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Abstract: In this article, an inverse problem with regards to the Laplace equation with
non-homogeneous Neumann boundary conditions in a three-dimensional case is investigated. To deal
with this problem, a regularization method (mollification method) with the bivariate de la Vallée
Poussin kernel is proposed. Stable estimates are obtained under a priori bound assumptions and
an appropriate choice of the regularization parameter. The error estimates indicate that the solution of
the approximation continuously depends on the noisy data. Two experiments are presented, in order
to validate the proposed method in terms of accuracy, convergence, stability, and efficiency.
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1. Introduction

The inverse problem of the Laplace equation appears in many engineering and physical areas,
such as geophysics, cardiology, seismology, and so on [1–3]. It has been widely recognized that the
inverse problem for the Laplace equation has a central position in all Cauchy problems of elliptic
partial differential equations. The inverse problem of the Laplace equation is seriously ill-posed,
where a tiny deviation in the data can cause a large error in the solution [4]. It is difficult to develop
numerical solutions with conventional methods. Some different methods have been researched, such as
the quasi-reversibility [5], Tikhonov regularization [6], wavelet [7], conjugate gradient [8], central
difference [9], Fourier regularization [10], and mollification [11–13] methods.

The main procedure of the mollification method is using the kernel function to construct
a mollification operator by convolution with the measurement data. Manselli, Miller [14],
and Murio [15,16] constructed mollification operators by using the Weierstrass kernel to solve
some inverse heat conduction problems (IHCP). There have been reports on using the Gaussian
kernel to solve the Cauchy problem of elliptic equations [17–21]. Hào [22–24] adopted the
Dirichlet kernel and de la Vallée Poussin kernel to solve some kinds of two-dimensional equations;
including the two-dimensional Laplace equation. However, the three-dimensional case was not
considered, Moreover, the analysis method used for error estimate was does not generalize to the
three-dimensional case well.

Our primary interest is to solve the inverse problem of the three-dimensional Laplace equation
with non-homogeneous Neumann boundary conditions. In order to guarantee solvability for the
inverse problem provided, a regularization method using the bivariate de la Vallée Poussin kernel
is presented.
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This paper is organized as follows: In Section 2, the mathematical problem for the
three-dimensional Laplace equation and its ill-posedness are illustrated. In Section 3, we introduce the
bivariate de la Vallée Poussin kernel and its properties, following which our mollification regularization
method is proposed. In Section 4, some stability estimate results are given, in the interior 0 < z < d
and at the boundary z = d, under a priori assumptions. The numerical aspect of our proposed method
is showed in Section 5. Concluding remarks are given in Section 6.

2. Mathematical Problem and the Ill-Posedness Analysis

We give thought to the following inverse problem of the three-dimensional Laplace equation with
non-homogeneous Neumann boundary conditions:

4u(x, y, z) = 0, (x, y) ∈ R2, 0 < z < d,
u(x, y, 0) = g(x, y), (x, y) ∈ R2,

uz(x, y, 0) = h(x, y), (x, y) ∈ R2,
(1)

where ∆ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is three-dimensional Laplace operator; and g(x, y), h(x, y) are given vectors

in L2(R2). The solution u(x, y, z) will be determined by the noisy data gδ(x, y) and hδ(x, y) in L2(R2)

that satisfy:
‖g− gδ‖L2(R2) + ‖h− hδ‖L2(R2) ≤ δ, (2)

were δ > 0 denotes the error level, and ‖ · ‖L2(R2) denotes the L2− norm [1].
Note that the solution of the problem (1) is the sum u = u1 + u2 of the solutions for the following

two problems: 
4u1(x, y, z) = 0, (x, y) ∈ R2, 0 < z < d,

u1(x, y, 0) = g(x, y), (x, y) ∈ R2,
(u1)z(x, y, 0) = 0, (x, y) ∈ R2,

(3)

and 
4u2(x, y, z) = 0, (x, y) ∈ R2, 0 < z < d,

u2(x, y, 0) = 0, (x, y) ∈ R2,
(u2)z(x, y, 0) = h(x, y), (x, y) ∈ R2.

(4)

Therefore, in order to simplify the process of the Cauchy problem (1), we only need to solve
problems (3) and (4), respectively.

