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Abstract: In this paper, we specified a method that generalizes a number of fixed point results for
single and multi-valued mappings in the structure of extended b-metric spaces. Our results extend
several existing ones including the results of Aleksic et al. for single-valued mappings and the results
of Nadler and Miculescu et al. for multi-valued mappings. Moreover, an example is given at the end
to show the superiority of our results.
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1. Introduction and Preliminaries

Banach contraction principle [1] is a fundamental tool for providing the existence of solutions
for many mathematical problems involving differential equations and integral equations. A mapping
T : U→ U on a metric space (U, d) is called a contraction mapping, if there exists η < 1 such that for
all u, v ∈ U,

d(Tu, Tv) ≤ ηd(u, v). (1)

If the metric space is complete and T satisfies inequality (1), then T has a unique fixed point. Clearly,
inequality (1) implies continuity of T. Naturally, a question arises as to whether we can find contractive
conditions which will imply the existence of fixed points in a complete metric space, but will not
imply continuity. In [2], Kannan derived the following result, which answers the said question.
Let T : U→ U be a mapping on a complete metric space (U, d), which satisfies inequality:

d(Tu, Tv) ≤ η[d(u, Tu) + d(v, Tv)], (2)

where η ∈ [0, 1
2 ) and u, v ∈ U. The mapping satisfying inequality (2) is called a Kannan type mapping.

There are number of generalizations of the contraction principle of Banach both for single-valued and
multi-valued mappings, see ([3–13]). Chatterjea in [14] established the following alike co ntractive
condition. Let (U, d) be a complete metric space. A mapping T : U→ U has a unique fixed point, if it
satisfies the following inequality:

d(Tu, Tv) ≤ η[d(u, Tv) + d(v, Tu)]. (3)
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where η ∈ [0, 1
2 ) and u, v ∈ U. The mapping satisfying inequality (3) is called a Chatterjea

type mapping.
Due to the problem of the convergence of measurable functions with respect to a measure,

Bakhtin [15], Bourbaki [16], and Czerwik [17,18] introduced the concept of b-metric spaces by
weakening the triangle inequality of the metric space as follows:

Definition 1 ([17]). Let U be a set and s ≥ 1 a real number. A function d : U× U → [0, ∞) is called a
b-metric space, if it satisfies the following axioms for all u1, u2, u3 ∈ U :

(1) d(u1, u2) = 0 if and only if u1 = u2;
(2) d(u1, u2) = d(u2, u1);
(3) d(u1, u3) ≤ s[d(u1, u2) + d(u2, u3)].

The pair (U, d) is called a b-metric space.

Clearly, every metric space is a b-metric space with s = 1, but its converse is not true in general.
After that, a number of research papers have been established that generalized the Banach fixed point
result in the framework of b-metric spaces. In [19], Kir and Kiziltunc introduced the following results,
which generalized Kannan and Chatterjea type mappings in b-metric spaces. Let T : U → U be a
mapping on a complete b-metric space (U, d), which satisfies inequality:

d(Tu, Tv) ≤ η[d(u, Tu) + d(v, Tv)]. (4)

where sη ∈ [0, 1
2 ) and u, v ∈ U. Then T has a unique fixed point.

Let (U, d) be a complete b-metric space. A mapping T : U→ U has a unique fixed point in U, if it
satisfies the following inequality:

d(Tu, Tv) ≤ η[d(u, Tv) + d(v, Tu)], (5)

for all u, v ∈ U, where η ∈ [0, 1
2 ). In [20], the given below results, which generalized Equation (4) for

κ1 = κ2 = κ3 = 0 and (5) for κ1 = κ4 = 0 and κ2 = κ3, have been derived.

Theorem 1 ([20]). Let (U, d) be a complete b-metric space with constant s ≥ 1. If T : U → U satisfies
the inequality:

dφ(Tu, Tv) ≤ κ1dφ(u, v) + κ2dφ(u, Tu) + κ3dφ(v, Tv) + κ4[dφ(v, Tu) + dφ(u, Tv)], (6)

where,
κ1 + 2sκ2 + κ3 + 2sκ4 < 1,

then T has a unique fixed point.

Theorem 2 ([20]). Let (U, d) be a complete b-metric space with constant s ≥ 1. If T : U → U satisfies
the inequality:

φd(Tu, Tv) ≤ κ1dφ(u, v) + κ2[dφ(u, Tu) + dφ(v, Tv)], (7)

for all u, v ∈ U, where κ1, κ2 ∈ [0, 1
3 ), then T has a unique fixed point.

In [21], Koleva and Zlatanov proved the following result, which generalizes Chatterjea’s type
mappings in b-metric spaces and do not involve the b-metric constant.
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Theorem 3 ([21]). Let (U, d) be a complete b-metric space and d be a continuous function. If T : U → U is
a Chatterjea’s mapping, i.e., it satisfies inequality (3) such that sup

n∈N
{d(Tnu, u)} < ∞ holds for every u ∈ U.

Then:

(i) There exists a unique fixed point of T, say ξ;
(ii) For any u0 ∈ U, the sequence {un}∞

n=1 converges to ξ, where un+1 = Tnun, n = 0, 1, 2, . . . ;
(iii) There holds the priori error estimate.

d(ξ, Tmu) ≤
( η

1− η

)m
sup
j∈N
{d(T ju, u)},

where η ∈ [0, 1
2 ).

