmlands in arid and semi-arid regions [11–15]. There is less research on available
potassium content [16]. Liu et al. [17] adopted visible/short-wave near-infrared spectroscopy to measure
soil available nitrogen and available potassium. They introduced first-order differential algorithm for
spectral pretreatment, and their simulation showed that the model built by least squares support vector
machine (LS-SVM) combined with 1-order differential has higher precision. However, the hyperspectral
inversion models established for available potassium are mainly constructed based on 1-order or
2-order derivative for spectral reflectance, reciprocal, and logarithm. However, related research points
out that traditional integer-order differential transformation ignores the gradual fractional differential
information [18,19], especially for high-dimensional data sources such as hyperspectral images with
massive information, which may cause some information to be lost or be difficult to extract, and restrict
the modeling accuracy.

Fractional calculus theory is a mathematical problem for studying the properties of differential
and integral operators of any order and its application. First proposed in 1695, its development is
almost in synchronization with the theory of integer-order calculus. However, theoretical research
is limited to pure mathematics, and it is not closely related to real life. At the end of last century,
with the rapid development of science and technology and the increasing complexity of research
issues, fractional calculus has been rapidly developed and applied to many fields [20–23], such as fluid
mechanics, viscoelastic mechanics, electrical conduction in biological systems, robot control, chaos
phenomena, molecular spectroscopy, etc. At the same time, research in these application fields has also
accelerated the development of fractional calculus theory.

In the field of spectral analysis, Schmitt [24] introduced fractional derivative into diffuse reflectance
spectroscopy processing and found that it can effectively eliminate baseline drift, shift, etc., and separate
overlapping peaks. At the same time, order choice of fractional derivative is more flexible, providing
a broader space for band selection. Zheng et al. [25] used Savitzky–Golay (SG) fractional derivative
to preprocess near infrared spectra based on corn, wheat, and diesel, and conducted quantitative
regression analysis of corresponding properties. They found that fractional prediction effect of
non-concentration indicators such as viscosity, density, and hardness was better than that of integer
derivatives. Zhang et al. [26] applied fractional differentials to the pretreatment of hyperspectral
data and used partial least squares regression (PLSR) to verify the model accuracy of saline soils.
The logarithm reciprocal transformation at 1.2-order was an optimal model, showing that fractional
differentials could improve model inversion accuracy.

However, these fractional differential studies measure spectral reflectance in an ideal indoor
environment, focusing on the research of salinity and organic matter content, and failing to consider
field spectrum tests that are in line with actual conditions. At present, the application of fractional
differential algorithm in the field of available potassium content is still lacking. Thus, this study collected
desert soils located in Fukang City of Xinjiang as research target, and measured field hyperspectral
data of soil samples. We explored the effect of Grünwald–Letnikov fractional differential on the
pretreatment of field hyperspectral data, and studied the correlation coefficient between available
potassium and soil reflectance spectra. The methods used in this study could enrich soil hyperspectral
data preprocessing methods, and provide scientific support for local precision agriculture.

2. Experiment Procedure

2.1. Study Area

The research area belongs to middle temperate continental arid climate, which is located in the
northern part of the Tianshan Mountains and the southern margin of Junggar Basin (87◦44′–88◦46′ E,
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43◦29′–45◦45′ N), with an average elevation of 452 nm. The selected research area is not developed and
utilized because it is far from the place where people live. It basically maintains the original ecological
style. In this study, soil sample data collection was conducted from 9 to 23 May 2017. Five east–west
sampling transects with a spacing of 600–800 m were installed from south to north in the study area.
Five representative points were selected for each sampling line with a spacing of 300–500 m, collecting
a total of 25 soil samples. The location of sample point is shown in Figure 1.
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Figure 1. Location of sample point.

