

On Some New Fixed Point Results in Complete Extended *b*-Metric Spaces

Quanita Kiran ¹, Nayab Alamgir ², Nabil Mlaiki ^{3,*} and Hassen Aydi ^{4,5,*}

- ¹ School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; quanita.kiran@seecs.edu.pk
- ² School of Natural Sciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; nayab@sns.nust.edu.pk
- ³ Department of Mathematical Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- ⁴ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
- ⁵ China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- * Correspondence: nmlaiki@psu.edu.sa (N.M.); hassen.aydi@isima.rnu.tn (H.A.)

Received: 4 May 2019; Accepted: 20 May 2019; Published: 25 May 2019

Abstract: In this paper, we specified a method that generalizes a number of fixed point results for single and multi-valued mappings in the structure of extended *b*-metric spaces. Our results extend several existing ones including the results of Aleksic et al. for single-valued mappings and the results of Nadler and Miculescu et al. for multi-valued mappings. Moreover, an example is given at the end to show the superiority of our results.

Keywords: extended *b*-metric space; set-valued functions; fixed point theorems

2000 Mathematics Subject Classification: 46T99; 47H10; 54H25

1. Introduction and Preliminaries

Banach contraction principle [1] is a fundamental tool for providing the existence of solutions for many mathematical problems involving differential equations and integral equations. A mapping $T : \mathbf{U} \to \mathbf{U}$ on a metric space (\mathbf{U}, d) is called a contraction mapping, if there exists $\eta < 1$ such that for all $u, v \in \mathbf{U}$,

$$d(Tu, Tv) \le \eta d(u, v). \tag{1}$$

If the metric space is complete and *T* satisfies inequality (1), then *T* has a unique fixed point. Clearly, inequality (1) implies continuity of *T*. Naturally, a question arises as to whether we can find contractive conditions which will imply the existence of fixed points in a complete metric space, but will not imply continuity. In [2], Kannan derived the following result, which answers the said question. Let $T : \mathbf{U} \rightarrow \mathbf{U}$ be a mapping on a complete metric space (\mathbf{U} , d), which satisfies inequality:

$$d(Tu, Tv) \le \eta [d(u, Tu) + d(v, Tv)], \tag{2}$$

where $\eta \in [0, \frac{1}{2})$ and $u, v \in U$. The mapping satisfying inequality (2) is called a Kannan type mapping. There are number of generalizations of the contraction principle of Banach both for single-valued and multi-valued mappings, see ([3–13]). Chatterjea in [14] established the following alike contractive condition. Let (**U**, *d*) be a complete metric space. A mapping $T : \mathbf{U} \to \mathbf{U}$ has a unique fixed point, if it satisfies the following inequality:

$$d(Tu, Tv) \le \eta [d(u, Tv) + d(v, Tu)].$$
(3)

where $\eta \in [0, \frac{1}{2})$ and $u, v \in U$. The mapping satisfying inequality (3) is called a Chatterjea type mapping.

Due to the problem of the convergence of measurable functions with respect to a measure, Bakhtin [15], Bourbaki [16], and Czerwik [17,18] introduced the concept of *b*-metric spaces by weakening the triangle inequality of the metric space as follows:

Definition 1 ([17]). Let **U** be a set and $s \ge 1$ a real number. A function $d : \mathbf{U} \times \mathbf{U} \rightarrow [0, \infty)$ is called a *b*-metric space, if it satisfies the following axioms for all $u_1, u_2, u_3 \in \mathbf{U}$:

- (1) $d(u_1, u_2) = 0$ if and only if $u_1 = u_2$;
- (2) $d(u_1, u_2) = d(u_2, u_1);$
- (3) $d(u_1, u_3) \leq s[d(u_1, u_2) + d(u_2, u_3)].$

The pair (\mathbf{U}, d) is called a b-metric space.

Clearly, every metric space is a *b*-metric space with s = 1, but its converse is not true in general. After that, a number of research papers have been established that generalized the Banach fixed point result in the framework of *b*-metric spaces. In [19], Kir and Kiziltunc introduced the following results, which generalized Kannan and Chatterjea type mappings in *b*-metric spaces. Let $T : \mathbf{U} \to \mathbf{U}$ be a mapping on a complete *b*-metric space (\mathbf{U} , *d*), which satisfies inequality:

$$d(Tu, Tv) \le \eta [d(u, Tu) + d(v, Tv)].$$
(4)

where $s\eta \in [0, \frac{1}{2})$ and $u, v \in \mathbf{U}$. Then *T* has a unique fixed point.

Let (\mathbf{U}, d) be a complete *b*-metric space. A mapping $T : \mathbf{U} \to \mathbf{U}$ has a unique fixed point in \mathbf{U} , if it satisfies the following inequality:

$$d(Tu, Tv) \le \eta [d(u, Tv) + d(v, Tu)],\tag{5}$$

for all $u, v \in U$, where $\eta \in [0, \frac{1}{2})$. In [20], the given below results, which generalized Equation (4) for $\kappa_1 = \kappa_2 = \kappa_3 = 0$ and (5) for $\kappa_1 = \kappa_4 = 0$ and $\kappa_2 = \kappa_3$, have been derived.

Theorem 1 ([20]). Let (\mathbf{U}, d) be a complete b-metric space with constant $s \ge 1$. If $T : \mathbf{U} \to \mathbf{U}$ satisfies the inequality:

$$d (Tu, Tv) \le \kappa_1 d (u, v) + \kappa_2 d (u, Tu) + \kappa_3 d (v, Tv) + \kappa_4 [d (v, Tu) + d (u, Tv)],$$
(6)

where,

$$\kappa_1 + 2s\kappa_2 + \kappa_3 + 2s\kappa_4 < 1,$$

then T has a unique fixed point.

Theorem 2 ([20]). Let (\mathbf{U}, d) be a complete b-metric space with constant $s \ge 1$. If $T : \mathbf{U} \to \mathbf{U}$ satisfies the inequality:

$$d(Tu, Tv) \le \kappa_1 d_\phi(u, v) + \kappa_2 [d_\phi(u, Tu) + d_\phi(v, Tv)], \tag{7}$$

for all $u, v \in \mathbf{U}$, where $\kappa_1, \kappa_2 \in [0, \frac{1}{3})$, then T has a unique fixed point.

