Article

On Some New Fixed Point Results in Complete Extended b-Metric Spaces

Quanita Kiran ${ }^{1(D)}$, Nayab Alamgir ${ }^{2}$, Nabil Mlaiki ${ }^{3, *}$ and Hassen Aydi ${ }^{4,5, *}$ (D)
1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; quanita.kiran@seecs.edu.pk
2 School of Natural Sciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; nayab@sns.nust.edu.pk
3 Department of Mathematical Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
4 Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
5 China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
* Correspondence: nmlaiki@psu.edu.sa (N.M.); hassen.aydi@isima.rnu.tn (H.A.)

Received: 4 May 2019; Accepted: 20 May 2019; Published: 25 May 2019
Abstract: In this paper, we specified a method that generalizes a number of fixed point results for single and multi-valued mappings in the structure of extended b-metric spaces. Our results extend several existing ones including the results of Aleksic et al. for single-valued mappings and the results of Nadler and Miculescu et al. for multi-valued mappings. Moreover, an example is given at the end to show the superiority of our results.

Keywords: extended b-metric space; set-valued functions; fixed point theorems
2000 Mathematics Subject Classification: 46T99; 47H10; 54H25

1. Introduction and Preliminaries

Banach contraction principle [1] is a fundamental tool for providing the existence of solutions for many mathematical problems involving differential equations and integral equations. A mapping $T: \mathbf{U} \rightarrow \mathbf{U}$ on a metric space (\mathbf{U}, d) is called a contraction mapping, if there exists $\eta<1$ such that for all $u, v \in \mathbf{U}$,

$$
\begin{equation*}
d(T u, T v) \leq \eta d(u, v) \tag{1}
\end{equation*}
$$

If the metric space is complete and T satisfies inequality (1), then T has a unique fixed point. Clearly, inequality (1) implies continuity of T. Naturally, a question arises as to whether we can find contractive conditions which will imply the existence of fixed points in a complete metric space, but will not imply continuity. In [2], Kannan derived the following result, which answers the said question. Let $T: \mathbf{U} \rightarrow \mathbf{U}$ be a mapping on a complete metric space (\mathbf{U}, d), which satisfies inequality:

$$
\begin{equation*}
d(T u, T v) \leq \eta[d(u, T u)+d(v, T v)], \tag{2}
\end{equation*}
$$

where $\eta \in\left[0, \frac{1}{2}\right.$) and $u, v \in \mathbf{U}$. The mapping satisfying inequality (2) is called a Kannan type mapping. There are number of generalizations of the contraction principle of Banach both for single-valued and multi-valued mappings, see ([3-13]). Chatterjea in [14] established the following alike co ntractive condition. Let (\mathbf{U}, d) be a complete metric space. A mapping $T: \mathbf{U} \rightarrow \mathbf{U}$ has a unique fixed point, if it satisfies the following inequality:

$$
\begin{equation*}
d(T u, T v) \leq \eta[d(u, T v)+d(v, T u)] . \tag{3}
\end{equation*}
$$

where $\eta \in\left[0, \frac{1}{2}\right)$ and $u, v \in \mathbf{U}$. The mapping satisfying inequality (3) is called a Chatterjea type mapping.

Due to the problem of the convergence of measurable functions with respect to a measure, Bakhtin [15], Bourbaki [16], and Czerwik [17,18] introduced the concept of b-metric spaces by weakening the triangle inequality of the metric space as follows:

Definition 1 ([17]). Let \mathbf{U} be a set and $s \geq 1$ a real number. A function d: $\mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ is called a b-metric space, if it satisfies the following axioms for all $u_{1}, u_{2}, u_{3} \in \mathbf{U}$:
(1) $d\left(u_{1}, u_{2}\right)=0$ if and only if $u_{1}=u_{2}$;
(2) $d\left(u_{1}, u_{2}\right)=d\left(u_{2}, u_{1}\right)$;
(3) $d\left(u_{1}, u_{3}\right) \leq s\left[d\left(u_{1}, u_{2}\right)+d\left(u_{2}, u_{3}\right)\right]$.

The pair (\mathbf{U}, d) is called a b-metric space.
Clearly, every metric space is a b-metric space with $s=1$, but its converse is not true in general. After that, a number of research papers have been established that generalized the Banach fixed point result in the framework of b-metric spaces. In [19], Kir and Kiziltunc introduced the following results, which generalized Kannan and Chatterjea type mappings in b-metric spaces. Let $T: \mathbf{U} \rightarrow \mathbf{U}$ be a mapping on a complete b-metric space (\mathbf{U}, d), which satisfies inequality:

$$
\begin{equation*}
d(T u, T v) \leq \eta[d(u, T u)+d(v, T v)] \tag{4}
\end{equation*}
$$

where $s \eta \in\left[0, \frac{1}{2}\right)$ and $u, v \in \mathbf{U}$. Then T has a unique fixed point.
Let (\mathbf{U}, d) be a complete b-metric space. A mapping $T: \mathbf{U} \rightarrow \mathbf{U}$ has a unique fixed point in \mathbf{U}, if it satisfies the following inequality:

$$
\begin{equation*}
d(T u, T v) \leq \eta[d(u, T v)+d(v, T u)] \tag{5}
\end{equation*}
$$

for all $u, v \in \mathbf{U}$, where $\eta \in\left[0, \frac{1}{2}\right.$). In [20], the given below results, which generalized Equation (4) for $\kappa_{1}=\kappa_{2}=\kappa_{3}=0$ and (5) for $\kappa_{1}=\kappa_{4}=0$ and $\kappa_{2}=\kappa_{3}$, have been derived.

Theorem 1 ([20]). Let (\mathbf{U}, d) be a complete b-metric space with constant $s \geq 1$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d(T u, T v) \leq \kappa_{1} d(u, v)+\kappa_{2} d(u, T u)+\kappa_{3} d(v, T v)+\kappa_{4}[d(v, T u)+d(u, T v)] \tag{6}
\end{equation*}
$$

where,

$$
\kappa_{1}+2 s \kappa_{2}+\kappa_{3}+2 s \kappa_{4}<1
$$

then T has a unique fixed point.
Theorem 2 ([20]). Let (\mathbf{U}, d) be a complete b-metric space with constant $s \geq 1$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d(T u, T v) \leq \kappa_{1} d_{\phi}(u, v)+\kappa_{2}\left[d_{\phi}(u, T u)+d_{\phi}(v, T v)\right] \tag{7}
\end{equation*}
$$

for all $u, v \in \mathbf{U}$, where $\kappa_{1}, \kappa_{2} \in\left[0, \frac{1}{3}\right)$, then T has a unique fixed point.
In [21], Koleva and Zlatanov proved the following result, which generalizes Chatterjea's type mappings in b-metric spaces and do not involve the b-metric constant.

Theorem 3 ([21]). Let (\mathbf{U}, d) be a complete b-metric space and d be a continuous function. If $T: \mathbf{U} \rightarrow \mathbf{U}$ is a Chatterjea's mapping, i.e., it satisfies inequality (3) such that $\sup _{n \in \mathbb{N}}\left\{d\left(T^{n} u, u\right)\right\}<\infty$ holds for every $u \in \mathbf{U}$. Then:
(i) There exists a unique fixed point of T, say ξ;
(ii) For any $u_{0} \in \mathbf{U}$, the sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ converges to ξ, where $u_{n+1}=T^{n} u_{n}, n=0,1,2, \ldots$;
(iii) There holds the priori error estimate.