2.2. Field Hyperspectral Data Collection

The soil ground spectrum was measured using a portable Field Spec®3Hi-Res spectrometer
(Analytica Spectra Devices., Inc., Boulder, CO, USA) with a spectral range of 350–2500 nm. To avoid
the adverse effects of weather (e.g., poor sunlight, heavy cloud cover and strong wind, the experiment
was conducted at 11:00–15:00 (local time), with little clouds and no wind. Soil sample data collection
was conducted from 9 to 23 May 2017. The spectrometer was calibrated on the white board before
each acquisition to remove the dark current. The probe with 25◦ field-of-view was used for spectral
measurement, and it was 15 cm vertically above the soil sample. At about 1 cm around each sampling
point, five representative sites were selected to collect the surface soil spectrum, and each position was
repeatedly measured 10 times. The average of the 50 spectral curves was the measured spectral value
of this sampling point. The spectra curves for 25 sampling points were measured in the study area.

2.3. Soil Sample Collection

Hyperspectral data testing and soil sample collection were conducted simultaneously in the
same area at locations with flat topography and representative features around sampling point were
selected as sampling units. Soil samples were acquired at 0–10 cm depth for the 25 sampling points.
The latitude and longitude of the sample points were recorded by a handheld GPS, and they were
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numbered into bags for the laboratory. The soil available potassium content was tested by chemical
professionals at Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

3. Spectral Data Preprocessing Method

Before the qualitative and quantitative analysis, proper pretreatment of spectrum reduces or even
eliminates the impact of various non-target factors on the spectrum, and cleans the spectral information.
Spectral preprocessing is very important method to establish a good and robust predictive model,
and sometimes even plays a decisive role. Common spectral preprocessing methods include removing
interference bands, smoothing algorithms, mathematical transformations, and differential algorithms.

3.1. Remove Interference Bands

In this study, the 350–399 nm and 2401–2500 nm bands with low signal-to-noise ratio were
removed. At the same time, the bands located in the moisture absorption band have a great influence
on the accuracy of spectral inversion, thus the bands of 1355–1410 nm and 1820–1942 nm also needed
to be removed.

3.2. Savitzky–Golay Convolution Smoothing

Savitzky–Golay (SG) convolutional smoothing, also known as polynomial smoothing [27],
was proposed by Savitzky and Golay. The SG convolution smoothing method is currently a relatively
widely used spectral filtering method. The smoothing method combines a least-squares fitting with
a moving window. First, a window with an odd number of points is taken. Then, each point of the
spectrum in the window is taken as a polynomial. Finally, least square method is used to fit the
polynomial coefficient value. The formula is defined as follows:

Xk,smooth =
1
H

+w∑
i=−w

xk+ihi, (1)

where hi is a smooth coefficient and can be obtained by polynomial fitting. H is a normalization factor

and the calculation method is H =
+w∑

i=−w
hi.

3.3. Fractional Calculus

Gamma function, also called generalized factorial, is often used in the definition and operation of
fractional calculus. The integral form defined by the Gamma function is described as

Γ(z) =
∫
∞

0
e−ttz−1dt, Re(z) > 0. (2)

The limit of the definition of gamma function can be expressed as follows

Γ(z) = lim
x→∞

n!nz

z(z + 1) · · · (z + n)
. (3)

Grünwald–Letnikov fractional derivative has been generalized from the definition of integer-order
derivative. For any real number p, suppose that function f(x) has continuous derivative of m + 1 in the
interval [a,t]. Then, p-order derivative for f(x) can be defined as follows:

aDp
t f(x) = lim

h→0

1
hp

[(t−p)/h]∑
j=0

(−1)j
(

p
j

)
f(x− jh), (4)
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where h is the step size and [(t−p)/h] represents the integer part of (t−p)/h. When p is a positive
real number, Equation (4) represents p-order derivative. If p is a negative real number, Equation (4)
represents p-order integral.