In [21], Koleva and Zlatanov proved the following result, which generalizes Chatterjea's type mappings in *b*-metric spaces and do not involve the *b*-metric constant.

Theorem 3 ([21]). Let (\mathbf{U}, d) be a complete b-metric space and d be a continuous function. If $T : \mathbf{U} \to \mathbf{U}$ is a Chatterjea's mapping, i.e., it satisfies inequality (3) such that $\sup_{n \in \mathbb{N}} \{ d(T^n u, u) \} < \infty$ holds for every $u \in \mathbf{U}$.

Then:

- (i) There exists a unique fixed point of T, say ξ ;
- (ii) For any $u_0 \in \mathbf{U}$, the sequence $\{u_n\}_{n=1}^{\infty}$ converges to ξ , where $u_{n+1} = T^n u_n$, n = 0, 1, 2, ...;
- (iii) There holds the priori error estimate.

$$d(\xi, T^m u) \le \left(\frac{\eta}{1-\eta}\right)^m \sup_{j \in \mathbb{N}} \{d(T^j u, u)\},$$

where $\eta \in [0, \frac{1}{2})$.

Ilchev and Zlatanov in [22] proved the following result generalizing Theorem 3 for $\kappa_1 = 0$.

Theorem 4 ([22]). Let (\mathbf{U}, d) be a complete *b*-metric space and *d* be a continuous function. If,

(1) $T: \mathbf{U} \to \mathbf{U}$ is a Reich mapping, i.e., there exist $\kappa_1, \kappa_2 \ge 0$, such that $\kappa_1 + 2\kappa_2 < 1$, so that the inequality

$$d(Tu, Tv) \le \kappa_1 d_{\phi}(u, v) + \kappa_2 [d(u, Tv) + d(v, Tu)],$$
(8)

holds for every $u, v \in \mathbf{U}$ *;*

(2) the inequality $\sup_{n \in \mathbb{N}} \{ d(T^n u, u) \} < \infty$ holds for every $u \in \mathbf{U}$,

then:

- (i) There exists a unique fixed point of T, say ξ ;
- (ii) For any $u_0 \in \mathbf{U}$, the sequence $\{u_n\}_{n=1}^{\infty}$ converges to ξ , where $u_{n+1} = T^n u_n$, n = 0, 1, 2, ...;
- (iii) There holds the priori error estimate.

$$d(\xi, T^m u) \le \left(\frac{\kappa_1 + \kappa_2}{1 - \kappa_2}\right)^m \sup_{j \in \mathbb{N}} \{d(T^j u, u)\}.$$

In [23], the author introduced the following results, which improve Theorems 1 and 2 of [20].

Theorem 5 ([23]). Let (\mathbf{U}, d) be a complete b-metric space with a constant $s \ge 1$. If $T : \mathbf{U} \to \mathbf{U}$ satisfies the inequality:

$$d(Tu, Tv) \le \kappa_1 \ d(u, v) + \kappa_2 \ d(u, Tu) + \kappa_3 \ d(v, Tv) + \kappa_4 [d(v, Tu) + d(u, Tv)], \tag{9}$$

where $\kappa_i \geq 0$, for i = 1, 2, 3, 4 and

$$\kappa_1 + \kappa_2 + \kappa_3 + 2s\kappa_4 < 1,$$

then T has a unique fixed point.

Theorem 6 ([23]). Let (\mathbf{U}, d) be a complete b-metric space with a constant $s \ge 1$. If $T : \mathbf{U} \to \mathbf{U}$ satisfies the inequality:

$$d(Tu, Tv) \le \kappa_1 \ d(u, v) + \kappa_2 [\ d(u, Tu) + \ d(v, Tv)],$$
(10)

for all $u, v \in \mathbf{U}$, where $\kappa_1, \kappa_2 \in [0, \frac{1}{3})$ such that $\kappa_2 < \min\{\frac{1}{3}, \frac{1}{s}\}$, then T has a unique fixed point.

If s = 1, then (**U**, *d*) is a metric space and condition (9) implies:

$$d(Tu, Tv) \le k \max\{d(u, v), d(u, Tu), d(v, Tv), \frac{d(v, Tu) + d(u, Tv)}{2}\},$$
(11)

where $\kappa_1 + \kappa_2 + \kappa_3 + 2\kappa_4 < 1$. With Equation (11), we recover the well-known result for generalized Ciric's contraction mapping in the metric space and obtain a unique fixed point.

In 1969, Nadler [24] generalized the single-valued Banach contraction principle into a multi-valued contraction principle. This mapping has been carried out for a complete metric space (\mathbf{U}, d) by using subsets of **U** that are nonempty closed and bounded. There are number of generalizations for Nadler's fixed point theorem (see [25–27]). In [28], the author introduced the given below quasi-contraction mapping and proved an existence and uniqueness fixed point theorem.

A mapping $T : \mathbf{U} \to \mathbf{U}$ on a metric space (\mathbf{U}, d) is called a quasi-contraction, if there exists q < 1 such that for all $u, v \in \mathbf{U}$,

$$d(Tu, Tv) \le q \max\{d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)\}$$

Amini-Harandi in [29] introduced the concept of *q*-multi-valued quasi-contractions and derived a fixed point theorem, which generalized Ciric's theorem [28].

A multi-valued map $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ on a metric space (\mathbf{U}, d) is called a *q*-multi-valued quasi-contraction, if there exists q < 1 such that for all $u, v \in \mathbf{U}$,

$$d(Tu, Tv) \le q \max\{d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)\},\$$

where CB(U) denotes the non-empty closed and bounded subsets of U. In [30], Aydi et al. established the following result, which generalized Theorem 2.2 from [29] and Ciric's result [28].

Theorem 7 ([30]). Let (\mathbf{U}, d) be a complete b-metric space. Suppose that *T* is a *q*-multi-valued quasi-contraction and $q < \frac{1}{s^2+s}$, then *T* has a fixed point in **U**.

In 2017, Kamran et al. generalized the structure of a *b*-metric space and called it, an extended *b*-metric space. Thereafter, a number of research articles have appeared, which generalize the contraction principle of Banach in extended *b*-metric spaces for both single and multi-valued mappings (see [31–37]). In this paper, we illustrate a method (see Lemma 3), to generalize a number of fixed point results of single-valued and multi-valued mappings in the structure of extended *b*-metric spaces.