$$
d\left(\xi, T^{m} u\right) \leq\left(\frac{\eta}{1-\eta}\right)^{m} \sup _{j \in \mathbb{N}}\left\{d\left(T^{j} u, u\right)\right\}
$$

where $\eta \in\left[0, \frac{1}{2}\right)$.
Ilchev and Zlatanov in [22] proved the following result generalizing Theorem 3 for $\kappa_{1}=0$.
Theorem 4 ([22]). Let (\mathbf{U}, d) be a complete b-metric space and d be a continuous function. If,
(1) $T: \mathbf{U} \rightarrow \mathbf{U}$ is a Reich mapping, i.e., there exist $\kappa_{1}, \kappa_{2} \geq 0$, such that $\kappa_{1}+2 \kappa_{2}<1$, so that the inequality

$$
\begin{equation*}
d(T u, T v) \leq \kappa_{1} d_{\phi}(u, v)+\kappa_{2}[d(u, T v)+d(v, T u)] \tag{8}
\end{equation*}
$$

holds for every $u, v \in \mathbf{U}$;
(2) the inequality $\sup _{n \in \mathbb{N}}\left\{d\left(T^{n} u, u\right)\right\}<\infty$ holds for every $u \in \mathbf{U}$,
then:
(i) There exists a unique fixed point of T, say ξ;
(ii) For any $u_{0} \in \mathbf{U}$, the sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ converges to ξ, where $u_{n+1}=T^{n} u_{n}, n=0,1,2, \ldots$;
(iii) There holds the priori error estimate.

$$
d\left(\xi, T^{m} u\right) \leq\left(\frac{\kappa_{1}+\kappa_{2}}{1-\kappa_{2}}\right)^{m} \sup _{j \in \mathbb{N}}\left\{d\left(T^{j} u, u\right)\right\}
$$

In [23], the author introduced the following results, which improve Theorems 1 and 2 of [20].
Theorem $\mathbf{5}$ ([23]). Let (\mathbf{U}, d) be a complete b-metric space with a constant $s \geq 1$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d(T u, T v) \leq \kappa_{1} d(u, v)+\kappa_{2} d(u, T u)+\kappa_{3} d(v, T v)+\kappa_{4}[d(v, T u)+d(u, T v)] \tag{9}
\end{equation*}
$$

where $\kappa_{i} \geq 0$, for $i=1,2,3,4$ and

$$
\kappa_{1}+\kappa_{2}+\kappa_{3}+2 s \kappa_{4}<1
$$

then T has a unique fixed point.
Theorem 6 ([23]). Let (\mathbf{U}, d) be a complete b-metric space with a constant $s \geq 1$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d(T u, T v) \leq \kappa_{1} d(u, v)+\kappa_{2}[d(u, T u)+d(v, T v)] \tag{10}
\end{equation*}
$$

for all $u, v \in \mathbf{U}$, where $\kappa_{1}, \kappa_{2} \in\left[0, \frac{1}{3}\right)$ such that $\kappa_{2}<\min \left\{\frac{1}{3}, \frac{1}{s}\right\}$, then T has a unique fixed point.

If $s=1$, then (\mathbf{U}, d) is a metric space and condition (9) implies:

$$
\begin{equation*}
d(T u, T v) \leq k \max \left\{d(u, v), d(u, T u), d(v, T v), \frac{d(v, T u)+d(u, T v)}{2}\right\} \tag{11}
\end{equation*}
$$

where $\kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4}<1$. With Equation (11), we recover the well-known result for generalized Ciric's contraction mapping in the metric space and obtain a unique fixed point.

In 1969, Nadler [24] generalized the single-valued Banach contraction principle into a multi-valued contraction principle. This mapping has been carried out for a complete metric space (\mathbf{U}, d) by using subsets of \mathbf{U} that are nonempty closed and bounded. There are number of generalizations for Nadler's fixed point theorem (see [25-27]). In [28], the author introduced the given below quasi-contraction mapping and proved an existence and uniqueness fixed point theorem.

A mapping $T: \mathbf{U} \rightarrow \mathbf{U}$ on a metric space (\mathbf{U}, d) is called a quasi-contraction, if there exists $q<1$ such that for all $u, v \in \mathbf{U}$,

$$
d(T u, T v) \leq q \max \{d(u, v), d(u, T u), d(v, T v), d(u, T v), d(v, T u)\}
$$

Amini-Harandi in [29] introduced the concept of q-multi-valued quasi-contractions and derived a fixed point theorem, which generalized Ciric's theorem [28].

A multi-valued map $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ on a metric space (\mathbf{U}, d) is called a q-multi-valued quasi-contraction, if there exists $q<1$ such that for all $u, v \in \mathbf{U}$,

$$
d(T u, T v) \leq q \max \{d(u, v), d(u, T u), d(v, T v), d(u, T v), d(v, T u)\}
$$

where $\mathcal{C B}(\mathbf{U})$ denotes the non-empty closed and bounded subsets of \mathbf{U}. In [30], Aydi et al. established the following result, which generalized Theorem 2.2 from [29] and Ciric's result [28].

Theorem $7([30])$. Let (\mathbf{U}, d) be a complete b-metric space. Suppose that T is a q-multi-valued quasi-contraction and $q<\frac{1}{s^{2}+s}$, then T has a fixed point in \mathbf{U}.

In 2017, Kamran et al. generalized the structure of a b-metric space and called it, an extended b-metric space. Thereafter, a number of research articles have appeared, which generalize the contraction principle of Banach in extended b-metric spaces for both single and multi-valued mappings (see [31-37]). In this paper, we illustrate a method (see Lemma 3), to generalize a number of fixed point results of single-valued and multi-valued mappings in the structure of extended b-metric spaces.

Definition 2 ([38]). Let \mathbf{U} be a nonempty set and $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$. A function $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ is called an extended b-metric, if for all $u_{1}, u_{2}, u_{3} \in \mathbf{U}$, it satisfies:
$\left(d_{1}\right) d_{\phi}\left(u_{1}, u_{2}\right)=0$ iff $u_{1}=u_{2}$;
$\left(d_{2}\right) d_{\phi}\left(u_{1}, u_{2}\right)=d_{\phi}\left(u_{2}, u_{1}\right)$;
$\left(d_{3}\right) d_{\phi}\left(u_{1}, u_{3}\right) \leq \phi\left(u_{1}, u_{3}\right)\left[d_{\phi}\left(u_{1}, u_{2}\right)+d_{\phi}\left(u_{2}, u_{3}\right)\right]$.
The pair $\left(\mathbf{U}, d_{\phi}\right)$ is called an extended b-metric space.
Example 1. Let $\mathbf{U}=[0, \infty)$. Define $d_{\phi}: \mathbf{U} \times \mathbf{U} \rightarrow[0, \infty)$ by:

$$
d_{\phi}(u, v)= \begin{cases}0, & \text { if } u=v \\ 3, & \text { if } u \text { or } v \in\{1,2\}, u \neq v \\ 5, & \text { if } u \neq v \in\{1,2\} \\ 1, & \text { otherwise. }\end{cases}
$$

Then $\left(\mathbf{U}, d_{\phi}\right)$ is an extended b-metric space, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ is defined by:

$$
\phi(u, v)=u+v+1
$$

for all $u, v \in \mathbf{U}$.
Remark 1. Every b-metric space is an extended b-metric space with constant function $\phi\left(u_{1}, u_{2}\right)=s$, for $s \geq 1$, but its converse is not true in general.

Definition 3 ([35]). Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ is bounded. Then for all $\mathbf{A}, \mathbf{B} \in \mathcal{C B}(\mathbf{U})$, where $\mathcal{C B}(\mathbf{U})$ denotes the family of all nonempty closed and bounded subsets of \mathbf{U}, the Hausdorff-Pompieu metric on $\mathcal{C B}(\mathbf{U})$ induced by d_{ϕ} is defined by:

$$
H_{\Phi}(\mathbf{A}, \mathbf{B})=\max \left\{\sup _{a \in \mathbf{A}} d_{\phi}(a, \mathbf{B}), \sup _{b \in \mathbf{B}} d_{\phi}(b, \mathbf{A})\right\}
$$

where for every $a \in \mathbf{A}, d_{\phi}(a, \mathbf{B})=\inf \left\{d_{\phi}(a, b): b \in \mathbf{B}\right\}$ and $\Phi: \mathcal{C B}(\mathbf{U}) \times \mathcal{C B}(\mathbf{U}) \rightarrow[1, \infty)$ is such that:

$$
\Phi(\mathbf{A}, \mathbf{B})=\sup \{\phi(a, b): a \in \mathbf{A}, b \in \mathbf{B}\} .
$$

Theorem 8 ([31]). Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space. Then $\left(\mathcal{C B}(\mathbf{U}), H_{\Phi}\right)$ is an extended Hausdorff-Pompieu b-metric space.