Ilchev and Zlatanov in [22] proved the following result generalizing Theorem 3 for κ1 = 0.

Theorem 4 ([22]). Let (U, d) be a complete b-metric space and d be a continuous function. If,

(1) T : U→ U is a Reich mapping, i.e., there exist κ1, κ2 ≥ 0, such that κ1 + 2κ2 < 1, so that the inequality

φd(Tu, Tv) ≤ κ1dφ(u, v) + κ2[d(u, Tv) + d(v, Tu)], (8)

holds for every u, v ∈ U;
(2) the inequality sup

n∈N
{d(Tnu, u)} < ∞ holds for every u ∈ U,

then:

(i) There exists a unique fixed point of T, say ξ;
(ii) For any u0 ∈ U, the sequence {un}∞

n=1 converges to ξ, where un+1 = Tnun, n = 0, 1, 2, . . . ;
(iii) There holds the priori error estimate.

d(ξ, Tmu) ≤
(κ1 + κ2

1− κ2

)m
sup
j∈N
{d(T ju, u)}.

In [23], the author introduced the following results, which improve Theorems 1 and 2 of [20].

Theorem 5 ([23]). Let (U, d) be a complete b-metric space with a constant s ≥ 1. If T : U → U satisfies
the inequality:

φd(Tu, Tv) ≤ κ1φd(u, v) + κ2φd(u, Tu) + κ3φd(v, Tv) + κ4[d(v, Tu) + d(u, Tv)], (9)

where κi ≥ 0, for i = 1, 2, 3, 4 and
κ1 + κ2 + κ3 + 2sκ4 < 1,

then T has a unique fixed point.

Theorem 6 ([23]). Let (U, d) be a complete b-metric space with a constant s ≥ 1. If T : U → U satisfies
the inequality:

φd(Tu, Tv) ≤ κ1φd(u, v) + κ2[φd(u, Tu) + φd(v, Tv)], (10)

for all u, v ∈ U, where κ1, κ2 ∈ [0, 1
3 ) such that κ2 < min{ 1

3 , 1
s }, then T has a unique fixed point.
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If s = 1, then (U, d) is a metric space and condition (9) implies:

d(Tu, Tv) ≤ k max{d(u, v), d(u, Tu), d(v, Tv),
d(v, Tu) + d(u, Tv)

2
}, (11)

where κ1 + κ2 + κ3 + 2κ4 < 1. With Equation (11), we recover the well-known result for generalized
Ciric’s contraction mapping in the metric space and obtain a unique fixed point.

In 1969, Nadler [24] generalized the single-valued Banach contraction principle into a multi-valued
contraction principle. This mapping has been carried out for a complete metric space (U, d) by using
subsets of U that are nonempty closed and bounded. There are number of generalizations for Nadler’s
fixed point theorem (see [25–27]). In [28], the author introduced the given below quasi-contraction
mapping and proved an existence and uniqueness fixed point theorem.

A mapping T : U→ U on a metric space (U, d) is called a quasi-contraction, if there exists q < 1
such that for all u, v ∈ U,

d(Tu, Tv) ≤ q max{d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)}.

Amini-Harandi in [29] introduced the concept of q-multi-valued quasi-contractions and derived a
fixed point theorem, which generalized Ciric’s theorem [28].

A multi-valued map T : U → CB(U) on a metric space (U, d) is called a q-multi-valued
quasi-contraction, if there exists q < 1 such that for all u, v ∈ U,

d(Tu, Tv) ≤ q max{d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)},

where CB(U) denotes the non-empty closed and bounded subsets of U. In [30], Aydi et al. established
the following result, which generalized Theorem 2.2 from [29] and Ciric’s result [28].

Theorem 7 ([30]). Let (U, d) be a complete b-metric space. Suppose that T is a q-multi-valued quasi-contraction
and q < 1

s2+s , then T has a fixed point in U.

In 2017, Kamran et al. generalized the structure of a b-metric space and called it, an extended
b-metric space. Thereafter, a number of research articles have appeared, which generalize the
contraction principle of Banach in extended b-metric spaces for both single and multi-valued mappings
(see [31–37]). In this paper, we illustrate a method (see Lemma 3), to generalize a number of fixed point
results of single-valued and multi-valued mappings in the structure of extended b-metric spaces.

Definition 2 ([38]). Let U be a nonempty set and φ : U×U→ [1, ∞). A function dφ : U×U→ [0, ∞) is
called an extended b-metric, if for all u1, u2, u3 ∈ U, it satisfies:

(d1) dφ(u1, u2) = 0 iff u1 = u2;
(d2) dφ(u1, u2) = dφ(u2, u1);
(d3) dφ(u1, u3) ≤ φ(u1, u3)[dφ(u1, u2) + dφ(u2, u3)].

The pair (U, dφ) is called an extended b-metric space.

Example 1. Let U = [0, ∞). Define dφ : U×U→ [0, ∞) by:

dφ(u, v) =


0, if u = v;
3, if u or v ∈ {1, 2}, u 6= v;
5, if u 6= v ∈ {1, 2};
1, otherwise.