Definition 2 ([38]). *Let* **U** *be a nonempty set and* ϕ : **U** × **U** \rightarrow [1, ∞). *A function* d_{ϕ} : **U** × **U** \rightarrow [0, ∞) *is called an extended b-metric, if for all* $u_1, u_2, u_3 \in \mathbf{U}$ *, it satisfies:*

 $\begin{aligned} & (d_1) \ d_{\phi}(u_1, u_2) = 0 \ iff \ u_1 = u_2; \\ & (d_2) \ d_{\phi}(u_1, u_2) = d_{\phi}(u_2, u_1); \\ & (d_3) \ d_{\phi}(u_1, u_3) \leq \phi(u_1, u_3) [d_{\phi}(u_1, u_2) + d_{\phi}(u_2, u_3)]. \end{aligned}$

The pair (\mathbf{U}, d_{ϕ}) *is called an extended b-metric space.*

Example 1. Let $\mathbf{U} = [0, \infty)$. Define $d_{\phi} : \mathbf{U} \times \mathbf{U} \rightarrow [0, \infty)$ by:

$$d_{\phi}(u,v) = \begin{cases} 0, & \text{if } u = v; \\ 3, & \text{if } u \text{ or } v \in \{1,2\}, u \neq v; \\ 5, & \text{if } u \neq v \in \{1,2\}; \\ 1, & \text{otherwise.} \end{cases}$$

Then (\mathbf{U}, d_{ϕ}) *is an extended b-metric space, where* $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ *is defined by:*

$$\phi(u,v) = u + v + 1,$$

for all $u, v \in \mathbf{U}$.

Remark 1. Every *b*-metric space is an extended *b*-metric space with constant function $\phi(u_1, u_2) = s$, for $s \ge 1$, but its converse is not true in general.

Definition 3 ([35]). Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space, where $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ is bounded. Then for all $\mathbf{A}, \mathbf{B} \in C\mathcal{B}(\mathbf{U})$, where $C\mathcal{B}(\mathbf{U})$ denotes the family of all nonempty closed and bounded subsets of \mathbf{U} , the Hausdorff–Pompieu metric on $C\mathcal{B}(\mathbf{U})$ induced by d_{ϕ} is defined by:

$$H_{\Phi}(\mathbf{A}, \mathbf{B}) = \max\{\sup_{a \in \mathbf{A}} d_{\phi}(a, \mathbf{B}), \sup_{b \in \mathbf{B}} d_{\phi}(b, \mathbf{A})\},\$$

where for every $a \in \mathbf{A}$, $d_{\phi}(a, \mathbf{B}) = \inf\{d_{\phi}(a, b) : b \in \mathbf{B}\}$ and $\Phi : C\mathcal{B}(\mathbf{U}) \times C\mathcal{B}(\mathbf{U}) \rightarrow [1, \infty)$ is such that:

 $\Phi(\mathbf{A},\mathbf{B}) = \sup\{\phi(a,b) : a \in \mathbf{A}, b \in \mathbf{B}\}.$

Theorem 8 ([31]). Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space. Then $(C\mathcal{B}(\mathbf{U}), H_{\Phi})$ is an extended Hausdorff–Pompieu b-metric space.

Lemma 1 ([39]). Every sequence $\{u_n\}_{n \in \mathbb{N}}$ of elements from an extended b-metric space (\mathbf{U}, d_{ϕ}) , having the property that for every $n \in \mathbb{N}$, there exists $\gamma \in [0, 1)$ such that:

$$d_{\phi}(u_{n+1}, u_n) \le \gamma d_{\phi}(u_n, u_{n-1}) \tag{12}$$

where for each $u_0 \in \mathbf{U}$, $\lim_{n,m\to\infty} \phi(u_n, u_m) < \frac{1}{\gamma}$. Then $\{u_n\}_{n=0}^{\infty}$ is a Cauchy sequence.

Definition 4. Let **U** be any set and $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ be a multi-valued map. For any point $u_0 \in \mathbf{U}$, the sequence $\{u_n\}_{n=0}^{\infty}$ given by:

$$u_{n+1} \in Tu_n, \ n = 0, 1, 2, \dots$$
 (13)

is called an iterative sequence with initial point u_0 .

2. Main Results

Definition 5. Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space. A function $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ is called continuous, if for every sequence $\{u_n\}_{n\in\mathbb{N}}$ and $\{v_n\}_{n\in\mathbb{N}}$ belongs to \mathbf{U} and $u, v \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$, $\lim_{n\to\infty} v_n = v$ and $v_n \in Tu_n$. We have $v \in Tu$.

Definition 6. An extended b-metric space (\mathbf{U}, d_{ϕ}) is called *-continuous, if for every $A \in C\mathcal{B}(\mathbf{U})$, $\{u_n\}_{n \in \mathbb{N}} \in \mathbf{U}$ and $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. We have $\lim_{n\to\infty} d_{\phi}(u_n, A) = d_{\phi}(u, A)$.

Remark 2. Note that *- continuity of d_{ϕ} is stronger than continuity of d_{ϕ} in first variable.

Lemma 2. For every sequence $\{u_n\}_{n \in \mathbb{N}}$ of elements from an extended b-metric space (\mathbf{U}, d_{ϕ}) , the inequality

$$d_{\phi}(u_0, u_k) \le \sum_{i=0}^{k-1} d_{\phi}(u_i, u_{i+1}) \prod_{l=0}^{i} \phi(u_l, u_k),$$
(14)

is valid for every $k \in \mathbb{N}$ *.*

Proof. From the triangle inequality for k > 0, we have L

$$d_{\phi}(u_0, u_k) \leq \phi(u_0, u_k) d_{\phi}(u_0, u_1) + \phi(u_0, u_k) \phi(u_1, u_k) d_{\phi}(u_1, u_2) + \dots + \phi(u_0, u_k) \phi(u_1, u_k) \dots \phi(u_{k-1}, u_k) d_{\phi}(u_{k-1}, u_k).$$

This implies that:

$$d_{\phi}(u_0, u_k) \leq \sum_{i=0}^{k-1} d_{\phi}(u_i, u_{i+1}) \prod_{l=0}^{i} \phi(u_l, u_k)$$