For ϕ ∈ L2(R2), the Fourier transform for a variable r = (x, y) ∈ R2 is defined by

ϕ̂(ξ, z) =
1

2π

∫
R2

e−iξ·r ϕ(r, z)dr,

where ξ = (ω, η) ∈ R2 and ξ · r = ωx + ηy.
The inverse Fourier transform for a variable ξ = (ω, η) ∈ R2 is defined by

ϕ(r, z) =
1

2π

∫
R2

eiξ·r ϕ̂(ξ, z)dξ.

The Parseval equality [16] is as follows:

‖ϕ‖L2(R2) = ‖ϕ̂‖L2(R2). (5)
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Adopting the Fourier transform for the variable r = (x, y) ∈ R2 to problems (3) and (4), we obtain
(̂u1)zz = (ω2 + η2)û1, (ω, η) ∈ R2, 0 < z < d,
(̂u1)(ω, η, 0) = ĝ(ω, η), (ω, η) ∈ R2,

ˆ(u1)z(ω, η, 0) = 0, (ω, η) ∈ R2,
(6)

and 
(̂u2)zz = (ω2 + η2)û2, (ω, η) ∈ R2, 0 < z < d,

(̂u2)(ω, η, 0) = 0, (ω, η) ∈ R2,
ˆ(u2)z(ω, η, 0) = ĥ(ω, η), (ω, η) ∈ R2.

(7)

The solution of problem (6) is

û1(ω, η, z) = ĝ(ω, η) cosh(z
√

ω2 + η2). (8)

Or
u1(x, y, z) =

1
2π

∫
R2

ĝ(ω, η) cosh(z
√

ω2 + η2)eiξ·rdξ.

The solution of problem (7) is

û2(ω, η, z) = ĥ(ω, η)
sinh(z

√
ω2 + η2)√

ω2 + η2
. (9)

Or

u2(x, y, z) =
1

2π

∫
R2

ĥ(ω, η)
sinh(z

√
ω2 + η2)√

ω2 + η2
eiξ·rdξ.

Note that cosh(z
√

ω2 + η2) and sinh(z
√

ω2+η2)√
ω2+η2

are unbounded with respect to the variable (ω, η);

a small perturbation in the measured data ĝ(ω, η) and ĥ(ω, η) may result in a huge deviation in the
solution u1(x, y, z) and u2(x, y, z). Therefore, the problems (3) and (4) are severely ill-posed.

3. Mollification Method and Regularization Solution

3.1. Mollification Operator

The bivariate de la Vallée Poussin kernel [22] function is defined by:

Vα(x, y) =
(cos(αx)− cos(2αx))(cos(αy)− cos(2αy))

α2x2y2 (α > 0),

where α > 0 is called the mollification radius (or mollification parameter). Vα(x, y) has the following
properties [22]:

(1) Vα(z) is an entire function of exponential type of degree α belong to Lp(R2) (1 < p ≤ ∞);
(2) 1

π2

∫
R2 Vα(x, y)dxdy = 1;

(3) 1
π2

∫
R2 |Vα|dxdy < 12 (α ≥ 1); and

(4) V̂α is the Fourier transform of Vα(x, y), satisfying:

2
π

V̂α(ω, η) = 1, (ω, η) ∈ ∆α, ∆α := {|ω| ≤ α, |η| ≤ α},

where
V̂α(ω, η) = υ(ω)υ(η)
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and

υ(ω) =

√
π

2


1, |ω| < α,

2− ω
α , α < |ω| ≤ 2α,

0, 2α < |ω|,

υ(η) =

√
π

2


1, |η| < α,

2− η
α , α < |η| ≤ 2α,

0, 2α < |η|.

For any function Dα ∈ L1(R2) and f ∈ Lp(R2), 1 ≤ p ≤ ∞, we define two-dimensional
convolution [22] by

(Dα ∗ f )(x, y) =
∫ ∫

R2
Dα(x′, y′) f (x− x′, y− y′)dx′dy′.

It is well-known that [22]

ˆ(Dα ∗ f )(ω, η) = 2πD̂α(ω, η) f̂ (ω, η) (10)

and
‖Dα ∗ f ‖Lp(R2) ≤ ‖Dα‖L1(R2)‖ f ‖Lp(R2). (11)

We define the mollification operator Tα by Tα : R2 → R2

(Tαgδ)(x, y) =
1

π2 (Vα ∗ gδ)(x, y), (Tαhδ)(x, y) =
1

π2 (Vα ∗ hδ)(x, y).