Mathematics 2019, 7, 476 5 of 17

Then (U, dφ) is an extended b-metric space, where φ : U×U→ [1, ∞) is defined by:

φ(u, v) = u + v + 1,

for all u, v ∈ U.

Remark 1. Every b-metric space is an extended b-metric space with constant function φ(u1, u2) = s, for s ≥ 1,
but its converse is not true in general.

Definition 3 ([35]). Let (U, dφ) be an extended b-metric space, where φ : U × U → [1, ∞) is bounded.
Then for all A, B ∈ CB(U), where CB(U) denotes the family of all nonempty closed and bounded subsets of U,
the Hausdorff–Pompieu metric on CB(U) induced by dφ is defined by:

HΦ(A, B) = max{sup
a∈A

dφ(a, B), sup
b∈B

dφ(b, A)},

where for every a ∈ A, dφ(a, B) = inf{dφ(a, b) : b ∈ B} and Φ : CB(U)× CB(U)→ [1, ∞) is such that:

Φ(A, B) = sup{φ(a, b) : a ∈ A, b ∈ B}.

Theorem 8 ([31]). Let (U, dφ) be an extended b-metric space. Then (CB(U), HΦ) is an extended
Hausdorff–Pompieu b-metric space.

Lemma 1 ([39]). Every sequence {un}n∈N of elements from an extended b-metric space (U, dφ), having the
property that for every n ∈ N, there exists γ ∈ [0, 1) such that:

dφ(un+1, un) ≤ γdφ(un, un−1) (12)

where for each u0 ∈ U, limn,m→∞ φ(un, um) <
1
γ . Then {un}∞

n=0 is a Cauchy sequence.

Definition 4. Let U be any set and T : U → CB(U) be a multi-valued map. For any point u0 ∈ U,
the sequence {un}∞

n=0 given by:
un+1 ∈ Tun, n = 0, 1, 2, . . . (13)

is called an iterative sequence with initial point u0.

2. Main Results

Definition 5. Let (U, dφ) be an extended b-metric space. A function T : U → CB(U) is called continuous,
if for every sequence {un}n∈N and {vn}n∈N belongs to U and u, v ∈ U such that limn→∞ un = u,
limn→∞ vn = v and vn ∈ Tun. We have v ∈ Tu.

Definition 6. An extended b-metric space (U, dφ) is called ∗-continuous, if for every A ∈ CB(U), {un}n∈N ∈
U and u ∈ U such that limn→∞ un = u. We have limn→∞ dφ(un, A) = dφ(u, A).

Remark 2. Note that ∗- continuity of dφ is stronger than continuity of dφ in first variable.

Lemma 2. For every sequence {un}n∈N of elements from an extended b-metric space (U, dφ), the inequality

dφ(u0, uk) ≤
k−1

∑
i=0

dφ(ui, ui+1)
i

∏
l=0

φ(ul , uk), (14)

is valid for every k ∈ N.

Proof. From the triangle inequality for k > 0, we haveL
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dφ(u0, uk) ≤ φ(u0, uk)dφ(u0, u1) + φ(u0, uk)φ(u1, uk)dφ(u1, u2)

+ · · ·+ φ(u0, uk)φ(u1, uk) . . . φ(uk−1, uk)dφ(uk−1, uk).

This implies that:

dφ(u0, uk) ≤
k−1

∑
i=0

dφ(ui, ui+1)
i

∏
l=0

φ(ul , uk).

Lemma 3. Every sequence {un}n∈N of elements from an extended b-metric space (U, dφ), having the property
that there exists γ ∈ [0, 1) such that:

dφ(un+1, un) ≤ γdφ(un, un−1) (15)

for every n ∈ N is Cauchy.

Proof. First, by successively applying (15), we get:

dφ(un, un+1) ≤ γndφ(u0, u1), (16)

for every n ∈ N. Then by the Lemma 3, for all m, k ∈ N, we have:

dφ(um, um+k) ≤
m+k−1

∑
n=m

dφ(un, un+1)
n

∏
l=0

φ(ul , um+k)

dφ(um, um+k) ≤ dφ(u0, u1)
m+k−1

∑
n=m

γn
n

∏
l=0

φ(ul , um+k)

dφ(um, um+k) ≤ dφ(u0, u1)
k−1

∑
n=0

γn+m
n+m

∏
l=0

φ(ul , um+k)

dφ(um, um+k) ≤ γmdφ(u0, u1)
k−1

∑
n=0

γn
n+m

∏
l=0

φ(ul , um+k)

dφ(um, um+k) ≤ γmdφ(u0, u1)
k−1

∑
n=0

γlogγ ∏n+m
l=0 φ(ul ,um+k)+n. (17)

Now let us take two cases for logγ ∏n+m
l=0 φ(ul , um+k) + n.

Case 1: If ∏n+m
l=0 φ(ul , um+k) is finite, let us say M, then limn→∞ logγ M + n = ∞. Hence the series

∑k−1
n=0 γlogγ M+n is convergent.