Lemma 1 ([39]). Every sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements from an extended b-metric space $\left(\mathbf{U}, d_{\phi}\right)$, having the property that for every $n \in \mathbb{N}$, there exists $\gamma \in[0,1)$ such that:

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, u_{n}\right) \leq \gamma d_{\phi}\left(u_{n}, u_{n-1}\right) \tag{12}
\end{equation*}
$$

where for each $u_{0} \in \mathbf{U}, \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<\frac{1}{\gamma}$. Then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence.
Definition 4. Let \mathbf{U} be any set and $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ be a multi-valued map. For any point $u_{0} \in \mathbf{U}$, the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ given by:

$$
\begin{equation*}
u_{n+1} \in T u_{n}, \quad n=0,1,2, \ldots \tag{13}
\end{equation*}
$$

is called an iterative sequence with initial point u_{0}.

2. Main Results

Definition 5. Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space. A function $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ is called continuous, if for every sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ belongs to \mathbf{U} and $u, v \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$, $\lim _{n \rightarrow \infty} v_{n}=v$ and $v_{n} \in T u_{n}$. We have $v \in T u$.

Definition 6. An extended b-metric space $\left(\mathbf{U}, d_{\phi}\right)$ is called $*$-continuous, iffor every $A \in \mathcal{C B}(\mathbf{U}),\left\{u_{n}\right\}_{n \in \mathbb{N}} \in$ \mathbf{U} and $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. We have $\lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, A\right)=d_{\phi}(u, A)$.

Remark 2. Note that $*$ - continuity of d_{ϕ} is stronger than continuity of d_{ϕ} in first variable.
Lemma 2. For every sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements from an extended b-metric space $\left(\mathbf{U}, d_{\phi}\right)$, the inequality

$$
\begin{equation*}
d_{\phi}\left(u_{0}, u_{k}\right) \leq \sum_{i=0}^{k-1} d_{\phi}\left(u_{i}, u_{i+1}\right) \prod_{l=0}^{i} \phi\left(u_{l}, u_{k}\right), \tag{14}
\end{equation*}
$$

is valid for every $k \in \mathbb{N}$.
Proof. From the triangle inequality for $k>0$, we haveL

$$
\begin{aligned}
d_{\phi}\left(u_{0}, u_{k}\right) \leq & \phi\left(u_{0}, u_{k}\right) d_{\phi}\left(u_{0}, u_{1}\right)+\phi\left(u_{0}, u_{k}\right) \phi\left(u_{1}, u_{k}\right) d_{\phi}\left(u_{1}, u_{2}\right) \\
& +\cdots+\phi\left(u_{0}, u_{k}\right) \phi\left(u_{1}, u_{k}\right) \ldots \phi\left(u_{k-1}, u_{k}\right) d_{\phi}\left(u_{k-1}, u_{k}\right)
\end{aligned}
$$

This implies that:

$$
d_{\phi}\left(u_{0}, u_{k}\right) \leq \sum_{i=0}^{k-1} d_{\phi}\left(u_{i}, u_{i+1}\right) \prod_{l=0}^{i} \phi\left(u_{l}, u_{k}\right) .
$$

Lemma 3. Every sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements from an extended b-metric space $\left(\mathbf{U}, d_{\phi}\right)$, having the property that there exists $\gamma \in[0,1)$ such that:

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, u_{n}\right) \leq \gamma d_{\phi}\left(u_{n}, u_{n-1}\right) \tag{15}
\end{equation*}
$$

for every $n \in \mathbb{N}$ is Cauchy.
Proof. First, by successively applying (15), we get:

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \gamma^{n} d_{\phi}\left(u_{0}, u_{1}\right) \tag{16}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Then by the Lemma 3 , for all $m, k \in \mathbb{N}$, we have:

$$
\begin{align*}
& d_{\phi}\left(u_{m}, u_{m+k}\right) \leq \sum_{n=m}^{m+k-1} d_{\phi}\left(u_{n}, u_{n+1}\right) \prod_{l=0}^{n} \phi\left(u_{l}, u_{m+k}\right) \\
& d_{\phi}\left(u_{m}, u_{m+k}\right) \leq d_{\phi}\left(u_{0}, u_{1}\right) \sum_{n=m}^{m+k-1} \gamma^{n} \prod_{l=0}^{n} \phi\left(u_{l}, u_{m+k}\right) \\
& d_{\phi}\left(u_{m}, u_{m+k}\right) \leq d_{\phi}\left(u_{0}, u_{1}\right) \sum_{n=0}^{k-1} \gamma^{n+m} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right) \\
& d_{\phi}\left(u_{m}, u_{m+k}\right) \leq \gamma^{m} d_{\phi}\left(u_{0}, u_{1}\right) \sum_{n=0}^{k-1} \gamma^{n} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right) \\
& d_{\phi}\left(u_{m}, u_{m+k}\right) \leq \gamma^{m} d_{\phi}\left(u_{0}, u_{1}\right) \sum_{n=0}^{k-1} \gamma^{\log _{\gamma} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)+n} . \tag{17}
\end{align*}
$$

Now let us take two cases for $\log _{\gamma} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)+n$.
Case 1: If $\prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)$ is finite, let us say M, then $\lim _{n \rightarrow \infty} \log _{\gamma} M+n=\infty$. Hence the series $\sum_{n=0}^{k-1} \gamma^{\log _{\gamma} M+n}$ is convergent.
Case 2: If $\prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)$ is infinite, then $\lim _{n \rightarrow \infty} \log _{\gamma} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)=\infty$, so there exist $n_{0} \in \mathbb{N}$ such that $\log _{\gamma} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)>M$, i.e.,

$$
\gamma^{\log _{\gamma} \prod_{l=0}^{+m} \phi\left(u_{l}, u_{m+k}\right)+n} \leq \gamma^{M} \cdot \gamma^{n}, \text { for each } n \in \mathbb{N}, n \geq n_{0}
$$

Hence the series $\sum_{n=0}^{k-1} \gamma^{\log _{\gamma} \prod_{l=0}^{n+m} \phi\left(u_{l}, u_{m+k}\right)+n}$ is convergent. In both cases denoting by S the sum of this series, we come to the conclusion that:

$$
d_{\phi}\left(u_{m}, u_{m+k}\right) \leq \gamma^{m} d_{\phi}\left(u_{0}, u_{1}\right) S
$$

for all $m, k \in \mathbb{N}$. Consequently, as $\lim _{m \rightarrow \infty} \gamma^{m}=0$, we conclude that $\left\{u_{m}\right\}_{m \in \mathbb{N}}$ is a Cauchy sequence.
Remark 3. Lemma 3 shows that the condition on ϕ in Lemma 1 corresponding to that for each $u_{0} \in \mathbf{U}$, $\lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<\frac{1}{\gamma}$, can be avoided. Therefore, Lemma 3 generalizes Lemma 1, which is the basis of the results from [36].