Lemma 3. Every sequence $\{u_n\}_{n\in\mathbb{N}}$ of elements from an extended b-metric space (\mathbf{U}, d_{ϕ}) , having the property that there exists $\gamma \in [0, 1)$ such that:

$$d_{\phi}(u_{n+1}, u_n) \le \gamma d_{\phi}(u_n, u_{n-1}) \tag{15}$$

for every $n \in \mathbb{N}$ *is Cauchy.*

Proof. First, by successively applying (15), we get:

$$d_{\phi}(u_n, u_{n+1}) \le \gamma^n d_{\phi}(u_0, u_1), \tag{16}$$

for every $n \in \mathbb{N}$. Then by the Lemma 3, for all $m, k \in \mathbb{N}$, we have:

$$d_{\phi}(u_m, u_{m+k}) \leq \sum_{n=m}^{m+k-1} d_{\phi}(u_n, u_{n+1}) \prod_{l=0}^{n} \phi(u_l, u_{m+k})$$

$$d_{\phi}(u_m, u_{m+k}) \le d_{\phi}(u_0, u_1) \sum_{n=m}^{m+k-1} \gamma^n \prod_{l=0}^n \phi(u_l, u_{m+k})$$

$$d_{\phi}(u_m, u_{m+k}) \leq d_{\phi}(u_0, u_1) \sum_{n=0}^{k-1} \gamma^{n+m} \prod_{l=0}^{n+m} \phi(u_l, u_{m+k})$$

$$d_{\phi}(u_{m}, u_{m+k}) \leq \gamma^{m} d_{\phi}(u_{0}, u_{1}) \sum_{n=0}^{k-1} \gamma^{n} \prod_{l=0}^{n+m} \phi(u_{l}, u_{m+k})$$
$$d_{\phi}(u_{m}, u_{m+k}) \leq \gamma^{m} d_{\phi}(u_{0}, u_{1}) \sum_{n=0}^{k-1} \gamma^{\log_{\gamma} \prod_{l=0}^{n+m} \phi(u_{l}, u_{m+k}) + n}.$$
(17)

Now let us take two cases for $\log_{\gamma} \prod_{l=0}^{n+m} \phi(u_l, u_{m+k}) + n$.

- Case 1: If $\prod_{l=0}^{n+m} \phi(u_l, u_{m+k})$ is finite, let us say M, then $\lim_{n\to\infty} \log_{\gamma} M + n = \infty$. Hence the series $\sum_{n=0}^{k-1} \gamma^{\log_{\gamma} M + n}$ is convergent.
- Case 2: If $\prod_{l=0}^{n+m} \phi(u_l, u_{m+k})$ is infinite, then $\lim_{n\to\infty} \log_{\gamma} \prod_{l=0}^{n+m} \phi(u_l, u_{m+k}) = \infty$, so there exist $n_0 \in \mathbb{N}$ such that $\log_{\gamma} \prod_{l=0}^{n+m} \phi(u_l, u_{m+k}) > M$, i.e.,

$$\gamma^{\log_{\gamma}\prod_{l=0}^{n+m}\phi(u_l,u_{m+k})+n} \leq \gamma^M \cdot \gamma^n$$
, for each $n \in \mathbb{N}$, $n \geq n_0$.

6 of 17

Hence the series $\sum_{n=0}^{k-1} \gamma^{\log_{\gamma} \prod_{l=0}^{n+m} \phi(u_l, u_{m+k})+n}$ is convergent. In both cases denoting by *S* the sum of this series, we come to the conclusion that:

$$d_{\phi}(u_m, u_{m+k}) \leq \gamma^m d_{\phi}(u_0, u_1)S,$$

for all $m, k \in \mathbb{N}$. Consequently, as $\lim_{m \to \infty} \gamma^m = 0$, we conclude that $\{u_m\}_{m \in \mathbb{N}}$ is a Cauchy sequence. \Box

Remark 3. Lemma 3 shows that the condition on ϕ in Lemma 1 corresponding to that for each $u_0 \in \mathbf{U}$, $\lim_{n,m\to\infty} \phi(u_n, u_m) < \frac{1}{\gamma}$, can be avoided. Therefore, Lemma 3 generalizes Lemma 1, which is the basis of the results from [36].

Lemma 4. Let $\mathbf{A}, \mathbf{B} \in C\mathcal{B}(\mathbf{U})$, then for every $\eta > 0$ and $b \in \mathbf{B}$ there exists $a \in \mathbf{A}$ such that:

$$d_{\phi}(a,b) \le H_{\Phi}(\mathbf{A},\mathbf{B}) + \eta. \tag{18}$$

Proof. By definition of Hausdorff metric, for $\mathbf{A}, \mathbf{B} \in C\mathcal{B}(\mathbf{U})$ and for any $b \in \mathbf{Y}$, we have:

$$d_{\phi}(\mathbf{A}, b) \leq H_{\Phi}(\mathbf{A}, \mathbf{B})$$

By the definition of infimum, we can let $\{a_n\}$ be a sequence in **A** such that:

$$d_{\phi}(b, a_n) < d_{\phi}(b, \mathbf{A}) + \eta, \text{ where } \eta > 0.$$
(19)

We know that **A** is closed and bounded, so there exists $a \in \mathbf{A}$ such that $a_n \to a$. Therefore, by (19), we have:

$$d_{\phi}(a,b) < d_{\phi}(\mathbf{A},b) + \eta \leq H_{\Phi}(\mathbf{A},\mathbf{B}) + \eta.$$

Theorem 9. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space with $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$. If $T : \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$d_{\phi}(Tu, Tv) \leq \kappa_1 d_{\phi}(u, v) + \kappa_2 d_{\phi}(u, Tu) + \kappa_3 d_{\phi}(v, Tv) + \kappa_4 [d_{\phi}(v, Tu) + d_{\phi}(u, Tv)],$$
(20)

where $\kappa_i \geq 0$, for i = 1, ..., 4 and for each $u_0 \in \mathbf{U}$,

$$\kappa_1+\kappa_2+\kappa_3+2\kappa_4\lim_{n,m\to\infty}\phi(u_n,u_m)<1,$$

then T has a fixed point.