1-order derivative of function f(x) is defined as

f′ (x) = lim
h→0

f(x + h) − f(x)
h

. (5)

2-order derivative of function f(x) is described as

f′′ (x) = lim
h→0

f′ (x + h) − f′ (x)
h

= lim
h→0

f(x + 2h) − 2f(x + h) + f(x)

h2 . (6)

If the derivative order of function f(x) is raised to higher order of p, then the p-order derivative of
function f(x) is expressed as

f(p)(x) = lim
h→0

1
hp

p∑
m=0

(−1)m
(

p
m

)
f(x−mh). (7)

If we use Gamma function to replace the binomial coefficient of Equation (7) and extend the
derivative order to a non-integer order, we can get the Grünwald–Letnikov fractional derivative in
Equation (4). Since the re-sampling interval of ASD (Analytica Spectra Devices) spectrometer was
1 nm, in Equation (4), let h = 1, and then the derivative expression of v-order derivative for function
f(x) can be deduced as follows:

dvf(x)
dxv ≈ f(x) + (−v)f(x− 1) + (−v)(−v+1)

2 f(x− 2) + (−v)(−v+1)(−v+2)
6 f(x− 3) + . . .+ Γ(−v+1)

n!Γ(−v+n+1) f(x− n). (8)

In particular, when v = 1, 2, it is consistent with first-order and second-order derivative formulas
of spectrum, respectively. From Equation (8), we can see that fractional derivatives have global and
memory characteristics.

3.4. Spectral Mathematical Transformation

Before estimation model of surface parameters based on spectral reflectance is established, it is
often necessary to perform nonlinear mathematical transformation for original spectral reflectance
(R). The commonly used non-linear mathematical transformations include: root mean square
transform (

√
R), reciprocal transform (1/R), logarithmic transformation (lgR), and logarithm reciprocal

transformation (1/lgR). The main purpose is that linear relationship between spectral reflectance and
surface parameters is transformed into a nonlinear relationship, a relatively simple linear regression
analysis is performed to obtain approximately nonlinear results, and various forms of estimation
models are established to improve the recognition accuracy. In addition, non-linear transformation can
enhance spectral difference to some extent; it is convenient to distinguish the influence on spectrum
caused by the difference of surface parameters. Spectral reflectance R and its four kinds of spectral
transformation curves are shown in Figure 2.
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Figure 2. Spectral reflectance of soil and its four mathematical transformation forms: (a) R; (b)
√

R;
(c) 1/R; (d) lgR; and (e) 1/lgR.

4. Simulation Results

4.1. Differential Calculation of Root Mean Square and Logarithm Reciprocal

To study the effects on spectral data by fractional differentials in detail, starting differential order
is 0, termination differential order is 2, and order interval is 0.2. The results of differential calculation in
the bands 1450 nm and 1650 nm of soil ground hyperspectral curve for root mean square transformation
and logarithm reciprocal transformation are shown in Figure 3. Differential values of two spectral
transformations gradually approach 0, as the order slowly ascends from 0-order to 1-order, fractional
differential curve gradually approximates the first-order differential curve. When the order is gradually
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increased from 1-order to 2-order, fractional derivative curve slowly approaches the 2-order differential
curve, which verifies the sensitivity of fractional derivative to some extent. In addition, it can be also
seen in Figure 3c,d that the derivative value in the band 1450–1550 nm fluctuates greatly, while the
derivative value in the band 1550–1650 nm is less fluctuating.
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4.2. Trends of Correlation Coefficients for Root Mean Square and Logarithm Reciprocal

Correlation analysis is a key step in spectral data preprocessing. When the correlation coefficient
between available potassium and spectral signal passes the significance test, the corresponding band is
likely to become the sensitive band, and the band reflectance can be used as the independent variable
in the model to establish a reliable predictive model of available potassium content. In this paper,
the significance test was carried out at 0.05 level, and the calculus was programmed in Matlab software
(MathWorks, Natick, MA, USA) to calculate the correlation between the spectral reflectance and the
available potassium content after root mean square and logarithmic inverse transformation, and the
differential results between 0-order and 2-order were calculated (at intervals of 0.2). The simulation
results are shown in Figures 4 and 5. When differential order gradually increases from zero-order to
first-order, the curve of correlation coefficient shows a certain gradual change trend. When the order
is increased from 1-order to 2-order, correlation coefficient curve fluctuates greatly, and the gradual
change trend is not obvious.
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Figure 4. Trends of correlation coefficient for root mean square: (a) 0-order to 0.4-order; (b) 0.6-order to
1-order; (c) 1.2-order to 1.4-order; and (d) 1.6-order to 2-order.
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to 1-order; (c) 1.2-order to 1.4-order; and (d) 1.6-order to 2-order.
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4.3. Number of Bands that Passed 0.05 Significance Level Test