From (10), we have

ˆ(Tαgδ)(ω, η) =
2
π

V̂α(ω, η)ĝδ(ω, η), ˆ(Tαhδ)(ω, η) =
2
π

V̂α(ω, η)ĥδ(ω, η).

3.2. Regularization Approximation Solution

Instead of solving the problems (3) and (4) with the data gδ(x, y) and hδ(x, y), we attempt
to re-construct the noisy data gδ(x, y) and hδ(x, y) by (Tαgδ)(x, y) and (Tαhδ)(x, y), respectively.
We obtain the problems, with the re-constructed data, as follows:

(u1)
α,δ
xx + (u1)

α,δ
yy + (u1)

α,δ
zz = 0, (x, y, z) ∈ Ω,

uα,δ
1 (x, y, 0) = (Tαgδ)(x, y), (x, y) ∈ R2,

(u1)
α,δ
z (x, y, 0) = 0, (x, y) ∈ R2,

(12)

and 
(u2)

α,δ
xx + (u2)

α,δ
yy + (u2)

α,δ
zz = 0, (x, y, z) ∈ Ω,

uα,δ
2 (x, y, 0) = 0, (x, y) ∈ R2,

(u2)
α,δ
z (x, y, 0) = (Tαhδ)(x, y), (x, y) ∈ R2.

(13)

The solution for problem (12) is

ûα,δ
1 (ω, η, z) = ˆ(Tαgδ)(ω, η) cosh(z

√
ω2 + η2),

or
uα,δ

1 (x, y, z) =
1

2π

∫
R2

ˆ(Tαgδ)(ω, η) cosh(z
√

ω2 + η2)dωdη.
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The solution to problem (13) is

ûα,δ
2 (ω, η, z) = ˆ(Tαhδ)(ω, η)

sinh(x
√

ω2 + η2)√
ω2 + η2

,

or

uα,δ
2 (x, y, z) =

1
2π

∫
R2

ˆ(Tαhδ)(ω, η)
sinh(x

√
ω2 + η2)√

ω2 + η2
dωdη.

According to (11) and the properties (2) and (3) of the kernel Vα, we have the following conclusion:

Remark 1. If ‖g− gδ‖L2(R2) ≤ δ and ‖h− hδ‖L2(R2) ≤ δ hold, then

‖Tαgδ − g‖L2(R2) ≤ 12δ, ‖Tαhδ − h‖L2(R2) ≤ 12δ.

4. Parameter Selection and Error Estimates

Lemma 1. For z ∈ (0, d], the following inequalities hold

(1) cosh(z
√

ω2+η2)

cosh(d
√

ω2+η2)
≤ 2e−(d−z)

√
ω2+η2 ,

(2) cosh(z
√

ω2 + η2) < ez
√

ω2+η2 ,

(3) sinh(z
√

ω2+η2)

sinh(d
√

ω2+η2)
≤ e−(d−z)

√
ω2+η2 , and

(4) sinh(z
√

ω2+η2)√
ω2+η2

< dez
√

ω2+η2 .

Proof. Inequalities (1) and (2) are easy to obtain. From the inequalities

sinh(z
√

ω2 + η2)

sinh(d
√

ω2 + η2)
=

ez
√

ω2+η2

ed
√

ω2+η2
· 1− e−2z

√
ω2+η2

1− e−2d
√

ω2+η2

≤ ez
√

ω2+η2

ed
√

ω2+η2
,

and the Taylor expansion

sinh(z
√

ω2 + η2)√
ω2 + η2

=
∞

∑
n=0

(
√

ω2 + η2)2nz2n+1

(2n + 1)!

≤ d
∞

∑
n=0

(z
√

ω2 + η2)2n

(2n)!

= d cosh(z
√

ω2 + η2),

we can arrive at (3) and (4).

In the next content, we give stability convergence estimates between the exact solution for
problems (3) and (4) and the regularization approximate solution of problems (12) and (13) in 0 < z < d
and at the boundary z = d, respectively. Convergence estimates will be obtained when we choose
a suitable regularization parameter α.