Proof. Let us choose an arbitrary $u_0 \in \mathbf{U}$ and define the iterative sequence $\{u_n\}_{n=0}^{\infty}$ by $u_n = Tu_{n-1} = T^{n-1}u_0$ for all $n \ge 1$. If $u_n = u_{n-1}$, then u_n is a fixed point of T and the proof holds. So we suppose $u_n \ne u_{n-1}, \forall n \ge 1$. Then from Equation (20), we have:

$$d_{\phi}(Tu_{n}, Tu_{n-1}) \leq \kappa_{1} d_{\phi}(u_{n}, u_{n-1}) + \kappa_{2} d_{\phi}(u_{n}, Tu_{n}) + \kappa_{3} d_{\phi}(u_{n-1}, Tu_{n-1}) + \kappa_{4} [d_{\phi}(u_{n-1}, Tu_{n}) + d_{\phi}(u_{n}, Tu_{n-1})].$$

From the triangle inequality, we get:

$$d_{\phi}(Tu_{n}, Tu_{n-1}) \leq \kappa_{1} d_{\phi}(u_{n}, u_{n-1}) + \kappa_{2} d_{\phi}(u_{n}, Tu_{n}) + \kappa_{3} d_{\phi}(u_{n-1}, Tu_{n-1}) + \kappa_{4} \phi(u_{n-1}, u_{n+1}) [d_{\phi}(u_{n-1}, u_{n}) + d_{\phi}(u_{n}, u_{n+1})].$$

This implies that:

$$d_{\phi}(u_{n+1}, u_n) \leq (\kappa_1 + \kappa_3 + \kappa_4 \phi(u_{n-1}, u_{n+1})) d_{\phi}(u_n, u_{n-1}) + (\kappa_2 + \kappa_4 \phi(u_{n-1}, u_{n+1})) d_{\phi}(u_n, u_{n+1}).$$
(21)

Similarly,

$$d_{\phi}(u_{n}, u_{n+1}) \leq (\kappa_{1} + \kappa_{2} + \kappa_{4}\phi(u_{n-1}, u_{n+1}))d_{\phi}(u_{n}, u_{n-1}) + (\kappa_{3} + \kappa_{4}\phi(u_{n-1}, u_{n+1}))d_{\phi}(u_{n}, u_{n+1}).$$
(22)

By adding Equations (21) and (22), we get:

$$d_{\phi}(u_{n+1}, u_n) \le \eta d_{\phi}(u_n, u_{n-1}).$$
 (23)

where,

$$\eta = \frac{2\kappa_1 + \kappa_2 + \kappa_3 + 2\kappa_4\phi(u_{n-1}, u_{n+1})}{2 - \kappa_2 - \kappa_3 - 2\kappa_4\phi(u_{n-1}, u_{n+1})}.$$

Since $\kappa_1 + \kappa_2 + \kappa_3 + 2\kappa_4 \lim_{n,m\to\infty} \phi(u_n, u_m) < 1$, multiply by 2,

$$2\kappa_1+2\kappa_2+2\kappa_3+4\kappa_4\lim_{n,m\to\infty}\phi(u_n,u_m)<2,$$

$$2\kappa_1 + 2\kappa_2 + 2\kappa_3 + (2\kappa_4 \lim_{n,m\to\infty} \phi(u_n, u_m) + 2\kappa_4 \lim_{n,m\to\infty} \phi(u_n, u_m)) < 2.$$

This implies that:

$$2\kappa_1+\kappa_2+\kappa_3+2\kappa_4\lim_{n,m\to\infty}\phi(u_n,u_m)<2-\kappa_2-\kappa_3-2\kappa_4\lim_{n,m\to\infty}\phi(u_n,u_m).$$

⇒ η < 1. Hence from Lemma 3, $\{u_n\}_{n=0}^{\infty}$ is a Cauchy sequence. As **U** is complete, therefore there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. Next, we will show that u is a fixed point of *T*. From the triangle inequality and Equation (20), we have:

$$\begin{aligned} d_{\phi}(u, Tu) &\leq \phi(u, Tu) [d_{\phi}(u, u_{n+1}) + d_{\phi}(u_{n+1}, Tu)] \\ &\leq \phi(u, Tu) [d_{\phi}(u, u_{n+1}) + \kappa_1 d_{\phi}(u_n, u) + \kappa_2 d_{\phi}(u_n, u_{n+1}) \\ &+ \kappa_3 d_{\phi}(u, Tu) + \kappa_4 [d_{\phi}(u_n, Tu) + d_{\phi}(u, u_{n+1})] \\ &\leq \phi(u, Tu) [d_{\phi}(u, u_{n+1}) + \kappa_1 d_{\phi}(u_n, u) + \kappa_2 d_{\phi}(u_n, u_{n+1}) \\ &+ \kappa_3 d_{\phi}(u, Tu) + \kappa_4 d_{\phi}(u, u_{n+1}) + \kappa_4 \phi(u_n, Tu) \\ &[d_{\phi}(u_n, u) + d_{\phi}(u, Tu)] \\ &\leq \phi(u, Tu) [(1 + \kappa_4) d_{\phi}(u, u_{n+1}) + (\kappa_1 + \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, u_n) \\ &\kappa_2 d_{\phi}(u_n, u_{n+1}) + (\kappa_3 + \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, Tu)]. \end{aligned}$$

So,

$$(1 - \kappa_3 - \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, Tu) \leq \phi(u, Tu) [(1 + \kappa_4) d_{\phi}(u, u_{n+1}) + (\kappa_1 + \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, u_n) + \kappa_2 d_{\phi}(u_n, u_{n+1})].$$
(24)

Similarly,

$$(1 - \kappa_2 - \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, Tu) \leq \phi(u, Tu) [(1 + \kappa_4) d_{\phi}(u, u_{n+1}) + (\kappa_1 + \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, u_n) + \kappa_3 d_{\phi}(u_n, u_{n+1})].$$
(25)