The number of spectral bands that passed the 0.05 significance level of the correlation coefficient
between spectrum and available potassium is shown in Figure 6. There are hundreds of spectral bands
passed the 0.05 significance level for these five spectral transformations. Compared with more than
2000 full-band spectra in the range of 350–2500 nm, Figure 6 shows that the preprocessing operation
of fractional calculus can reduce the dimensionality of soil hyperspectral data. Overall, the trend of
the number for logarithm reciprocal, original spectrum and root mean square is gradually decreasing,
and the trend increases first and then decreases for reciprocal and logarithm.
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4.4. Absolute Maximum Band of Correlation Coefficient under Five Spectral Transformations

Maximum absolute values of correlation coefficients under five different spectral transformations
in the 0-order to 2-order range and the corresponding band information are shown in Table 1.
The maximum absolute values of correlation coefficients appear in fractional order: when R and 1/lgR
are in the 1.6 order, the corresponding band is 416 nm, and the largest absolute of R and 1/lgR are
0.763605 and 0.76218, respectively; when 1/R and

√
R are in the 1.4-order, the corresponding bands are

494 and 430 nm, and the largest absolute of 1/R and
√

R are 0.741574 and 0.750124, respectively; and
when lgR is in the 1.2-order, the corresponding band is 495 nm, and the largest absolute is 0.747359.
For first-order differential transformation,

√
R, 1/R, lgR, and 1/lgR increase the correlation between

spectral reflectance of R and available potassium content to some extent. For 0-order and 2-order
differential transformation, 1/lgR improves the correlation, while the others reduce the correlation.
In addition, the absolute values of correlation coefficients of 1.2-, 1.4-, 1.6-, and 1.8-order for R,

√
R, lgR,

and 1/lgR are all greater than 0.7.
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Table 1. Bands with the largest absolute values of correlation coefficients under five spectral transformation.

Order

R
√

R 1/R lgR 1/lgR

Largest
Absolute Band Largest

Absolute Band Largest
Absolute Band Largest

Absolute Band Largest
Absolute Band

0 0.560973 405 0.547695 405 0.499854 400 0.532827 405 0.562356 405
0.2 0.570438 2391 0.559709 2391 0.521992 2392 0.547824 2392 0.586224 2391
0.4 0.700301 2390 0.690903 2391 0.655011 2391 0.680045 2391 0.719717 2390
0.6 0.712129 2371 0.697076 2371 0.645772 2390 0.680265 2371 0.734104 2371
0.8 0.632373 2100 0.62877 2100 0.663153 2006 0.623198 2100 0.645372 2371
1 0.668786 1547 0.675601 1547 0.674436 2006 0.674577 1547 0.67265 404

1.2 0.707065 416 0.746563 430 0.674899 495 0.747359 495 0.705747 416
1.4 0.722362 416 0.750124 430 0.741574 494 0.739563 430 0.730641 497
1.6 0.763605 416 0.746466 416 0.689794 1207 0.725154 416 0.762187 416
1.8 0.74986 1207 0.739655 1207 0.701802 416 0.726421 1207 0.75847 1207
2 0.678462 1206 0.664644 1206 0.621093 1740 0.648568 1206 0.69792 1206

4.5. Fractional Derivative Impact on Correlation Coefficient of Landsat 8 Image Bands

To further explain the influence of correlation on partial bands by fractional derivative, seven
bands corresponding to Landsat 8 image [28,29] were selected to study the variation trend of the
correlation coefficient under different fractional order. The band ranges of Landsat 8 image are shown
in Table 2. The seven wavelength bands selected from Landsat 8 are 442 nm in Band 1, 467 nm in Band
2, 587 nm in Band 3, 675 nm in Band 4, 851 nm in Band 5, 1597 nm in Band 6, and 2247 nm in Band 7.
The trend of correlation coefficient for the seven selected wavelength bands is shown in Figure 7.