4.1. Error Estimates in the Interior

The convergence estimates for the proposed regularization method, in the case of 0 < z < d,
will be given in this section, and we obtain the approximation results as following:
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Theorem 1. Let u1(x, y, z) and uα,δ
1 (x, y, z) be the exact solution and the approximation solution for

problem (1) with the exact input data g(x, y) and mollified data, respectively. Assume the a priori bounds
‖u1(·, ·, d)‖L2(R2) ≤ E and ‖g− gδ‖L2(R2) ≤ δ hold. We have the following estimate:

‖u1 − uα,δ
1 ‖L2(R2) < 118Ee−(d−z)α + 36δe4zα. (14)

If α is selected as

α =
1

4d
ln(E/δ), (15)

we have
‖u1 − uα,δ

1 ‖L2(R2) < 118E(3d+z)/4dδ(d−z)/4d + 36Ez/dδ1−z/d, (16)

where E is a finite positive constant.

Proof. From Parseval’s equality (5) and the properties of double integrals, we have

‖u1 − uα,δ
1 ‖

2
L2(R2) = ‖û1 − ûα,δ

1 ‖
2
L2(R2) =

25

∑
k=1

∫
Dk

|û1 − ûα,δ
1 |

2dωdη

=
16

∑
k=1

∫
Dk

|û1|2dωdη +
25

∑
k=17

∫
Dk

|û1 − ûα,δ
1 |

2dωdη

≤ E2
16

∑
k=1

(sup
Dk

|A(ω, η)|)2 +
25

∑
k=17

∫
Dk

|(ĝ− ˆ(Tαgδ))B(ω, η)|2dωdη.

Here, R2 =
25⋃

k=1
Dk (see Figure 1)

Figure 1. For every Dk (k = 1, 2, · · · , 25)

and

A(ω, η) =
cosh(z

√
ω2 + η2)

cosh(d
√

ω2 + η2)
, B(ω, η) = cosh(z

√
ω2 + η2), (ω, η ∈ R).
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Furthermore,

25

∑
k=17

∫
Dk

|(ĝ− ˆ(Tαgδ))B(ω, η)|2dωdη =∫
D17

|(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)|2dωdη +

∫
D18

|(ĝ− (2− η

α
)ĝδ)B(ω, η)|2dωdη+∫

D19

|(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)|2dωdη +

∫
D20

|(ĝ− (2− ω

α
)ĝδ)B(ω, η)|2dωdη+∫

D21

|(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)|2dωdη +

∫
D22

|(ĝ− (2− η

α
)ĝδ)B(ω, η)|2dωdη+∫

D23

|(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)|2dωdη +

∫
D24

|(ĝ− (2− ω

α
)ĝδ)B(ω, η)|2dωdη+∫

D25

|(ĝ− ĝδ)B(ω, η)|2dωdη.

It is easy to verify that 9 < (2− ω
α )(2−

η
α ) < 16, (ω, η) ∈ D17,

D17 = (−2α,−α)× (−2α,−α).

From Minkowski’s inequality, we have

(
∫

D17

|(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)|2dωdη)1/2

= ‖(ĝ− (2− ω

α
)(2− η

α
)ĝδ)B(ω, η)‖L2(D17)

≤ ‖ĝB(ω, η)‖L2(D17)
+ 16‖(ĝδ − ĝ + ĝ)B(ω, η)‖L2(D17)

≤ 17‖ĝB(ω, η)‖L2(D17)
+ 16‖(ĝδ − ĝ)B(ω, η)‖L2(D17)

≤ 17E sup
D17

|A(ω, η)|+ 16δ sup
D17

|B(ω, η)|.

Using a similar analysis, we can obtain the integral estimates of the other Dk(k = 18, · · · , 24).
Utilizing the inequality

√
A + B + C <

√
A +
√

B +
√

C (A > 0, B > 0, C > 0), we have

‖u1 − uα,δ
1 ‖L2(R2) = ‖û1 − ûα,δ

1 ‖L2(R2)

≤ E
16

∑
k=1

sup
Dk

|A(ω, η)|+
25

∑
k=17

(
∫

Dk

|(ĝ− ˆ(Tαgδ))B(ω, η)|2dωdη)1/2.