By adding Equations (24) and (25), we have:

$$\begin{aligned} (2 - \kappa_2 - \kappa_3 - 2\kappa_4 \phi(u_n, Tu)) d_{\phi}(u, Tu) &\leq \phi(u, Tu) [2(1 + \kappa_4) d_{\phi}(u, u_{n+1}) + 2(\kappa_1 + \kappa_4 \phi(u_n, Tu)) d_{\phi}(u, u_n) \\ &+ (\kappa_2 + \kappa_3) d_{\phi}(u_n, u_{n+1})] \to 0, \end{aligned}$$

as $n \to \infty$. This implies that:

$$(2-\kappa_2-\kappa_3-2\kappa_4\phi(u_n,Tu))d_\phi(u,Tu)\leq 0.$$

Since $(2 - \kappa_2 - \kappa_3 - 2\kappa_4\phi(u_n, Tu)) > 0$, we get $d_{\phi}(u, Tu) = 0$, i.e., Tu = u. Now, we show that u is the unique fixed point of T. Assume that u' is another fixed point of T, then we have Tu' = u'. Also,

$$\begin{aligned} d_{\phi}(u, u') &= d_{\phi}(Tu, Tu') \\ &\leq \kappa_{1} d_{\phi}(u, u') + \kappa_{2} d_{\phi}(u, Tu') + \kappa_{3} d_{\phi}(u', Tu) + \kappa_{4} [d_{\phi}(u, Tu') + d_{\phi}(u', Tu)] \\ &\leq \kappa_{1} d_{\phi}(u, u') + \kappa_{2} d_{\phi}(u, u') + \kappa_{3} d_{\phi}(u', u) + \kappa_{4} [d_{\phi}(u, u') + d_{\phi}(u', u)] \\ &\leq (\kappa_{1} + 2\kappa_{4}) d_{\phi}(u, u'). \end{aligned}$$

This implies that:

$$(1-\kappa_1-2\kappa_4)d_{\phi}(u,u') \le 0.$$

As $\kappa_1 + \kappa_2 + \kappa_3 + 2\kappa_4 \leq \kappa_1 + \kappa_2 + \kappa_3 + 2\kappa_4 \lim_{n,m\to\infty} \phi(u_n, u_m) < 1$. Therefore $(1 - \kappa_1 - 2\kappa_4) > 0$, and $d_{\phi}(u, u') = 0$, i.e., u = u'. Hence *T* has a unique fixed point in **U**. \Box

Remark 4. From the symmetry of the distance function d_{ϕ} , it is easy to prove similar to that done in [4,22] that $\kappa_2 = \kappa_3$. Thus the inequality (20) is equivalent to the following inequality:

$$d_{\phi}(Tu, Tv) \le \kappa_1 d_{\phi}(u, v) + \kappa_2 [d_{\phi}(u, Tu) + d_{\phi}(v, Tv)] + \kappa_4 [d_{\phi}(v, Tu) + d_{\phi}(u, Tv)],$$
(26)

where $\kappa_1, \kappa_2, \kappa_4 \ge 0$ such that $\kappa_1 + 2\kappa_2 + 2\kappa_4 \lim_{n,m\to\infty} \phi(u_n, u_m) < 1$. If $\kappa_1 = \kappa_2 = 0$ and $\kappa_4 \in [0, \frac{1}{2})$ in inequality (26), we obtain generalization of Chatterjea's map [14] in extended *b*-metric space.

Remark 5. Theorem 9 generalizes and improves Theorem 1.5 of [23] and therefore Theorem 2.1 of [20]. Moreover, Theorem 9 generalizes and improves Theorem 3.7 from [40], that is, Theorem 2.19 from [41].

Theorem 10. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space with $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$. If $T : \mathbf{U} \rightarrow \mathbf{U}$ satisfies the inequality:

$$d_{\phi}(Tu, Tv) \le \kappa_1 d_{\phi}(u, v) + \kappa_2 [d_{\phi}(u, Tu) + d_{\phi}(v, Tv)], \qquad (27)$$

for each $u, v \in \mathbf{U}$, where $\kappa_1, \kappa_2 \in [0, \frac{1}{3})$. Moreover for each $u_0 \in \mathbf{U}$,

$$\lim_{n,m\to\infty}\phi(u_n,u_m)\kappa_2<1,$$

then T has a unique fixed point.

Proof. Let us choose an arbitrary $u_0 \in \mathbf{U}$ and define the iterative sequence $\{u_n\}_{n=0}^{\infty}$ by $u_n = Tu_{n-1} = T^{n-1}u_0$ for all $n \ge 1$. If $u_n = u_{n-1}$, then u_n is a fixed point of T and the proof holds. So we suppose $u_n \ne u_{n-1}, \forall n \ge 1$. Then from Equation (27), we have:

$$d_{\phi}(Tu_{n}, Tu_{n-1}) \leq \kappa_{1}d_{\phi}(u_{n}, u_{n-1}) + \kappa_{2}[d_{\phi}(u_{n-1}, Tu_{n-1}) + d_{\phi}(u_{n}, Tu_{n})].$$

So,

$$(1 - \kappa_2)d_{\phi}(u_{n+1}, u_n) \le (\kappa_1 + \kappa_4)d_{\phi}(u_n, u_{n-1})$$

$$d_{\phi}(u_n, u_{n+1}) \leq \frac{\kappa_1 + \kappa_4}{1 - \kappa_4} d_{\phi}(u_n, u_{n-1})$$

This implies that:

$$d_{\phi}(u_{n+1}, u_n) \le \eta d_{\phi}(u_n, u_{n-1}).$$
(28)

where,

$$\eta = \frac{\kappa_1 + \kappa_4}{1 - \kappa_4}.$$

Since $\kappa_1, \kappa_2 \in [0, \frac{1}{3})$, so $\eta < 1$, from Lemma 3, $\{u_n\}_{n=0}^{\infty}$ is a Cauchy sequence. As **U** is complete, therefore there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. Next, we will show that u is a fixed point of T in **U**. From the triangle inequality and Equation (27), we have:

$$\begin{aligned} d_{\phi}(u, Tu) &\leq \phi(u, Tu) [d_{\phi}(u, u_{n+1}) + d_{\phi}(u_{n+1}, Tu)] \\ &\leq \phi(u, Tu) [d_{\phi}(u, u_{n+1}) + \kappa_1 d_{\phi}(u_n, u) + \kappa_2 [d_{\phi}(u_n, u_{n+1}) + d_{\phi}(u, Tu)].. \end{aligned}$$

So,

$$(1 - \kappa_2 \phi(u, Tu)) d_\phi(u, Tu) \le 0$$

as $n \to \infty$. Since $\lim_{n,m\to\infty} \phi(u_n, u_m)\kappa_2 < 1$, we get $(1 - \kappa_2\phi(u, Tu)) > 0$, and so $d_{\phi}(u, Tu) = 0$, i.e., Tu = u. We will show that u is the unique fixed point of T. Assume that u' is another fixed point of T, then we have Tu' = u'. Again,

$$d_{\phi}(u, u') = d_{\phi}(Tu, Tu') \\ \leq \kappa_{1} d_{\phi}(u, u') + \kappa_{2} [d_{\phi}(u, Tu) + d_{\phi}(u', Tu')] \\ + \kappa_{1} d_{\phi}(u, u') < d_{\phi}(u, u'),$$

which is a contradiction. Hence *T* has a unique fixed point in **U**. \Box

Remark 6. Theorem 10 generalizes Theorem 1.2 of [20].