Table 2. Spectral ranges of Landsat 8 image bands.

Band name Band range (nm)

Band 1 Coastal 433–453

Band 2 Blue 450–515

Band 3 Green 525–600

Band 4 Red 630–680

Band 5 NIR 845–885

Band 6 SWIR1 1560–1660

Band 7 SWIR2 2100–2300

It can be seen in Figure 7 that the correlation coefficient change of R and 1/lgR is opposite to the
other three transformations. In Band 7, the correlation coefficients of 1/R and 1/lgR are negative at
0-order to 2-order, and the remaining transformations are positive. In the range of Band 1, Band 2,
Band 4, Band 5 and Band 6, the correlation coefficients of 1/R and 1/lgR are negative at 0-order to
0.6-order, and the remaining transformations are positive at 0.0–0.6 order. The correlation coefficients
of 1/R and 1/lgR are positive at 1.2-order to 1.8-order, and the remaining transformations are negative
at 1.2-order to 1.8-order. In addition, the maximum absolute correlation coefficient of five spectral
transformations is in Band 2, which is 0.715766 of 467 nm.
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5. Discussion

The integer-order derivative method is widely used in soil spectral signal pretreatment, but its
description of the physical model is only an approximation [30,31]. This traditional preprocessing
method based on integer-order derivative has obvious shortcomings. One of the main reasons is
the defect of integer-order derivative in the numerical calculation process, that is, the integer-order
derivative is only related to the information of the points in the differential window. Another main
reason is that the fractional derivative has the advantage of “memory” and “non-locality”, that is,
the fractional order is not only related to the value of the point, but also related to the value of all
points before this point. It has been proved that the fractional-order system is more in line with the
laws of nature and engineering physics, which can better reflect the performance of the dynamic
system, and has a unique historical memory function. Therefore, the fractional derivative model is
more accurate than the integer-order derivative model.

In addition to the pretreatment of hyperspectral signals for saline soil between spectral reflectance
and salt content, fractional derivatives can also be used to pretreat other types of soil hyperspectral
signals between spectral reflectance and nutrient content. For example, Xia et al. [32] used fractional
derivative to preprocess the spectrum collected in Ebinur Lake of Xinjiang, China, and the correlation
coefficient between electricity conductivity and soil reflectance spectra was analyzed. Results show
that fractional derivative details the varying trends of soil reflectance spectra among 0-order to 2-order.
Fractional derivative also raises the correlation coefficient between electricity conductivity and soil
reflectance spectra for some bands. Hong et al. [33] applied the fractional derivative to analyze the
relationship of soil organic matter content and visible and near-infrared spectroscopy. The results
show that the highest validation model appears in the 1.5-order derivative combined genetic algorithm.
Wang et al. [34] collected 168 sample of soil taken from the coalmine in Eastern Junggar Basin, China.
They used fractional derivative to preprocess the hyperspectral data of coalmine soil and PLSR to
estimate the soil chromium content. The results show that 1.8-order derivative is the best predictive
model, and the ratio of performance to deviation (PRD) is 2.14. Wang et al. [35] used the soil of the
Ebinur Lake Wetland National Nature Reserve in Xinjiang as the research object, and used the fractional
differential and grey correlation analysis-BP neural network to quantitatively estimate the soil organic
matter content. The results show that the 1.2-order model has the highest accuracy and the PRD value
is 2.26.