According to (1) and (2) of Lemma 1, we obtain

‖u1 − uα,δ
1 ‖L2(R2) ≤ 2E(4e−2

√
2(d−z)α + 8e−

√
5(d−z)α + 4e−2(d−z)α)+

(34Ee−(d−z)
√

2α + 16δe2
√

2zα) + (10Ee−(d−z)α + 4δe
√

5zα) + (10Ee−(d−z)
√

2α + 4δe2
√

2zα)+

(4Ee−(d−z)α + δe
√

5zα) + (4Ee−(d−z)
√

2α + δe2
√

2zα) + (4Ee−(d−z)α + δe
√

5zα)+

(10Ee−(d−z)
√

2α + 4δe2
√

2zα) + (10Ee−(d−z)α + 4δe
√

5zα) + δe
√

2zα

≤ 118Ee−(d−z)α + 36δe2
√

2zα

< 118Ee−(d−z)α + 36δe4zα.

Taking parameter α to be α = 1
4d ln(E/δ), we arrive at (16).

Similarly, the error estimate for problem (4) can be obtained in the following way.
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Theorem 2. Let u2(x, y, z) and uα,δ
2 (x, y, z) be the exact solution and approximation solution for problem (4)

with the exact input data h(x, y) and mollified data, respectively. Assume that the a priori bounds
‖u2(·, ·, d)‖L2(R2) ≤ E and ‖h− hδ‖L2(R2) ≤ δ hold, we have

‖u2 − uα,δ
2 ‖L2(R2) < 59Ee−(d−z)α + 36dδe4zα. (17)

If α is chosen as in (15), then we have

‖u2 − uα,δ
2 ‖L2(R2) < 59E(3d+z)/4dδ(d−z)/4d + 36dEz/dδ1−z/d. (18)

As for our problem (1), combining the results of Theorems 1 and 2 and the Minkowski inequality,
we have the error estimate, as follows:

Theorem 3. Let u(x, y, z) and uα,δ(x, y, z) be the exact solution and regular solution for problem (1). Assume
that condition (2) and max{‖u1(·, ·, d)‖L2(R2), ‖u2(·, ·, d)‖L2(R2)} ≤ E hold. Then, we have

‖u− uα,δ‖L2(R2) < 177Ee−(d−z)α + 36(d + 1)δe4zα. (19)

If α is chosen as in (15), then we have

‖u− uα,δ‖L2(R2) < 177E(3d+z)/4dδ(d−z)/4d + 36(d + 1)Ez/dδ1−z/d. (20)

4.2. Error Estimates at the Boundary

The estimates (14), (17), and (19) give no information about the error estimates at z = d, as the
constraints ‖u1(·, ·, d)‖L2(R2) ≤ E and ‖u2(·, ·, d)‖L2(R2) ≤ E are too weak for this purpose. Therefore,
to ensure stability of the solution u1(x, y, z), u2(x, y, z) at z = d, we need the Sobolev space Hp(R2)

(p ≥ 0) [1],
Hp(R2) = {ϕ(x, y) ∈ L2(R2) : ‖ϕ‖Hp(R2) < ∞},

where ‖ · ‖Hp(R2) is defined by

‖ϕ(·, ·, d)‖Hp(R2) = ‖(1 + ω2 + η2)p/2 ϕ̂(ω, η, d)‖L2(R2).

If p = 0, then H0 = L2(R2).

Theorem 4. Let u1(x, y, d) and uα,δ
1 (x, y, d) be the exact and regularization solutions, respectively, of problem

(3) at z = d. Suppose that the a priori bounds ‖u1(·, ·, d)‖Hp(R2) ≤ Ep (p > 0) and ‖g− gδ‖L2(R2) ≤ δ hold.
Then, we have the following inequality

‖u1(·, ·, d)− uα,δ
1 (·, ·, d)‖L2(R2) <

59Ep

(1 + α2)p/2 + 36δe4dα. (21)

If the regular parameter α is selected as

α =
1

8d
ln(Ep/δ), (22)

then we have
‖u1(·, ·, d)− uα,δ

1 (·, ·, d)‖L2(R2) < 59Ep(
8d

ln(Ep/δ)
)p + 36E1/2

p δ1/2, (23)

where Ep is a positive constant only depending on p.
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Proof. From Parseval’s equality (5), we have

‖u1(·, ·, d)− uα,δ
1 (·, ·, d)‖2

L2(R2) = ‖û1(·, ·, d)− û1
α,δ(·, ·, d)‖2

L2(R2)

=
25

∑
k=1

∫ ∫
Dk

|û1(·, ·, d)− û1
α,δ(·, ·, d)|2dωdη

=
16

∑
k=1

∫ ∫
Dk

|û(·, ·, d)|2dωdη +
25

∑
k=17

∫ ∫
Dk

|û1(·, ·, d)− û1
α,δ(·, ·, d)|2dωdη,

where Dk (k = 1, 2, · · · , 25) are same as in Theorem 1. Let

R(ω, η) =
1

(1 + ω2 + η2)p/2 (ω, η ∈ R).