Case 2: If ∏n+m
l=0 φ(ul , um+k) is infinite, then limn→∞ logγ ∏n+m

l=0 φ(ul , um+k) = ∞, so there exist n0 ∈ N
such that logγ ∏n+m

l=0 φ(ul , um+k) > M, i.e.,

γlogγ ∏n+m
l=0 φ(ul ,um+k)+n ≤ γM.γn, f or each n ∈ N, n ≥ n0.
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Hence the series ∑k−1
n=0 γlogγ ∏n+m

l=0 φ(ul ,um+k)+n is convergent. In both cases denoting by S the sum
of this series, we come to the conclusion that:

dφ(um, um+k) ≤ γmdφ(u0, u1)S,

for all m, k ∈ N. Consequently, as lim
m→∞

γm = 0, we conclude that {um}m∈N is a Cauchy sequence.

Remark 3. Lemma 3 shows that the condition on φ in Lemma 1 corresponding to that for each u0 ∈ U,

lim
n,m→∞

φ(un, um) <
1
γ

, can be avoided. Therefore, Lemma 3 generalizes Lemma 1, which is the basis of the

results from [36].

Lemma 4. Let A, B ∈ CB(U), then for every η > 0 and b ∈ B there exists a ∈ A such that:

dφ(a, b) ≤ HΦ(A, B) + η. (18)

Proof. By definition of Hausdorff metric, for A, B ∈ CB(U) and for any b ∈ Y, we have:

dφ(A, b) ≤ HΦ(A, B).

By the definition of infimum, we can let {an} be a sequence in A such that:

dφ(b, an) < dφ(b, A) + η, where η > 0. (19)

We know that A is closed and bounded, so there exists a ∈ A such that an → a. Therefore, by (19),
we have:

dφ(a, b) < dφ(A, b) + η ≤ HΦ(A, B) + η.

Theorem 9. Let (U, dφ) be a complete extended b-metric space with φ : U× U → [1, ∞). If T : U → U
satisfies the inequality:

dφ(Tu, Tv) ≤ κ1dφ(u, v) + κ2dφ(u, Tu) + κ3dφ(v, Tv) + κ4[dφ(v, Tu) + dφ(u, Tv)], (20)

where κi ≥ 0, for i = 1, . . . , 4 and for each u0 ∈ U,

κ1 + κ2 + κ3 + 2κ4 lim
n,m→∞

φ(un, um) < 1,

then T has a fixed point.

Proof. Let us choose an arbitrary u0 ∈ U and define the iterative sequence {un}∞
n=0 by un = Tun−1 =

Tn−1u0 for all n ≥ 1. If un = un−1, then un is a fixed point of T and the proof holds. So we suppose
un 6= un−1, ∀ n ≥ 1. Then from Equation (20), we have:

dφ(Tun, Tun−1) ≤ κ1dφ(un, un−1) + κ2dφ(un, Tun) + κ3dφ(un−1, Tun−1)

+κ4[dφ(un−1, Tun) + dφ(un, Tun−1)].

From the triangle inequality, we get:

dφ(Tun, Tun−1) ≤ κ1dφ(un, un−1) + κ2dφ(un, Tun) + κ3dφ(un−1, Tun−1)

+κ4φ(un−1, un+1)[dφ(un−1, un) + dφ(un, un+1)].
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This implies that:

dφ(un+1, un) ≤ (κ1 + κ3 + κ4φ(un−1, un+1))dφ(un, un−1)

+(κ2 + κ4φ(un−1, un+1))dφ(un, un+1). (21)

Similarly,

dφ(un, un+1) ≤ (κ1 + κ2 + κ4φ(un−1, un+1))dφ(un, un−1)

+(κ3 + κ4φ(un−1, un+1))dφ(un, un+1). (22)

By adding Equations (21) and (22), we get:

dφ(un+1, un) ≤ ηdφ(un, un−1). (23)

where,

η =
2κ1 + κ2 + κ3 + 2κ4φ(un−1, un+1)

2− κ2 − κ3 − 2κ4φ(un−1, un+1)
.

Since κ1 + κ2 + κ3 + 2κ4 limn,m→∞ φ(un, um) < 1, multiply by 2,

2κ1 + 2κ2 + 2κ3 + 4κ4 lim
n,m→∞

φ(un, um) < 2,

2κ1 + 2κ2 + 2κ3 + (2κ4 lim
n,m→∞

φ(un, um) + 2κ4 lim
n,m→∞

φ(un, um)) < 2.

This implies that:

2κ1 + κ2 + κ3 + 2κ4 lim
n,m→∞

φ(un, um) < 2− κ2 − κ3 − 2κ4 lim
n,m→∞

φ(un, um).

⇒ η < 1. Hence from Lemma 3, {un}∞
n=0 is a Cauchy sequence. As U is complete, therefore there

exists u ∈ U such that lim
n→∞

un = u. Next, we will show that u is a fixed point of T. From the triangle

inequality and Equation (20), we have:

dφ(u, Tu) ≤ φ(u, Tu)[dφ(u, un+1) + dφ(un+1, Tu)]

≤ φ(u, Tu)[dφ(u, un+1) + κ1dφ(un, u) + κ2dφ(un, un+1)

+κ3dφ(u, Tu) + κ4[dφ(un, Tu) + dφ(u, un+1)]

≤ φ(u, Tu)[dφ(u, un+1) + κ1dφ(un, u) + κ2dφ(un, un+1)

+κ3dφ(u, Tu) + κ4dφ(u, un+1) + κ4φ(un, Tu)

[dφ(un, u) + dφ(u, Tu)]

≤ φ(u, Tu)[(1 + κ4)dφ(u, un+1) + (κ1 + κ4φ(un, Tu))dφ(u, un)

κ2dφ(un, un+1) + (κ3 + κ4φ(un, Tu))dφ(u, Tu)]..