In addition, fractional derivatives are also used to preprocess hyperspectral signals from rubber
trees, diesel, tobacco, wheat, corn, and so on. For example, Chen et al. [36] adopted fractional derivative
to analyze the near-infrared spectroscopy of nitrogen concentration for natural rubber. The results
show that the 0.6-order has the optimal prediction result. Tong et al. [37] adopted SG derivation to
analyze the near-infrared spectroscopy of diesel dataset and tobacco dataset. The results show that this
method can improve the spectral resolution, and SG derivation combined with competitive adaptive
reweighted sampling is the optimal model.

6. Conclusions

Fractional derivative in the field of hyperspectral studies are rarely reported, especially for
field-measured ground hyperspectral data. We collected soil samples and hyperspectral data in May
2017. Grünwald–Letnikov fractional derivative was used to analyze the correlation coefficient between
the available potassium content and the soil ground hyperspectral data and Landsat 8 multispectral
satellite data. Simulation results display that the small difference between spectrum data was
clearly described by fractional derivative. The maximum absolute correlation coefficient appeared
in the fractional order for the ground hyperspectral data and Landsat 8 multispectral satellite data.
Therefore, fractional derivative enriches the pre-processing method of spectral data, provides potential
spectrum information, increases the correlation coefficient between spectral reflectance and available
potassium content, and provides scientific support for local precision agriculture.



Mathematics 2019, 7, 488 13 of 15

Author Contributions: C.F. designed the research and performed all the modeling. A.T. and H.X. collected the
experiment data. S.G., X.Y. and H.X. participated in the data analyses. C.F. and A.T. were involved in drafting and
revising the manuscript.

Funding: The authors would like to thank the financial support of National Natural Science Foundation of China
(41861054 and 41671198), and Yunnan Province Science and Technology Department and Education Department
Project (2017FH001-067 and 2017FH001-117), China.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sardans, J.; Penuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24,
261–275. [CrossRef]

2. Qiu, K.; Xie, Y.; Xu, D.; Pott, R. Ecosystem functions including soil organic carbon, total nitrogen and available
potassium are crucial for vegetation recovery. Sci. Report. 2018, 8, 7607. [CrossRef] [PubMed]

3. Panda, R.; Patra, S.K. Assessment of Suitable Extractants for Predicting Plant-available Potassium in Indian
Coastal Soils. Commun. Soil Sci. Plant Anal. 2018, 49, 1157–1167. [CrossRef]

4. Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared,
mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil
properties. Geoderma 2006, 131, 59–75. [CrossRef]

5. Jia, S.; Yang, X.; Li, G.; Zhang, J. Quantitatively determination of available phosphorus and available potassium
in soil by near infrared spectroscopy combining with recursive partial least squares. Spectro. Spectr. Anal. 2015,
35, 2516–2520.

6. Sarkar, S.; Patra, S.K. Evaluation of Chemical Extraction Methods for Determining Plant-Available Potassium
in Some Soils of West Bengal, India. Commun. Soil Sci. Plant Anal. 2017, 48, 1008–1019. [CrossRef]

7. Zhang, L.; Zhang, M.; Ren, H.; Pu, P.; Kong, P.; Zhao, H. Comparative investigation on soil nitrate-nitrogen and
available potassium measurement capability by using solid-state and PVC ISE. Comput. Electr. Agric. 2015, 112,
83–91. [CrossRef]

8. O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model
averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil
properties. Geoderma 2016, 279, 31–44. [CrossRef]

9. Gholizadeh, A.; Saberioo, M.; Ben-Dor, E.; Boruvka, L. Monitoring of selected soil contaminants using
proximal and remote sensing techniques: Background, state-ofthe-art and future perspectives. Crit. Rev.
Environ. Sci. Tech. 2018, 48, 243–278. [CrossRef]

10. Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Bachari, N.E.; Srivastava, P.K.; Manevski, K.; Kalaitzidis, C.;
Macklin, M.G. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field
Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [CrossRef]

11. Liu, X.; Wang, L.; Chang, Q.; Wang, X.; Shang, Y. Prediction of total nitrogen and alkali hydrolysable nitrogen
content in loess using hyperspectral data based on correlation analysis and partial least squares regression.
Chin. J. Appl. Ecol. 2015, 26, 2107–2114.
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