Using the properties of the double integral, and the inequality
√

A + B + C <
√

A +
√

B +√
C (A > 0, B > 0, C > 0), we have

‖u1(·, ·, d)− uα,δ
1 (·, ·, d)‖L2(R2)

≤ E
16

∑
k=1

sup
Dk

|R(ω, η)|+
25

∑
k=17

(
∫ ∫

Dk

|û1(·, ·, d)− û1
α,δ(·, ·, d)|2dωdη)1/2.

Using a similar method as in Theorem 1 and the monotonicity of the function R(ω, η), we obtain

‖u1(·, ·, d)− uα,δ
1 (·, ·, d)‖L2(R2) <

59Ep

(1 + α2)p/2 + 36δe4dα.

If we chose α as α = 1
8d ln(Ep/δ) and utilize inequality 1 + α2 > α2, then (23) can be obtained.

Similar to Theorem 4, the error estimate for problem (4) can be obtained as follows.

Theorem 5. Let u2(x, y, d) and uα,δ
2 (x, y, d) be the exact and regularization solutions, respectively, for problem

(4) at z = d. Suppose that the a priori bounds ‖u2(·, ·, d)‖Hp(R2) ≤ Ep and ‖h− hδ‖L2(R2) ≤ δ hold. Then,
we have the following inequality

‖u2(·, ·, d)− uα,δ
2 (·, ·, d)‖L2(R2) <

59Ep

(1 + α2)p/2 + 36dδe4dα. (24)

If the regularization parameter α is chosen as in (22), then

‖u2(·, ·, d)− uα,δ
2 (·, ·, d)‖L2(R2) < 59Ep(

8d
ln(Ep/δ)

)p + 36dE1/2
p δ1/2. (25)

Thus, as for problem (1), using the results of Theorems 4 and 5 and the Minkowski inequality, we
have the stable error estimate, as follows:

Theorem 6. Let u(x, y, d) and uα,δ(x, y, d) be the exact and regularization solutions, respectively, for problem
(1) at z = d. Suppose that condition (2) and max{‖u1(·, ·, d)‖Hp(R2), ‖u2(·, ·, d)‖Hp(R2)} ≤ Ep (p > 0) hold.
We have the convergence estimate, as follows:

‖u(·, ·, d)− uα,δ(·, ·, d)‖L2(R2) <
118Ep

(1 + α2)p/2 + 36(d + 1)δe4dα. (26)
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If the regularization parameter α is selected as in (22), then

‖u(·, ·, d)− uα,δ(·, ·, d)‖L2(R2) < 118Ep(
8d

ln(Ep/δ)
)p + 36(d + 1)E1/2

p δ1/2. (27)

Remark 2. In this part, we consider the stable error estimates in the cases 0 < z < d and z = d, respectively.
In the interior, 0 < z < d, the a priori bound for ‖u(·, ·, d)‖L2(R2) is sufficient, and the convergence
estimate converges quickly to zero as δ → 0+. However, for the case z = d, although a stronger a priori
bound for ‖u(·, ·, d)‖Hp(R2) (p > 0) is imposed, the error estimate is only of logarithmic type, with order
(ln(Ep/δ))−p (p > 0).

5. Numerical Examples

We performed two numerical examples to verify the accuracy and stability of our proposed
method. Our tests were carried out in the MATLAB R2014b software.

In the numerical examples, we selected the discrete interval to be D = [−6− γ, 6 + γ]× [−6−
γ, 6 + γ] (γ = 1× 10−3) and the measurement data φδ(x, y) was obtained as the following

φδ(x, y) = φ + ε(2randn(size(φ))− 1),

where

φ = (φ(xi, yj))N×N , xi = −6 +
12(i− 1)

N − 1
, yj = −6 +

12(j− 1)
N − 1

, i, j = 1, 2, · · · , N.