So,

(1− κ3 − κ4φ(un, Tu))dφ(u, Tu) ≤φ(u, Tu)[(1 + κ4)dφ(u, un+1) + (κ1 + κ4φ(un, Tu))dφ(u, un)

+ κ2dφ(un, un+1)]. (24)

Similarly,

(1− κ2 − κ4φ(un, Tu))dφ(u, Tu) ≤φ(u, Tu)[(1 + κ4)dφ(u, un+1) + (κ1 + κ4φ(un, Tu))dφ(u, un)

+ κ3dφ(un, un+1)]. (25)
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By adding Equations (24) and (25), we have:

(2− κ2 − κ3 − 2κ4φ(un, Tu))dφ(u, Tu) ≤ φ(u, Tu)[2(1 + κ4)dφ(u, un+1) + 2(κ1 + κ4φ(un, Tu))dφ(u, un)

+ (κ2 + κ3)dφ(un, un+1)]→ 0,

as n→ ∞. This implies that:

(2− κ2 − κ3 − 2κ4φ(un, Tu))dφ(u, Tu) ≤ 0.

Since (2− κ2 − κ3 − 2κ4φ(un, Tu)) > 0, we get dφ(u, Tu) = 0, i.e., Tu = u. Now, we show that u is
the unique fixed point of T. Assume that u

′
is another fixed point of T, then we have Tu

′
= u

′
. Also,

dφ(u, u
′
) = dφ(Tu, Tu

′
)

≤ κ1dφ(u, u
′
) + κ2dφ(u, Tu

′
) + κ3dφ(u

′
, Tu) + κ4[dφ(u, Tu

′
) + dφ(u

′
, Tu)

≤ κ1dφ(u, u
′
) + κ2dφ(u, u

′
) + κ3dφ(u

′
, u) + κ4[dφ(u, u

′
) + dφ(u

′
, u)

≤ (κ1 + 2κ4)dφ(u, u
′
).

This implies that:
(1− κ1 − 2κ4)dφ(u, u

′
) ≤ 0.

As κ1 + κ2 + κ3 + 2κ4 ≤ κ1 + κ2 + κ3 + 2κ4 lim
n,m→∞

φ(un, um) < 1. Therefore (1− κ1 − 2κ4) > 0, and

dφ(u, u
′
) = 0, i.e., u = u

′
. Hence T has a unique fixed point in U.

Remark 4. From the symmetry of the distance function dφ, it is easy to prove similar to that done in [4,22] that
κ2 = κ3. Thus the inequality (20) is equivalent to the following inequality:

dφ(Tu, Tv) ≤ κ1dφ(u, v) + κ2[dφ(u, Tu) + dφ(v, Tv)] + κ4[dφ(v, Tu) + dφ(u, Tv)], (26)

where κ1, κ2, κ4 ≥ 0 such that κ1 + 2κ2 + 2κ4 limn,m→∞ φ(un, um) < 1.
If κ1 = κ2 = 0 and κ4 ∈ [0, 1

2 ) in inequality (26), we obtain generalization of Chatterjea’s map [14] in extended
b-metric space.

Remark 5. Theorem 9 generalizes and improves Theorem 1.5 of [23] and therefore Theorem 2.1 of [20]. Moreover,
Theorem 9 generalizes and improves Theorem 3.7 from [40], that is, Theorem 2.19 from [41].

Theorem 10. Let (U, dφ) be a complete extended b-metric space with φ : U×U → [1, ∞). If T : U → U
satisfies the inequality:

dφ(Tu, Tv) ≤ κ1dφ(u, v) + κ2[dφ(u, Tu) + dφ(v, Tv)], (27)

for each u, v ∈ U, where κ1, κ2 ∈ [0, 1
3 ). Moreover for each u0 ∈ U,

lim
n,m→∞

φ(un, um)κ2 < 1,

then T has a unique fixed point.

Proof. Let us choose an arbitrary u0 ∈ U and define the iterative sequence {un}∞
n=0 by un = Tun−1 =

Tn−1u0 for all n ≥ 1. If un = un−1, then un is a fixed point of T and the proof holds. So we suppose
un 6= un−1, ∀ n ≥ 1. Then from Equation (27), we have:

dφ(Tun, Tun−1) ≤ κ1dφ(un, un−1) + κ2[dφ(un−1, Tun−1) + dφ(un, Tun)].
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So,

(1− κ2)dφ(un+1, un) ≤ (κ1 + κ4)dφ(un, un−1).

dφ(un, un+1) ≤
κ1 + κ4

1− κ4
dφ(un, un−1).

This implies that:
dφ(un+1, un) ≤ ηdφ(un, un−1). (28)

where,

η =
κ1 + κ4

1− κ4
.