Lemma 4. Let $\mathbf{A}, \mathbf{B} \in \mathcal{C B}(\mathbf{U})$, then for every $\eta>0$ and $b \in \mathbf{B}$ there exists $a \in \mathbf{A}$ such that:

$$
\begin{equation*}
d_{\phi}(a, b) \leq H_{\Phi}(\mathbf{A}, \mathbf{B})+\eta . \tag{18}
\end{equation*}
$$

Proof. By definition of Hausdorff metric, for $\mathbf{A}, \mathbf{B} \in \mathcal{C B}(\mathbf{U})$ and for any $b \in \mathbf{Y}$, we have:

$$
d_{\phi}(\mathbf{A}, b) \leq H_{\Phi}(\mathbf{A}, \mathbf{B})
$$

By the definition of infimum, we can let $\left\{a_{n}\right\}$ be a sequence in \mathbf{A} such that:

$$
\begin{equation*}
d_{\phi}\left(b, a_{n}\right)<d_{\phi}(b, \mathbf{A})+\eta, \text { where } \eta>0 \tag{19}
\end{equation*}
$$

We know that \mathbf{A} is closed and bounded, so there exists $a \in \mathbf{A}$ such that $a_{n} \rightarrow a$. Therefore, by (19), we have:

$$
d_{\phi}(a, b)<d_{\phi}(\mathbf{A}, b)+\eta \leq H_{\Phi}(\mathbf{A}, \mathbf{B})+\eta
$$

Theorem 9. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space with $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d_{\phi}(T u, T v) \leq \kappa_{1} d_{\phi}(u, v)+\kappa_{2} d_{\phi}(u, T u)+\kappa_{3} d_{\phi}(v, T v)+\kappa_{4}\left[d_{\phi}(v, T u)+d_{\phi}(u, T v)\right] \tag{20}
\end{equation*}
$$

where $\kappa_{i} \geq 0$, for $i=1, \ldots, 4$ and for each $u_{0} \in \mathbf{U}$,

$$
\kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<1
$$

then T has a fixed point.
Proof. Let us choose an arbitrary $u_{0} \in \mathbf{U}$ and define the iterative sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{n}=T u_{n-1}=$ $T^{n-1} u_{0}$ for all $n \geq 1$. If $u_{n}=u_{n-1}$, then u_{n} is a fixed point of T and the proof holds. So we suppose $u_{n} \neq u_{n-1}, \forall n \geq 1$. Then from Equation (20), we have:

$$
\begin{aligned}
d_{\phi}\left(T u_{n}, T u_{n-1}\right) \leq & \kappa_{1} d_{\phi}\left(u_{n}, u_{n-1}\right)+\kappa_{2} d_{\phi}\left(u_{n}, T u_{n}\right)+\kappa_{3} d_{\phi}\left(u_{n-1}, T u_{n-1}\right) \\
& +\kappa_{4}\left[d_{\phi}\left(u_{n-1}, T u_{n}\right)+d_{\phi}\left(u_{n}, T u_{n-1}\right)\right] .
\end{aligned}
$$

From the triangle inequality, we get:

$$
\begin{aligned}
d_{\phi}\left(T u_{n}, T u_{n-1}\right) \leq & \kappa_{1} d_{\phi}\left(u_{n}, u_{n-1}\right)+\kappa_{2} d_{\phi}\left(u_{n}, T u_{n}\right)+\kappa_{3} d_{\phi}\left(u_{n-1}, T u_{n-1}\right) \\
& +\kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)\left[d_{\phi}\left(u_{n-1}, u_{n}\right)+d_{\phi}\left(u_{n}, u_{n+1}\right)\right]
\end{aligned}
$$

This implies that:

$$
\begin{align*}
d_{\phi}\left(u_{n+1}, u_{n}\right) \leq & \left(\kappa_{1}+\kappa_{3}+\kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n-1}\right) \\
& +\left(\kappa_{2}+\kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n+1}\right) \tag{21}
\end{align*}
$$

Similarly,

$$
\begin{align*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq & \left(\kappa_{1}+\kappa_{2}+\kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n-1}\right) \\
& +\left(\kappa_{3}+\kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)\right) d_{\phi}\left(u_{n}, u_{n+1}\right) . \tag{22}
\end{align*}
$$

By adding Equations (21) and (22), we get:

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, u_{n}\right) \leq \eta d_{\phi}\left(u_{n}, u_{n-1}\right) \tag{23}
\end{equation*}
$$

where,

$$
\eta=\frac{2 \kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)}{2-\kappa_{2}-\kappa_{3}-2 \kappa_{4} \phi\left(u_{n-1}, u_{n+1}\right)} .
$$

Since $\kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<1$, multiply by 2 ,

$$
\begin{gathered}
2 \kappa_{1}+2 \kappa_{2}+2 \kappa_{3}+4 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<2, \\
2 \kappa_{1}+2 \kappa_{2}+2 \kappa_{3}+\left(2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)\right)<2 .
\end{gathered}
$$

This implies that:

$$
2 \kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<2-\kappa_{2}-\kappa_{3}-2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)
$$

$\Rightarrow \eta<1$. Hence from Lemma 3, $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. As \mathbf{U} is complete, therefore there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Next, we will show that u is a fixed point of T. From the triangle inequality and Equation (20), we have:

$$
\begin{aligned}
d_{\phi}(u, T u) \leq & \phi(u, T u)\left[d_{\phi}\left(u, u_{n+1}\right)+d_{\phi}\left(u_{n+1}, T u\right)\right] \\
\leq & \phi(u, T u)\left[d_{\phi}\left(u, u_{n+1}\right)+\kappa_{1} d_{\phi}\left(u_{n}, u\right)+\kappa_{2} d_{\phi}\left(u_{n}, u_{n+1}\right)\right. \\
& +\kappa_{3} d_{\phi}(u, T u)+\kappa_{4}\left[d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, u_{n+1}\right)\right] \\
\leq & \phi(u, T u)\left[d_{\phi}\left(u, u_{n+1}\right)+\kappa_{1} d_{\phi}\left(u_{n}, u\right)+\kappa_{2} d_{\phi}\left(u_{n}, u_{n+1}\right)\right. \\
& +\kappa_{3} d_{\phi}(u, T u)+\kappa_{4} d_{\phi}\left(u, u_{n+1}\right)+\kappa_{4} \phi\left(u_{n}, T u\right) \\
& {\left[d_{\phi}\left(u_{n}, u\right)+d_{\phi}(u, T u)\right] } \\
\leq & \phi(u, T u)\left[\left(1+\kappa_{4}\right) d_{\phi}\left(u, u_{n+1}\right)+\left(\kappa_{1}+\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}\left(u, u_{n}\right)\right. \\
& \left.\kappa_{2} d_{\phi}\left(u_{n}, u_{n+1}\right)+\left(\kappa_{3}+\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}(u, T u)\right] . .
\end{aligned}
$$

So,

$$
\begin{align*}
\left(1-\kappa_{3}-\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}(u, T u) \leq & \phi(u, T u)\left[\left(1+\kappa_{4}\right) d_{\phi}\left(u, u_{n+1}\right)+\left(\kappa_{1}+\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}\left(u, u_{n}\right)\right. \\
& \left.+\kappa_{2} d_{\phi}\left(u_{n}, u_{n+1}\right)\right] . \tag{24}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left(1-\kappa_{2}-\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}(u, T u) \leq & \phi(u, T u)\left[\left(1+\kappa_{4}\right) d_{\phi}\left(u, u_{n+1}\right)+\left(\kappa_{1}+\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}\left(u, u_{n}\right)\right. \\
& \left.+\kappa_{3} d_{\phi}\left(u_{n}, u_{n+1}\right)\right] . \tag{25}
\end{align*}
$$

By adding Equations (24) and (25), we have:

$$
\begin{aligned}
\left(2-\kappa_{2}-\kappa_{3}-2 \kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}(u, T u) & \leq \phi(u, T u)\left[2\left(1+\kappa_{4}\right) d_{\phi}\left(u, u_{n+1}\right)+2\left(\kappa_{1}+\kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}\left(u, u_{n}\right)\right. \\
& \left.+\left(\kappa_{2}+\kappa_{3}\right) d_{\phi}\left(u_{n}, u_{n+1}\right)\right] \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$. This implies that:

$$
\left(2-\kappa_{2}-\kappa_{3}-2 \kappa_{4} \phi\left(u_{n}, T u\right)\right) d_{\phi}(u, T u) \leq 0 .
$$

Since $\left(2-\kappa_{2}-\kappa_{3}-2 \kappa_{4} \phi\left(u_{n}, T u\right)\right)>0$, we get $d_{\phi}(u, T u)=0$, i.e., $T u=u$. Now, we show that u is the unique fixed point of T. Assume that u^{\prime} is another fixed point of T, then we have $T u^{\prime}=u^{\prime}$. Also,

$$
\begin{aligned}
d_{\phi}\left(u, u^{\prime}\right) & =d_{\phi}\left(T u, T u^{\prime}\right) \\
& \leq \kappa_{1} d_{\phi}\left(u, u^{\prime}\right)+\kappa_{2} d_{\phi}\left(u, T u^{\prime}\right)+\kappa_{3} d_{\phi}\left(u^{\prime}, T u\right)+\kappa_{4}\left[d_{\phi}\left(u, T u^{\prime}\right)+d_{\phi}\left(u^{\prime}, T u\right)\right. \\
& \leq \kappa_{1} d_{\phi}\left(u, u^{\prime}\right)+\kappa_{2} d_{\phi}\left(u, u^{\prime}\right)+\kappa_{3} d_{\phi}\left(u^{\prime}, u\right)+\kappa_{4}\left[d_{\phi}\left(u, u^{\prime}\right)+d_{\phi}\left(u^{\prime}, u\right)\right. \\
& \leq\left(\kappa_{1}+2 \kappa_{4}\right) d_{\phi}\left(u, u^{\prime}\right) .
\end{aligned}
$$

This implies that:

$$
\left(1-\kappa_{1}-2 \kappa_{4}\right) d_{\phi}\left(u, u^{\prime}\right) \leq 0 .
$$

As $\kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \leq \kappa_{1}+\kappa_{2}+\kappa_{3}+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<1$. Therefore $\left(1-\kappa_{1}-2 \kappa_{4}\right)>0$, and $d_{\phi}\left(u, u^{\prime}\right)=0$, i.e., $u=u^{\prime}$. Hence T has a unique fixed point in \mathbf{U}.