The error level δ is given by

δ = ‖φ− φδ‖l2(D) =

√√√√ 1
N × N

N

∑
i=1

N

∑
j=1

(φ(xi, yj)− φδ(xi, yj))2.

In the following numerical implementations, we need to take the two-dimensional discrete Fourier
transform of the data vector φδ(x, y) and the two-dimensional discrete inverse Fourier transform.
We take d = 1, N = 15, and fix the reconstructed position z = 0.3. The a priori mollification parameter
α was determined by (15) and (22), where ‖ϕ(·, ·, d)‖l2(D) = E and ‖ϕ(·, ·, d)‖Hp(D) = Ep. We define
the relative error between the exact solution u and its approximate solution uα,δ as:

rel(u) =
‖u− uα,δ‖l2(D)

‖u‖l2(D)
.

Example 1. We chose the function g(x, y) = xye−x2−y2
as the exact data for problem (3).

Example 2. We chose the function h(x, y) = e
− 36

36+x2−
36

36+y2 as the exact data for problem (4).

We use different perturbation noise levels at the boundary z = 1 with p = 0.5 and p = 3,
respectively, in Tables 1 and 2. Note that the results for the relative error rel(u) at z = 1 depended on
the error level, δ, and p.

Figures 2 and 3 show the re-constructed solution and exact solution of Example 1, corresponding
to noise levels of δ = 1× 10−10 and δ = 2× 10−8, with z = 0.3 and z = 1, respectively. Figure 4 shows
the corresponding error between (a) and (b) in Figures 2 and 3.

Figures 5 and 6 show the regularization solution and exact solution of Example 2, corresponding
to noise levels of δ = 1× 10−10 and δ = 2× 10−8 with z = 0.3 and z = 1, respectively. Figure 7 shows
the corresponding error between (a) and (b) in Figures 5 and 6.
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In the two examples, we note that the methods which we adopted are stable and effective.

Table 1. Example 1: Relative Error at z = 1, p = 0.5 and p = 3.

p Error Level δ Regular Parameter α Relative Error rel(u)

0.5 1× 10−8 5.3392 0.2764
0.5 1× 10−9 5.9148 0.0955
3 1× 10−7 5.8034 0.1363
3 1× 10−8 6.3790 0.0777

Table 2. Example 2: Relative Error at z = 1, p = 0.5 and p = 3.

p Error Level δ Regular Parameter α Relative Error rel(u)

0.5 1× 10−8 5.4041 0.2404
0.5 1× 10−9 5.9798 0.0509
3 1× 10−6 5.2927 0.2684
3 1× 10−7 10.6332 0.0905

(a) (b)

Figure 2. Example 1: δ = 1× 10−10, z = 0.3: (a) Exact solution, and (b) approximation solution.

(a) (b)

Figure 3. Example 1: For δ = 2× 10−8, z = 1: (a) Exact solution, and (b) approximation solution.

(a) (b)

Figure 4. Example 1: (a) The error between (a) and (b) in Figure 2, and (b) the error between (a) and (b)
in Figure 3.
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(a) (b)

Figure 5. Example 2: δ = 1× 10−10, z = 0.3: (a) Exact solution, and (b) approximation solution.

(a) (b)

Figure 6. Example 2: For δ = 2× 10−8, z = 1: (a) Exact solution, and (b) approximation solution.

(a) (b)

Figure 7. Example 2: (a) The error between (a) and (b) in Figure 5, and (b) the error between (a) and (b)
in Figure 6.

6. Conclusions

In this article, we use a regularization method to solve two Cauchy problems for the
three-dimensional Laplace equation. Stable approximate estimates are obtained under a priori bound
assumptions and an appropriate choice of the regular parameter. Two numerical examples are
investigated to verify the stability of our presented method.

We consider stability error estimates in the cases 0 < z < d and z = d, respectively. In the
interior, 0 < z < d, the convergence estimate is O(δλ) (λ > 0), which quickly converges to zero
as δ → 0+. However, at the boundary, z = d, the error estimate is of logarithmic type with order
(ln(Ep/δ))−p (p > 0). In future work, we hope to find a new a priori assumption method, in order to
obtain an error estimation which achieves better results.
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