Since κ1, κ2 ∈ [0, 1
3 ), so η < 1, from Lemma 3, {un}∞

n=0 is a Cauchy sequence. As U is complete,
therefore there exists u ∈ U such that limn→∞ un = u. Next, we will show that u is a fixed point of T in
U. From the triangle inequality and Equation (27), we have:

dφ(u, Tu) ≤ φ(u, Tu)[dφ(u, un+1) + dφ(un+1, Tu)]

≤ φ(u, Tu)[dφ(u, un+1) + κ1dφ(un, u) + κ2[dφ(un, un+1) + dφ(u, Tu)]..

So,
(1− κ2φ(u, Tu))dφ(u, Tu) ≤ 0,

as n → ∞. Since limn,m→∞ φ(un, um)κ2 < 1, we get (1− κ2φ(u, Tu)) > 0, and so dφ(u, Tu) = 0, i.e.,
Tu = u. We will show that u is the unique fixed point of T. Assume that u

′
is another fixed point of T,

then we have Tu
′
= u

′
. Again,

dφ(u, u
′
) = dφ(Tu, Tu

′
)

≤ κ1dφ(u, u
′
) + κ2[dφ(u, Tu) + dφ(u

′
, Tu

′
)]

+κ1dφ(u, u
′
) < dφ(u, u

′
),

which is a contradiction. Hence T has a unique fixed point in U.

Remark 6. Theorem 10 generalizes Theorem 1.2 of [20].

For u, v ∈ U and c, d ∈ [0, 1], we will use the following notation:

Nc1,c2(u, v) = max{dφ(u, v), c1dφ(u, Tu), c1dφ(v, Tv), c2
2 (dφ(u, Tv) + dφ(v, Tu))}.

Theorem 11. Let (U, dφ) be an extended b-metric space. Let T : U → CB(U) be a multi-valued mapping
having the property that there exist c1, c2 ∈ [0, 1] and η ∈ [0, 1) such that:

(i) For each u0 ∈ U, limn,m→∞ ηc2φ(un, um) < 1, here un = Tnu0,
(ii) HΦ(Tu, Tv) ≤ ηNc1,c2(u, v) for all u, v ∈ U.

Then for every u0 ∈ U, there exist γ ∈ [0, 1) and a sequence {un}n∈N of iterates from U such that for
every n ∈ N,

dφ(un, un+1) ≤ γdφ(un−1, un). (29)
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Proof. Let us choose an arbitrary u0 ∈ U and u1 ∈ Tu0. Consider:

γ = max{η,
ηc2φ(un−1, un+1)

2− ηc2φ(un−1, un+1)
}.

Clearly, γ < 1. If u1 = u0, then for every n ∈ N, the sequence {un}n∈N given by un = u0 satisfies
Equation(29). Since:

dφ(u1, Tu1)) ≤ dφ(Tu0, Tu1) ≤ HΦ(Tu0, Tu1)

≤ ηNc1,c2(u0, u1).

there exists u2 ∈ Tu1 such that dφ(u1, u2) ≤ ηNc1,c2(u0, u1). If u2 = u1, then for every n ∈ N, n ≥ 1,
the sequence {un}n∈N given by un = u1 satisfies Equation (29). By repeating this process, we obtain a
sequence {un}n∈N of elements from U such that un+1 ∈ Tun and 0 < dφ(un, un+1) ≤ ηNc1,c2(un−1, un)

for every n ∈ N, n ≥ 1. Then we have:

0 < dφ(un, un+1) ≤ ηNc1,c2(un−1, un)

≤ η max{dφ(un−1, un), c1dφ(un−1, Tun−1), c1dφ(un, Tun),
c2

2
(dφ(un−1, Tun) + dφ(un, Tun−1))}

≤ η max{dφ(un−1, un), c1dφ(un−1, un), c1dφ(un, un+1),
c2

2
(dφ(un−1, un+1))}

≤ η max{dφ(un−1, un), c1dφ(un−1, un), c1dφ(un, un+1),
c2φ(un−1, un+1)

2
(30)

(dφ(un−1, un) + dφ(un, un+1))}, (31)

for every n ∈ N. If we take:

max{dφ(un−1, un), c1dφ(un−1, un), c1dφ(un, un+1),
c2φ(un−1, un+1)

2
(dφ(un−1, un) + dφ(un, un+1))} = c1dφ(un, un+1),

then from Equations (30) and (31), 0 < d(un, un+1) ≤ ηc1dφ(un, un+1) < ηdφ(un, un+1). As η < 1, so
we obtain the contradiction. Therefore, we have:

dφ(un, un+1) ≤ ηNc1,c2(un−1, un)

≤ η max{dφ(un−1, un),
c2φ(un−1, un+1)

2
(dφ(un−1, un) + dφ(un, un+1))}.

Consequently, dφ(un, un+1) ≤ ηdφ(un−1, un) or

dφ(un, un+1) ≤
ηc2φ(un−1, un+1)

2
(dφ(un−1, un) + dφ(un, un+1)).

This implies that dφ(un, un+1) ≤ ηdφ(un−1, un) or

dφ(un, un+1) ≤
ηc2φ(un−1, un+1)

2− ηc2φ(un−1, un+1)
dφ(un−1, un),

for every n ∈ N. Thus,

dφ(un, un+1) ≤ max{η,
ηc2φ(un−1, un+1)

2− ηc2φ(un−1, un+1)
}dφ(un−1, un),
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i.e.,
dφ(un, un+1) ≤ γdφ(un−1, un).