Remark 4. From the symmetry of the distance function d_{ϕ}, it is easy to prove similar to that done in $[4,22]$ that $\kappa_{2}=\kappa_{3}$. Thus the inequality (20) is equivalent to the following inequality:

$$
\begin{equation*}
d_{\phi}(T u, T v) \leq \kappa_{1} d_{\phi}(u, v)+\kappa_{2}\left[d_{\phi}(u, T u)+d_{\phi}(v, T v)\right]+\kappa_{4}\left[d_{\phi}(v, T u)+d_{\phi}(u, T v)\right], \tag{26}
\end{equation*}
$$

where $\kappa_{1}, \kappa_{2}, \kappa_{4} \geq 0$ such that $\kappa_{1}+2 \kappa_{2}+2 \kappa_{4} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)<1$.
If $\kappa_{1}=\kappa_{2}=0$ and $\kappa_{4} \in\left[0, \frac{1}{2}\right.$) in inequality (26), we obtain generalization of Chatterjea's map [14] in extended b-metric space.

Remark 5. Theorem 9 generalizes and improves Theorem 1.5 of [23] and therefore Theorem 2.1 of [20]. Moreover, Theorem 9 generalizes and improves Theorem 3.7 from [40], that is, Theorem 2.19 from [41].

Theorem 10. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space with $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$. If $T: \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$
\begin{equation*}
d_{\phi}(T u, T v) \leq \kappa_{1} d_{\phi}(u, v)+\kappa_{2}\left[d_{\phi}(u, T u)+d_{\phi}(v, T v)\right], \tag{27}
\end{equation*}
$$

for each $u, v \in \mathbf{U}$, where $\kappa_{1}, \kappa_{2} \in\left[0, \frac{1}{3}\right)$. Moreover for each $u_{0} \in \mathbf{U}$,

$$
\lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right) \kappa_{2}<1,
$$

then T has a unique fixed point.
Proof. Let us choose an arbitrary $u_{0} \in \mathbf{U}$ and define the iterative sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{n}=T u_{n-1}=$ $T^{n-1} u_{0}$ for all $n \geq 1$. If $u_{n}=u_{n-1}$, then u_{n} is a fixed point of T and the proof holds. So we suppose $u_{n} \neq u_{n-1}, \forall n \geq 1$. Then from Equation (27), we have:

$$
d_{\phi}\left(T u_{n}, T u_{n-1}\right) \leq \kappa_{1} d_{\phi}\left(u_{n}, u_{n-1}\right)+\kappa_{2}\left[d_{\phi}\left(u_{n-1}, T u_{n-1}\right)+d_{\phi}\left(u_{n}, T u_{n}\right)\right] .
$$

So,

$$
\begin{gathered}
\left(1-\kappa_{2}\right) d_{\phi}\left(u_{n+1}, u_{n}\right) \leq\left(\kappa_{1}+\kappa_{4}\right) d_{\phi}\left(u_{n}, u_{n-1}\right) . \\
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \frac{\kappa_{1}+\kappa_{4}}{1-\kappa_{4}} d_{\phi}\left(u_{n}, u_{n-1}\right) .
\end{gathered}
$$

This implies that:

$$
\begin{equation*}
d_{\phi}\left(u_{n+1}, u_{n}\right) \leq \eta d_{\phi}\left(u_{n}, u_{n-1}\right) \tag{28}
\end{equation*}
$$

where,

$$
\eta=\frac{\kappa_{1}+\kappa_{4}}{1-\kappa_{4}}
$$

Since $\kappa_{1}, \kappa_{2} \in\left[0, \frac{1}{3}\right)$, so $\eta<1$, from Lemma $3,\left\{u_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. As \mathbf{U} is complete, therefore there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Next, we will show that u is a fixed point of T in \mathbf{U}. From the triangle inequality and Equation (27), we have:

$$
\begin{aligned}
d_{\phi}(u, T u) & \leq \phi(u, T u)\left[d_{\phi}\left(u, u_{n+1}\right)+d_{\phi}\left(u_{n+1}, T u\right)\right] \\
& \leq \phi(u, T u)\left[d_{\phi}\left(u, u_{n+1}\right)+\kappa_{1} d_{\phi}\left(u_{n}, u\right)+\kappa_{2}\left[d_{\phi}\left(u_{n}, u_{n+1}\right)+d_{\phi}(u, T u)\right] . .\right.
\end{aligned}
$$

So,

$$
\left(1-\kappa_{2} \phi(u, T u)\right) d_{\phi}(u, T u) \leq 0
$$

as $n \rightarrow \infty$. Since $\lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right) \kappa_{2}<1$, we get $\left(1-\kappa_{2} \phi(u, T u)\right)>0$, and so $d_{\phi}(u, T u)=0$, i.e., $T u=u$. We will show that u is the unique fixed point of T. Assume that u^{\prime} is another fixed point of T, then we have $T u^{\prime}=u^{\prime}$. Again,

$$
\begin{aligned}
d_{\phi}\left(u, u^{\prime}\right)= & d_{\phi}\left(T u, T u^{\prime}\right) \\
\leq & \kappa_{1} d_{\phi}\left(u, u^{\prime}\right)+\kappa_{2}\left[d_{\phi}(u, T u)+d_{\phi}\left(u^{\prime}, T u^{\prime}\right)\right] \\
& +\kappa_{1} d_{\phi}\left(u, u^{\prime}\right)<d_{\phi}\left(u, u^{\prime}\right)
\end{aligned}
$$

which is a contradiction. Hence T has a unique fixed point in \mathbf{U}.
Remark 6. Theorem 10 generalizes Theorem 1.2 of [20].
For $u, v \in \mathbf{U}$ and $c, d \in[0,1]$, we will use the following notation:

$$
N_{c_{1}, c_{2}}(u, v)=\max \left\{d_{\phi}(u, v), c_{1} d_{\phi}(u, T u), c_{1} d_{\phi}(v, T v), \frac{c_{2}}{2}\left(d_{\phi}(u, T v)+d_{\phi}(v, T u)\right)\right\} .
$$

Theorem 11. Let $\left(\mathbf{U}, d_{\phi}\right)$ be an extended b-metric space. Let $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_{1}, c_{2} \in[0,1]$ and $\eta \in[0,1)$ such that:
(i) For each $u_{0} \in \mathbf{U}, \lim _{n, m \rightarrow \infty} \eta c_{2} \phi\left(u_{n}, u_{m}\right)<1$, here $u_{n}=T^{n} u_{0}$,
(ii) $H_{\Phi}(T u, T v) \leq \eta N_{c_{1}, c_{2}}(u, v)$ for all $u, v \in \mathbf{U}$.