For $u, v \in \mathbf{U}$ and $c, d \in [0, 1]$, we will use the following notation:

$$N_{c_1,c_2}(u,v) = \max\{d_{\phi}(u,v), c_1d_{\phi}(u,Tu), c_1d_{\phi}(v,Tv), \frac{c_2}{2}(d_{\phi}(u,Tv) + d_{\phi}(v,Tu))\}$$

Theorem 11. Let (\mathbf{U}, d_{ϕ}) be an extended b-metric space. Let $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_1, c_2 \in [0, 1]$ and $\eta \in [0, 1)$ such that:

- (*i*) For each $u_0 \in \mathbf{U}$, $\lim_{n,m\to\infty} \eta c_2 \phi(u_n, u_m) < 1$, here $u_n = T^n u_0$,
- (*ii*) $H_{\Phi}(Tu, Tv) \leq \eta N_{c_1, c_2}(u, v)$ for all $u, v \in \mathbf{U}$.

Then for every $u_0 \in U$, there exist $\gamma \in [0, 1)$ and a sequence $\{u_n\}_{n \in \mathbb{N}}$ of iterates from U such that for every $n \in \mathbb{N}$,

$$d_{\phi}(u_n, u_{n+1}) \le \gamma d_{\phi}(u_{n-1}, u_n).$$
⁽²⁹⁾

Proof. Let us choose an arbitrary $u_0 \in \mathbf{U}$ and $u_1 \in Tu_0$. Consider:

$$\gamma = \max\{\eta, \frac{\eta c_2 \phi(u_{n-1}, u_{n+1})}{2 - \eta c_2 \phi(u_{n-1}, u_{n+1})}\}.$$

Clearly, $\gamma < 1$. If $u_1 = u_0$, then for every $n \in \mathbb{N}$, the sequence $\{u_n\}_{n \in \mathbb{N}}$ given by $u_n = u_0$ satisfies Equation(29). Since:

$$d_{\phi}(u_{1}, Tu_{1})) \leq d_{\phi}(Tu_{0}, Tu_{1}) \leq H_{\Phi}(Tu_{0}, Tu_{1})$$

$$\leq \eta N_{c_{1}, c_{2}}(u_{0}, u_{1}).$$

there exists $u_2 \in Tu_1$ such that $d_{\phi}(u_1, u_2) \leq \eta N_{c_1, c_2}(u_0, u_1)$. If $u_2 = u_1$, then for every $n \in \mathbb{N}$, $n \geq 1$, the sequence $\{u_n\}_{n \in \mathbb{N}}$ given by $u_n = u_1$ satisfies Equation (29). By repeating this process, we obtain a sequence $\{u_n\}_{n \in \mathbb{N}}$ of elements from **U** such that $u_{n+1} \in Tu_n$ and $0 < d_{\phi}(u_n, u_{n+1}) \leq \eta N_{c_1, c_2}(u_{n-1}, u_n)$ for every $n \in \mathbb{N}$, $n \geq 1$. Then we have:

$$0 < d_{\phi}(u_{n}, u_{n+1}) \leq \eta N_{c_{1}, c_{2}}(u_{n-1}, u_{n})$$

$$\leq \eta \max\{d_{\phi}(u_{n-1}, u_{n}), c_{1}d_{\phi}(u_{n-1}, Tu_{n-1}), c_{1}d_{\phi}(u_{n}, Tu_{n}), \frac{c_{2}}{2}$$

$$(d_{\phi}(u_{n-1}, Tu_{n}) + d_{\phi}(u_{n}, Tu_{n-1}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n-1}, u_{n}), c_{1}d_{\phi}(u_{n-1}, u_{n}), c_{1}d_{\phi}(u_{n}, u_{n+1}), \frac{c_{2}}{2}(d_{\phi}(u_{n-1}, u_{n+1}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n-1}, u_{n}), c_{1}d_{\phi}(u_{n-1}, u_{n}), c_{1}d_{\phi}(u_{n}, u_{n+1}), \frac{c_{2}\phi(u_{n-1}, u_{n+1})}{2}$$

$$(30)$$

$$(d_{\phi}(u_{n-1}, u_{n}) + d_{\phi}(u_{n}, u_{n+1}))\},$$

$$(31)$$

for every
$$n \in \mathbb{N}$$
. If we take:

$$\max\{d_{\phi}(u_{n-1}, u_n), c_1 d_{\phi}(u_{n-1}, u_n), c_1 d_{\phi}(u_n, u_{n+1}), \frac{c_2 \phi(u_{n-1}, u_{n+1})}{2} \\ (d_{\phi}(u_{n-1}, u_n) + d_{\phi}(u_n, u_{n+1}))\} = c_1 d_{\phi}(u_n, u_{n+1}),$$

then from Equations (30) and (31), $0 < d(u_n, u_{n+1}) \le \eta c_1 d_{\phi}(u_n, u_{n+1}) < \eta d_{\phi}(u_n, u_{n+1})$. As $\eta < 1$, so we obtain the contradiction. Therefore, we have:

$$\begin{aligned} d_{\phi}(u_n, u_{n+1}) &\leq \eta N_{c_1, c_2}(u_{n-1}, u_n) \\ &\leq \eta \max\{d_{\phi}(u_{n-1}, u_n), \frac{c_2 \phi(u_{n-1}, u_{n+1})}{2} (d_{\phi}(u_{n-1}, u_n) + d_{\phi}(u_n, u_{n+1}))\}. \end{aligned}$$

Consequently, $d_{\phi}(u_n, u_{n+1}) \leq \eta d_{\phi}(u_{n-1}, u_n)$ or

$$d_{\phi}(u_n, u_{n+1}) \leq \frac{\eta c_2 \phi(u_{n-1}, u_{n+1})}{2} (d_{\phi}(u_{n-1}, u_n) + d_{\phi}(u_n, u_{n+1})).$$