Thus, the sequence {un}n∈N satisfies Equation(29). Hence from Lemma 3, we conclude that
{un}n∈N is Cauchy sequence.

Theorem 12. Let (U, dφ) be a complete extended b-metric space. Let T : U → CB(U) be a multi-valued
mapping having the property that there exist c1, c2 ∈ [0, 1] and η ∈ [0, 1) such that:

(i) For each u0 ∈ U, limn,m→∞ ηc2φ(un, um) < 1, here un = Tnu0,
(ii) HΦ(Tu, Tv) ≤ ηNc1,c2(u, v) for all u, v ∈ U,
(iii) T is continuous.

Then T has a fixed point in U.

Proof. From Theorem 11, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a
Cauchy sequence such that:

un+1 ∈ Tun, (32)

for every n ∈ N. As U is complete, so there exists u ∈ U such that limn→∞ un = u. From inequality (3),
by the continuity of T, it follows that:

un+1 = Tun → Tu, as n→ ∞.

Therefore, u ∈ Tu. Hence T has a fixed point in U.

Theorem 13. Let (U, dφ) be a complete extended b-metric space. Let T : U → CB(U) be a multi-valued
mapping having the property that there exist c1, c2 ∈ [0, 1] and η ∈ [0, 1) such that:

(i) For each u0 ∈ U limn,m→∞ ηc2φ(un, um) < 1, here un = Tnu0,
(ii) HΦ(Tu, Tv) ≤ ηNc1,c2(u, v) for all u, v ∈ U,
(iii) T is ∗-continuous.

Then T has a fixed point in U.

Proof. From Theorem 3, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a
Cauchy sequence such that:

un+1 ∈ Tun, (33)

for every n ∈ N. As U is complete, so there exists u ∈ U such that limn→∞ un = u. Then we have:

dφ(un+1, Tu) = dφ(Tun, Tu) ≤ HΦ(Tun, Tu) ≤ ηNc1,c2(un, u) ≤ η max{dφ(un, u), c1

dφ(un, Tun), c1dφ(u, Tu),
c2

2
(dφ(un, Tu) + dφ(u, Tun))} ≤ η max{

dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(dφ(un, Tu) + dφ(u, Tun))}

≤ η max{dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(φ(un, Tu) (34)

(dφ(un, u) + dφ(u, Tu))) + dφ(u, un+1)}, (35)

for every n ∈ N. Since lim
n→∞

un = u, lim
n→∞

dφ(un, un+1) = 0. Then lim
n→∞

dφ(un+1, Tu) = dφ(u, Tu).

Therefore, by taking limit n→ ∞ in Equations (34) and (35), we obtain:
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dφ(u, Tu) ≤ ηNc1,c2(un, u)

≤ η max{0, c1dφ(u, Tu),
c2 lim

n→∞
φ(un, Tu)

2
dφ(u, Tu)}

≤ max{ηc1, η
ηc2 lim

n→∞
φ(un, Tu)

2
}dφ(u, Tu).

As max{ηc1, η
ηc2 lim

n→∞
φ(un, Tu)
2 } < 1, so from above inequality dφ(u, Tu) < dφ(u, Tu), which is

impossible, therefore dφ(u, Tu) = 0 i.e., u ∈ Tu. Hence T has a fixed point in U.

Theorem 14. A multi-valued mapping T : U → CB(U) has a fixed point in a complete extended b-metric
space (U, dφ), if it satisfies the following two axioms:

(i) There exist c1, c2 ∈ [0, 1] and η ∈ [0, 1) such that HΦ(Tu, Tv) ≤ ηNc1,c2(u, v) for all u, v ∈ U,
(ii) For each u0 ∈ U, max{ηc1 lim

n,m→∞
φ(un, um), ηc2 lim

n,m→∞
φ(un, um)} < 1, here un = Tnu0.

Proof. From Theorem 11, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a
Cauchy sequence such that:

un+1 ∈ Tun, (36)

for every n ∈ N. As U is complete, so there exists u ∈ U such that lim
n→∞

un = u. Then for every n ∈ N,

we have:

dφ(un+1, Tu) = dφ(Tun, Tu) ≤ HΦ(Tun, Tu) ≤ ηNc1,c2(un, u)

≤ η max{dφ(un, u), c1dφ(un, Tun), c1dφ(u, Tu),
c2

2
(dφ(un, Tu) + dφ(u, Tun))}

≤ η max{dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(dφ(un, Tu) + dφ(u, Tun))}

≤ η max{dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(φ(un, Tu) (37)

(dφ(un, u) + dφ(u, Tu))) + dφ(u, un+1)}. (38)

Now, we will take two cases:

Case (i): If dφ(u, Tu) ≤ lim
n→∞

sup dφ(un, Tu), then there exists a subsequence {unl}n∈N of {un} such that

dφ(u, Tu) ≤ lim
l→∞

dφ(unl+1, Tu), so for each ε > 0, ∃ lε ∈ N such that for every l ∈ N, l ≥ lε,

we have:

dφ(u, Tu)− ε ≤ dφ(unl+1, Tu)