Then for every $u_{0} \in \mathbf{U}$, there exist $\gamma \in[0,1)$ and a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of iterates from \mathbf{U} such that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \gamma d_{\phi}\left(u_{n-1}, u_{n}\right) \tag{29}
\end{equation*}
$$

Proof. Let us choose an arbitrary $u_{0} \in \mathbf{U}$ and $u_{1} \in T u_{0}$. Consider:

$$
\gamma=\max \left\{\eta, \frac{\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2-\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}\right\} .
$$

Clearly, $\gamma<1$. If $u_{1}=u_{0}$, then for every $n \in \mathbb{N}$, the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ given by $u_{n}=u_{0}$ satisfies Equation(29). Since:

$$
\begin{aligned}
\left.d_{\phi}\left(u_{1}, T u_{1}\right)\right) & \leq d_{\phi}\left(T u_{0}, T u_{1}\right) \leq H_{\Phi}\left(T u_{0}, T u_{1}\right) \\
& \leq \eta N_{c_{1}, c_{2}}\left(u_{0}, u_{1}\right)
\end{aligned}
$$

there exists $u_{2} \in T u_{1}$ such that $d_{\phi}\left(u_{1}, u_{2}\right) \leq \eta N_{c_{1}, c_{2}}\left(u_{0}, u_{1}\right)$. If $u_{2}=u_{1}$, then for every $n \in \mathbb{N}, n \geq 1$, the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ given by $u_{n}=u_{1}$ satisfies Equation (29). By repeating this process, we obtain a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements from \mathbf{U} such that $u_{n+1} \in T u_{n}$ and $0<d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \eta N_{c_{1}, c_{2}}\left(u_{n-1}, u_{n}\right)$ for every $n \in \mathbb{N}, n \geq 1$. Then we have:

$$
\begin{align*}
0 \leq & d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \eta N_{c_{1}, c_{2}}\left(u_{n-1}, u_{n}\right) \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n-1}, T u_{n-1}\right), c_{1} d_{\phi}\left(u_{n}, T u_{n}\right), \frac{c_{2}}{2}\right. \\
& \left.\left(d_{\phi}\left(u_{n-1}, T u_{n}\right)+d_{\phi}\left(u_{n}, T u_{n-1}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n-1}, u_{n+1}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), \frac{c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2}\right. \tag{30}\\
& \left.\left(d_{\phi}\left(u_{n-1}, u_{n}\right)+d_{\phi}\left(u_{n}, u_{n+1}\right)\right)\right\}, \tag{31}
\end{align*}
$$

for every $n \in \mathbb{N}$. If we take:

$$
\begin{aligned}
& \max \left\{d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n-1}, u_{n}\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), \frac{c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2}\right. \\
& \left.\left(d_{\phi}\left(u_{n-1}, u_{n}\right)+d_{\phi}\left(u_{n}, u_{n+1}\right)\right)\right\}=c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right)
\end{aligned}
$$

then from Equations (30) and (31), $0<d\left(u_{n}, u_{n+1}\right) \leq \eta c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right)<\eta d_{\phi}\left(u_{n}, u_{n+1}\right)$. As $\eta<1$, so we obtain the contradiction. Therefore, we have:

$$
\begin{aligned}
d_{\phi}\left(u_{n}, u_{n+1}\right) & \leq \eta N_{c_{1}, c_{2}}\left(u_{n-1}, u_{n}\right) \\
& \leq \eta \max \left\{d_{\phi}\left(u_{n-1}, u_{n}\right), \frac{c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2}\left(d_{\phi}\left(u_{n-1}, u_{n}\right)+d_{\phi}\left(u_{n}, u_{n+1}\right)\right)\right\}
\end{aligned}
$$

Consequently, $d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \eta d_{\phi}\left(u_{n-1}, u_{n}\right)$ or

$$
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \frac{\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2}\left(d_{\phi}\left(u_{n-1}, u_{n}\right)+d_{\phi}\left(u_{n}, u_{n+1}\right)\right)
$$

This implies that $d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \eta d_{\phi}\left(u_{n-1}, u_{n}\right)$ or

$$
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \frac{\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2-\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)} d_{\phi}\left(u_{n-1}, u_{n}\right)
$$

for every $n \in \mathbb{N}$. Thus,

$$
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \max \left\{\eta, \frac{\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}{2-\eta c_{2} \phi\left(u_{n-1}, u_{n+1}\right)}\right\} d_{\phi}\left(u_{n-1}, u_{n}\right)
$$

i.e.,

$$
d_{\phi}\left(u_{n}, u_{n+1}\right) \leq \gamma d_{\phi}\left(u_{n-1}, u_{n}\right)
$$

Thus, the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ satisfies Equation(29). Hence from Lemma 3, we conclude that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy sequence.

Theorem 12. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space. Let $T: \mathbf{U} \rightarrow \mathcal{C} \mathcal{B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_{1}, c_{2} \in[0,1]$ and $\eta \in[0,1)$ such that:
(i) For each $u_{0} \in \mathbf{U}, \lim _{n, m \rightarrow \infty} \eta c_{2} \phi\left(u_{n}, u_{m}\right)<1$, here $u_{n}=T^{n} u_{0}$,
(ii) $H_{\Phi}(T u, T v) \leq \eta N_{c_{1}, c_{2}}(u, v)$ for all $u, v \in \mathbf{U}$,
(iii) T is continuous.

Then T has a fixed point in \mathbf{U}.
Proof. From Theorem 11, by taking in account condition (i) and (ii), we conclude that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$
\begin{equation*}
u_{n+1} \in T u_{n} \tag{32}
\end{equation*}
$$

for every $n \in \mathbb{N}$. As \mathbf{U} is complete, so there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. From inequality (3), by the continuity of T, it follows that:

$$
u_{n+1}=T u_{n} \rightarrow T u, \text { as } n \rightarrow \infty
$$

Therefore, $u \in T u$. Hence T has a fixed point in \mathbf{U}.
Theorem 13. Let $\left(\mathbf{U}, d_{\phi}\right)$ be a complete extended b-metric space. Let $T: \mathbf{U} \rightarrow \mathcal{C} \mathcal{B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_{1}, c_{2} \in[0,1]$ and $\eta \in[0,1)$ such that:
(i) For each $u_{0} \in \mathbf{U} \lim _{n, m \rightarrow \infty} \eta c_{2} \phi\left(u_{n}, u_{m}\right)<1$, here $u_{n}=T^{n} u_{0}$,
(ii) $H_{\Phi}(T u, T v) \leq \eta N_{c_{1}, c_{2}}(u, v)$ for all $u, v \in \mathbf{U}$,
(iii) T is *-continuous.

Then T has a fixed point in \mathbf{U}.
Proof. From Theorem 3, by taking in account condition (i) and (ii), we conclude that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$
\begin{equation*}
u_{n+1} \in T u_{n}, \tag{33}
\end{equation*}
$$

for every $n \in \mathbb{N}$. As \mathbf{U} is complete, so there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Then we have:

$$
\begin{align*}
d_{\phi}\left(u_{n+1}, T u\right)= & d_{\phi}\left(T u_{n}, T u\right) \leq H_{\Phi}\left(T u_{n}, T u\right) \leq \eta N_{c_{1}, c_{2}}\left(u_{n}, u\right) \leq \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1}\right. \\
& \left.d_{\phi}\left(u_{n}, T u_{n}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, T u_{n}\right)\right)\right\} \leq \eta \max \{ \\
& \left.d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, T u_{n}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(\phi\left(u_{n}, T u\right)\right.\right. \tag{34}\\
& \left.\left.\left(d_{\phi}\left(u_{n}, u\right)+d_{\phi}(u, T u)\right)\right)+d_{\phi}\left(u, u_{n+1}\right)\right\}, \tag{35}
\end{align*}
$$

for every $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} u_{n}=u, \lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, u_{n+1}\right)=0$. Then $\lim _{n \rightarrow \infty} d_{\phi}\left(u_{n+1}, T u\right)=d_{\phi}(u, T u)$. Therefore, by taking limit $n \rightarrow \infty$ in Equations (34) and (35), we obtain:

$$
\begin{aligned}
d_{\phi}(u, T u) & \leq \eta N_{c_{1}, c_{2}}\left(u_{n}, u\right) \\
& \leq \eta \max \left\{0, c_{1} d_{\phi}(u, T u), \frac{c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2} d_{\phi}(u, T u)\right\} \\
& \leq \max \left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2}\right\} d_{\phi}(u, T u) .
\end{aligned}
$$

As $\max \left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2}\right\}<1$, so from above inequality $d_{\phi}(u, T u)<d_{\phi}(u, T u)$, which is impossible, therefore $d_{\phi}(u, T u)=0$ i.e., $u \in T u$. Hence T has a fixed point in \mathbf{U}.

Theorem 14. A multi-valued mapping $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ has a fixed point in a complete extended b-metric space $\left(\mathbf{U}, d_{\phi}\right)$, if it satisfies the following two axioms:
(i) There exist $c_{1}, c_{2} \in[0,1]$ and $\eta \in[0,1)$ such that $H_{\Phi}(T u, T v) \leq \eta N_{c_{1}, c_{2}}(u, v)$ for all $u, v \in \mathbf{U}$,
(ii) For each $u_{0} \in \mathbf{U}, \max \left\{\eta \mathcal{c}_{1} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right), \eta \mathcal{c}_{2} \lim _{n, m \rightarrow \infty} \phi\left(u_{n}, u_{m}\right)\right\}<1$, here $u_{n}=T^{n} u_{0}$.

Proof. From Theorem 11, by taking in account condition (i) and (ii), we conclude that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$
\begin{equation*}
u_{n+1} \in T u_{n} \tag{36}
\end{equation*}
$$

for every $n \in \mathbb{N}$. As \mathbf{U} is complete, so there exists $u \in \mathbf{U}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Then for every $n \in \mathbb{N}$, we have:

$$
\begin{align*}
& d_{\phi}\left(u_{n+1}, T u\right)=d_{\phi}\left(T u_{n}, T u\right) \leq H_{\Phi}\left(T u_{n}, T u\right) \leq \eta N_{c_{1}, c_{2}}\left(u_{n}, u\right) \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, T u_{n}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, T u_{n}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, T u_{n}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(\phi\left(u_{n}, T u\right)\right.\right. \tag{37}\\
& \left.\left.\left(d_{\phi}\left(u_{n}, u\right)+d_{\phi}(u, T u)\right)\right)+d_{\phi}\left(u, u_{n+1}\right)\right\} . \tag{38}
\end{align*}
$$

Now, we will take two cases:
Case (i): If $d_{\phi}(u, T u) \leq \lim _{n \rightarrow \infty} \sup d_{\phi}\left(u_{n}, T u\right)$, then there exists a subsequence $\left\{u_{n_{l}}\right\}_{n \in \mathbb{N}}$ of $\left\{u_{n}\right\}$ such that $d_{\phi}(u, T u) \leq \lim _{l \rightarrow \infty} d_{\phi}\left(u_{n_{l}+1}, T u\right)$, so for each $\epsilon>0, \exists l_{\epsilon} \in \mathbb{N}$ such that for every $l \in \mathbb{N}, l \geq l_{\epsilon}$, we have:

$$
\begin{align*}
& d_{\phi}(u, T u)-\epsilon \leq d_{\phi}\left(u_{n_{l}+1}, T u\right) \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n_{l}}, u\right), c_{1} d_{\phi}\left(u_{n_{l}}, u_{n_{l}+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\right. \\
& \left.\left(d_{\phi}\left(u_{n_{l}}, T u\right)+d_{\phi}\left(u, u_{n_{l}+1}\right)\right)\right\} \\
\leq & \eta \max \left\{d_{\phi}\left(u_{n_{l}}, u\right), c_{1} d_{\phi}\left(u_{n_{l}}, u_{n_{l}+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\right. \tag{39}\\
& \left(\phi\left(u_{n_{l}}, T u\right)\left(d_{\phi}\left(u_{n_{l}}, u\right)+d_{\phi}(u, T u)\right)+d_{\phi}\left(u, u_{n_{l}+1}\right)\right\} . \tag{40}
\end{align*}
$$

Since $\lim _{l \rightarrow \infty} u_{n_{l}}=u, \lim _{l \rightarrow \infty} d_{\phi}\left(u_{n_{l}}, u_{n_{l}+1}\right)=0$. Therefore, by taking limit $l \rightarrow \infty$ in Equations (39) and (40), we obtain:

$$
\begin{gathered}
d_{\phi}(u, T u)-\epsilon \leq \eta \max \left\{0, c_{1} d_{\phi}(u, T u), \frac{c_{2} \lim _{l \rightarrow \infty} \phi\left(u_{n_{l}}, T u\right)}{2} d_{\phi}(u, T u)\right\} \\
\leq \eta \max \left\{c_{1}, \eta \frac{c_{2} \lim _{l \rightarrow \infty} \phi\left(u_{n_{l}}, T u\right)}{2}\right\} d_{\phi}(u, T u)
\end{gathered}
$$

for every $\epsilon>0$. Thus,

$$
d_{\phi}(u, T u) \leq \max \left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{l \rightarrow \infty} \phi\left(u_{n_{l}}, T u\right)}{2}\right\} d_{\phi}(u, T u)
$$

As max $\left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{l \rightarrow \infty} \phi\left(u_{n_{l}}, T u\right)}{2}\right\}<1$, so from above inequality $d_{\phi}(u, T u)<d_{\phi}(u, T u)$, which is impossible, therefore $d_{\phi}(u, T u)=0$, i.e., $u \in T u$. Hence T has a fixed point in \mathbf{U}.
Case (ii): If $d_{\phi}(u, T u)>\lim _{n \rightarrow \infty} \sup d_{\phi}\left(u_{n}, T u\right)$, then there exists $N_{0} \in \mathbb{N}$ such that for every $n \geq N_{0}$, we have

$$
d_{\phi}\left(u_{n_{l}}, T u\right) \leq d_{\phi}(u, T u)
$$

From the triangle inequality, $d_{\phi}(u, T u) \leq \phi(u, T u)\left(d_{\phi}\left(u, u_{n+1}\right)+d_{\phi}\left(u_{n+1}, T u\right)\right)$, we obtain:

$$
\begin{align*}
& d_{\phi}(u, T u)-\phi(u, T u)\left(d_{\phi}\left(u, u_{n+1}\right) \leq \phi(u, T u) d_{\phi}\left(u_{n+1}, T u\right)\right. \\
& \leq \phi(u, T u) \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(d_{\phi}\left(u_{n}, T u\right)+d_{\phi}\left(u, u_{n+1}\right)\right)\right\} \\
& \leq \eta \max \left\{d_{\phi}\left(u_{n}, u\right), c_{1} d_{\phi}\left(u_{n}, u_{n+1}\right), c_{1} d_{\phi}(u, T u), \frac{c_{2}}{2}\left(\phi\left(u_{n}, T u\right)\right.\right. \tag{41}\\
& \left.\left.\left(d_{\phi}\left(u_{n}, u\right)+d_{\phi}(u, T u)\right)\right)+d_{\phi}\left(u, u_{n+1}\right)\right\} . \tag{42}
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} u_{n}=u, \lim _{n \rightarrow \infty} d_{\phi}\left(u_{n}, u_{n+1}\right)=0$. Therefore by taking limit $n \rightarrow \infty$ in Equations (41) and (42), we obtain:

$$
\begin{align*}
& d_{\phi}(u, T u)-\phi(u, T u) d_{\phi}\left(u, u_{n+1}\right) \leq \\
& \phi(u, T u) \eta \max \left\{0, c_{1} d_{\phi}(u, T u), \frac{c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2} d_{\phi}(u, T u)\right. \\
& \leq \phi(u, T u) \max \left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2}\right\} d_{\phi}(u, T u), \tag{43}
\end{align*}
$$

from condition (ii), since $\phi(u, T u) \max \left\{\eta c_{1}, \eta \frac{\eta c_{2} \lim _{n \rightarrow \infty} \phi\left(u_{n}, T u\right)}{2}\right\}<1$, so from Equation (43), $d_{\phi}(u, T u)<d_{\phi}(u, T u)$, which is impossible, therefore $d_{\phi}(u, T u)=0$, i.e., $u \in T u$. Hence T has a fixed point in \mathbf{U}.

Remark 7.