≤ η max{dφ(unl , u), c1dφ(unl , unl+1), c1dφ(u, Tu),
c2

2
(dφ(unl , Tu) + dφ(u, unl+1))}

≤ η max{dφ(unl , u), c1dφ(unl , unl+1), c1dφ(u, Tu),
c2

2
(39)

(φ(unl , Tu)(dφ(unl , u) + dφ(u, Tu)) + dφ(u, unl+1)}. (40)

Since lim
l→∞

unl = u, lim
l→∞

dφ(unl , unl+1) = 0. Therefore, by taking limit l → ∞ in Equations (39)

and (40), we obtain:

dφ(u, Tu)− ε ≤ η max{0, c1dφ(u, Tu),
c2 lim

l→∞
φ(unl , Tu)

2 dφ(u, Tu)}

≤ η max{c1, η
c2 lim

l→∞
φ(unl , Tu)

2 }dφ(u, Tu),
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for every ε > 0. Thus,

dφ(u, Tu) ≤ max{ηc1, η
ηc2 lim

l→∞
φ(unl , Tu)

2
}dφ(u, Tu).

As max{ηc1, η
ηc2 lim

l→∞
φ(unl , Tu)

2 } < 1, so from above inequality dφ(u, Tu) < dφ(u, Tu), which
is impossible, therefore dφ(u, Tu) = 0, i.e., u ∈ Tu. Hence T has a fixed point in U.

Case (ii): If dφ(u, Tu) > lim
n→∞

sup dφ(un, Tu), then there exists N0 ∈ N such that for every n ≥ N0, we

have
dφ(unl , Tu) ≤ dφ(u, Tu).

From the triangle inequality, dφ(u, Tu) ≤ φ(u, Tu)(dφ(u, un+1) + dφ(un+1, Tu)), we obtain:

dφ(u, Tu)− φ(u, Tu)(dφ(u, un+1) ≤ φ(u, Tu)dφ(un+1, Tu)

≤ φ(u, Tu)η max{dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(dφ(un, Tu) + dφ(u, un+1))}

≤ η max{dφ(un, u), c1dφ(un, un+1), c1dφ(u, Tu),
c2

2
(φ(un, Tu) (41)

(dφ(un, u) + dφ(u, Tu))) + dφ(u, un+1)}. (42)

Since lim
n→∞

un = u, lim
n→∞

dφ(un, un+1) = 0. Therefore by taking limit n→ ∞ in Equations (41)

and (42), we obtain:

dφ(u, Tu)− φ(u, Tu)dφ(u, un+1) ≤

φ(u, Tu)η max{0, c1dφ(u, Tu),
c2 lim

n→∞
φ(un, Tu)

2
dφ(u, Tu)

≤ φ(u, Tu)max{ηc1, η
ηc2 lim

n→∞
φ(un, Tu)

2
}dφ(u, Tu), (43)

from condition (ii), since φ(u, Tu)max{ηc1, η
ηc2 lim

n→∞
φ(un, Tu)
2 } < 1, so from Equation (43),

dφ(u, Tu) < dφ(u, Tu), which is impossible, therefore dφ(u, Tu) = 0, i.e., u ∈ Tu. Hence T has
a fixed point in U.

Remark 7.
(i) For c1, c2 = 0 in Theorem 12, we obtain Nadler’s contraction principle for multi valued-mappings, i.e.,

Theorem 5 from [24].
(ii) Theorem 14 generalizes Theorems 12 and 13;
(ii) Theorem 14 generalizes Theorem 3.3 from [42], which generalizes Theorem 7 of [30]. Also, Theorem 7,

which is a generalization of Theorem 2.2 from [29], improves Theorem 3.3 from [43], Corollary 3.3
from [5], and Theorem 1 from [28].

Example 2. Let U = { 1
2 , 1

4 , . . . , 1
2n , . . .} ∪ {0, 1}, dφ(u1, u2) = (u1 − u2)

2, for u1, u2 ∈ U, where
φ : U× U → [1, ∞) define by φ(u1, u2) = u1 + u2 + 1. Then U is a complete extended b-metric space.
Define mapping T : U→ CB(U) as

Tu =

{
{ 1

2n+1 }, u = 1
2n , n = 0, 1, 2, . . .

u, u = 0.
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Hence T is continuous. Since Nc1,c2(
1

2n , 0) = 1
22n , for all c1, c2 ∈ [0, 1], we get:

HΦ

(
T
( 1

2n

)
, T(0)

)
=

1
22n+2 ≤

1
22n+1 ≤

1
2

Nc1,c2

( 1
2n , 0

)
,

where η = 1
2 . Also for each u0 ∈ U, lim

n,m→∞
ηc2φ(un, um) < 1. Clearly, it satisfies all the conditions of

Theorem 12, and so there exists a fixed point.

Example 3. Let U = [0, ∞). Define dφ(u1, u2) = (u1 − u2)
2, for u1, u2 ∈ U, where φ : U×U → [1, ∞),

where φ(u1, u2) = u1 + u2 + 2. Then U is a complete extended b-metric space. Define mapping T : U →
CB(U) as Tu = { 8

9 u} for every u ∈ U. Note that Theorem 14 is applicable by taking c1 = c2 = 0 and η = 8
9 .
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