(i) For $c_{1}, c_{2}=0$ in Theorem 12, we obtain Nadler's contraction principle for multi valued-mappings, i.e., Theorem 5 from [24].
(ii) Theorem 14 generalizes Theorems 12 and 13;
(ii) Theorem 14 generalizes Theorem 3.3 from [42], which generalizes Theorem 7 of [30]. Also, Theorem 7, which is a generalization of Theorem 2.2 from [29], improves Theorem 3.3 from [43], Corollary 3.3 from [5], and Theorem 1 from [28].

Example 2. Let $\mathbf{U}=\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots\right\} \cup\{0,1\}, d_{\phi}\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{2}$, for $u_{1}, u_{2} \in \mathbf{U}$, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$ define by $\phi\left(u_{1}, u_{2}\right)=u_{1}+u_{2}+1$. Then \mathbf{U} is a complete extended b-metric space. Define mapping $T: \mathbf{U} \rightarrow \mathcal{C B}(\mathbf{U})$ as

$$
T u= \begin{cases}\left\{\frac{1}{2^{n+1}}\right\}, & u=\frac{1}{2^{n}}, n=0,1,2, \ldots \\ u, & u=0\end{cases}
$$

Hence T is continuous. Since $N_{c_{1}, c_{2}}\left(\frac{1}{2^{n}}, 0\right)=\frac{1}{2^{2 n}}$, for all $c_{1}, c_{2} \in[0,1]$, we get:

$$
H_{\Phi}\left(T\left(\frac{1}{2^{n}}\right), T(0)\right)=\frac{1}{2^{2 n+2}} \leq \frac{1}{2^{2 n+1}} \leq \frac{1}{2} N_{c_{1}, c_{2}}\left(\frac{1}{2^{n}}, 0\right)
$$

where $\eta=\frac{1}{2}$. Also for each $u_{0} \in \mathbf{U}, \lim _{n, m \rightarrow \infty} \eta c_{2} \phi\left(u_{n}, u_{m}\right)<1$. Clearly, it satisfies all the conditions of Theorem 12, and so there exists a fixed point.

Example 3. Let $\mathbf{U}=[0, \infty)$. Define $d_{\phi}\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{2}$, for $u_{1}, u_{2} \in \mathbf{U}$, where $\phi: \mathbf{U} \times \mathbf{U} \rightarrow[1, \infty)$, where $\phi\left(u_{1}, u_{2}\right)=u_{1}+u_{2}+2$. Then \mathbf{U} is a complete extended b-metric space. Define mapping $T: \mathbf{U} \rightarrow$ $\mathcal{C B}(\mathbf{U})$ as $T u=\left\{\frac{8}{9} u\right\}$ for every $u \in \mathbf{U}$. Note that Theorem 14 is applicable by taking $c_{1}=c_{2}=0$ and $\eta=\frac{8}{9}$.

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.
Funding: This research received no external funding.
Acknowledgments: The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3, 133-181. [CrossRef]
2. Kannan, R. Some results on fixed points. Bull. Calc. Math. Soc. 1972, 25, 727-730. [CrossRef]
3. Edelstein, M. An extension of Banach's contraction principle. J. Lond. Math. Soc. 1961, 12, 7-10.
4. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201-206. [CrossRef]
5. Rouhani, B.D.; Moradi, S. Common fixed point of multivalued generalized ϕ-weak contractive mappings. Fixed Point Theory Appl. 2010, 2010, 708984.
6. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222-4229. [CrossRef]
7. la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Fixed point-type results for a class of extended cyclic self-mappings under three general weak contractive conditions of rational type. Fixed Point Theory Appl. 2011, 2011, 102. [CrossRef]
8. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff Metric and Nadler's Fixed Point Theorem on Partial Metric Spaces. Topol. Its Appl. 2012, 159, 3234-3242. [CrossRef]
9. Kakutani, S. A generalization of Brouwer's fixed point Theorem. Duke Math. J. 1941, 8, 457-459. [CrossRef]
10. Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337-346.
11. Aydi, H.; Karapinar, E.; Samet, B. Fixed point theorems for various classes of cyclic mappings. J. Appl. Math. 2012, 2012, 867216. [CrossRef]
12. Mitrović, Z.D.; Aydi, H.; Hussain, N.; Mukheimer, A. Reich, Jungck, and Berinde common fixed point results on \mathcal{F}-metric spaces and an application. Mathematics 2019, 7, 387. [CrossRef]
13. Patle, P.R.; Patel, D.K.; Aydi, H.; Gopal, D.; Mlaiki, N. Nadler and Kannan type set valued mappings in M-metric spaces and an application. Mathematics 2019, 7, 373. [CrossRef]
14. Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1968, 60, 71-76. [CrossRef]
15. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26-37.
16. Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
17. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263-276.
18. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
19. Kir, M.; Kiziltunc, H. On some well known fixed point theorems in b-metric spaces. Turk. Anal. Number Theory 2013, 1, 13-16. [CrossRef]
20. Dubey, A.K.; Shukla, R.; Dubey, R.P. Some fixed point results in b-metric spaces. Asian J. Math. Appl. 2014, 1, 1-6.
21. Koleva, R.; Zlatanov, B. On fixed points for Chatterjeas maps in b-metric spaces. Turk. J. Anal. Number Theory 2016, 4, 31-34.
22. Ilchev, A.; Zlatanov, B. On Fixed Points for Reich Maps in B-Metric Spaces; Annual of Konstantin Preslavski University of Shumen, Faculty of Mathematics and Computer Science XVII C: Shumen, Bulgaria, 2016; pp. 77-88.
23. Aleksic, S.; Mitrovic, Z.D.; Radenovic, S. On some recent fixed point results for single and multi-valued mapping in b-metric space. Fasc. Math. 2018, 61, 5-16.
24. Nadler, S.B. Multi-valued contraction mappings. Not. Am. Math. Soc.1967, 14, 930. [CrossRef]
25. Singh, S.L.; Mishra, S.N.; Chugh, R.; Kamal, R. General Common Fixed Point Theorems and Applications. J. Appl. Math. 2012, 2012, 902312. [CrossRef]
26. la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Best proximity and fixed point results for cyclic multi-valued mappings under a generalized contractive condition. Fixed Point Theory Appl. 2013, 2013, 324. [CrossRef]
27. Petrusel, A.; Petrusel, G. On Reich's strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Var. Anal. 2018, 2, 103-112.
28. Ciric, L. A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 1974, 45, 267-273. [CrossRef]
29. Amini-Harandi, A. Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl. Math. Lett. 2011, 24, 1791-1794. [CrossRef]
30. Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrovic, S. A fixed point Theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [CrossRef]
31. Subashi, L. Some topological properties of extended b-metric space. In Proceedings of the 5th International Virtual Conference on Advanced Scientific Results, Zilina, Slovakia, 26-30 June 2017; Volume 5, pp. 164-167.
32. Subashi, L.; Gjini, N. Fractals in extended b-metric space. J. Prog. Res. Math. 2017, 12, 2057-2065.
33. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [CrossRef]
34. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [CrossRef]
35. Subashi, L.; Gjini, N. Some results on extended b-metric spaces and Pompeiu-Hausdorff metric. J. Prog. Res. Math. 2017, 12, 2021-2029.
36. Alqahtani, B.; Fulga, A.; Karapinar, E. Non-Unique fixed point results in extended b-metric space. Mathematics 2018, 6, 68. [CrossRef]
37. Shatanawi, W.; Mukheimer, A.; Abodayeh, K. Some fixed point Theorems in extended b-metric spaces. Appl. Math. Phys. 2018, 80, 71-78.
38. Kamran, T. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [CrossRef]
39. Alqahtani, B.; Fulga, A.; Karapinar, E. Contractions with rational expression in the extended b-metric space. 2019, in press.
40. Jovanovic, M.; Kadelburg, Z.; Radenovic, S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, 1, 978121. [CrossRef]
41. Shah, M.H.; Simic, S.; Hussain, N.; Sretenovic, A.; Radenovic, S. Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces. J. Comput. Anal. Appl. 2012, 14, 290-297.
42. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153-2163 [CrossRef]
43. Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 1995, 192, 655-666. [CrossRef]
(c) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