This implies that $d_{\phi}(u_n, u_{n+1}) \leq \eta d_{\phi}(u_{n-1}, u_n)$ or

$$d_{\phi}(u_n, u_{n+1}) \leq \frac{\eta c_2 \phi(u_{n-1}, u_{n+1})}{2 - \eta c_2 \phi(u_{n-1}, u_{n+1})} d_{\phi}(u_{n-1}, u_n),$$

for every $n \in \mathbb{N}$. Thus,

$$d_{\phi}(u_n, u_{n+1}) \leq \max\{\eta, \frac{\eta c_2 \phi(u_{n-1}, u_{n+1})}{2 - \eta c_2 \phi(u_{n-1}, u_{n+1})}\} d_{\phi}(u_{n-1}, u_n),$$

i.e.,

$$d_{\phi}(u_n, u_{n+1}) \leq \gamma d_{\phi}(u_{n-1}, u_n)$$

Thus, the sequence $\{u_n\}_{n \in \mathbb{N}}$ satisfies Equation(29). Hence from Lemma 3, we conclude that $\{u_n\}_{n \in \mathbb{N}}$ is Cauchy sequence. \Box

Theorem 12. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space. Let $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_1, c_2 \in [0, 1]$ and $\eta \in [0, 1)$ such that:

- (*i*) For each $u_0 \in \mathbf{U}$, $\lim_{n,m\to\infty} \eta c_2 \phi(u_n, u_m) < 1$, here $u_n = T^n u_0$,
- (*ii*) $H_{\Phi}(Tu, Tv) \leq \eta N_{c_1, c_2}(u, v)$ for all $u, v \in \mathbf{U}$,
- (iii) T is continuous.

Then T has a fixed point in **U**.

Proof. From Theorem 11, by taking in account condition (*i*) and (*ii*), we conclude that $\{u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$u_{n+1} \in Tu_n, \tag{32}$$

for every $n \in \mathbb{N}$. As **U** is complete, so there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. From inequality (3), by the continuity of *T*, it follows that:

$$u_{n+1} = Tu_n \to Tu$$
, as $n \to \infty$.

Therefore, $u \in Tu$. Hence *T* has a fixed point in **U**.

Theorem 13. Let (\mathbf{U}, d_{ϕ}) be a complete extended b-metric space. Let $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ be a multi-valued mapping having the property that there exist $c_1, c_2 \in [0, 1]$ and $\eta \in [0, 1)$ such that:

- (*i*) For each $u_0 \in \mathbf{U} \lim_{n,m\to\infty} \eta c_2 \phi(u_n, u_m) < 1$, here $u_n = T^n u_0$,
- (*ii*) $H_{\Phi}(Tu, Tv) \leq \eta N_{c_1, c_2}(u, v)$ for all $u, v \in \mathbf{U}$,
- (iii) T is *-continuous.

Then T has a fixed point in **U**.

Proof. From Theorem 3, by taking in account condition (*i*) and (*ii*), we conclude that $\{u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$u_{n+1} \in Tu_n, \tag{33}$$

for every $n \in \mathbb{N}$. As **U** is complete, so there exists $u \in \mathbf{U}$ such that $\lim_{n\to\infty} u_n = u$. Then we have:

$$\begin{aligned} d_{\phi}(u_{n+1}, Tu) &= d_{\phi}(Tu_{n}, Tu) \leq H_{\Phi}(Tu_{n}, Tu) \leq \eta N_{c_{1}, c_{2}}(u_{n}, u) \leq \eta \max\{d_{\phi}(u_{n}, u), c_{1} \\ d_{\phi}(u_{n}, Tu_{n}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(d_{\phi}(u_{n}, Tu) + d_{\phi}(u, Tu_{n}))\} \leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, u_{n+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(d_{\phi}(u_{n}, Tu) + d_{\phi}(u, Tu_{n}))\} \\ \leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, u_{n+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(\phi(u_{n}, Tu) - d_{\phi}(u, Tu))\} \\ (d_{\phi}(u_{n}, u) + d_{\phi}(u, Tu))) + d_{\phi}(u, u_{n+1})\}, \end{aligned}$$
(34)

for every $n \in \mathbb{N}$. Since $\lim_{n \to \infty} u_n = u$, $\lim_{n \to \infty} d_{\phi}(u_n, u_{n+1}) = 0$. Then $\lim_{n \to \infty} d_{\phi}(u_{n+1}, Tu) = d_{\phi}(u, Tu)$. Therefore, by taking limit $n \to \infty$ in Equations (34) and (35), we obtain:

$$d_{\phi}(u, Tu) \leq \eta N_{c_1, c_2}(u_n, u)$$

$$\leq \eta \max\{0, c_1 d_{\phi}(u, Tu), \frac{c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2} d_{\phi}(u, Tu)\}$$

$$\leq \max\{\eta c_1, \eta \frac{\eta c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2}\} d_{\phi}(u, Tu).$$

As $\max\{\eta c_1, \eta \frac{\eta c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2}\} < 1$, so from above inequality $d_{\phi}(u, Tu) < d_{\phi}(u, Tu)$, which is impossible, therefore $d_{\phi}(u, Tu) = 0$ i.e., $u \in Tu$. Hence *T* has a fixed point in **U**. \Box

Theorem 14. A multi-valued mapping $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ has a fixed point in a complete extended b-metric space (\mathbf{U}, d_{ϕ}) , if it satisfies the following two axioms:

- (*i*) There exist $c_1, c_2 \in [0, 1]$ and $\eta \in [0, 1)$ such that $H_{\Phi}(Tu, Tv) \leq \eta N_{c_1, c_2}(u, v)$ for all $u, v \in \mathbf{U}$,
- (*ii*) For each $u_0 \in \mathbf{U}$, $\max\{\eta c_1 \lim_{n,m\to\infty} \phi(u_n, u_m), \eta c_2 \lim_{n,m\to\infty} \phi(u_n, u_m)\} < 1$, here $u_n = T^n u_0$.

Proof. From Theorem 11, by taking in account condition (*i*) and (*ii*), we conclude that $\{u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence such that:

$$u_{n+1} \in Tu_n, \tag{36}$$

for every $n \in \mathbb{N}$. As **U** is complete, so there exists $u \in \mathbf{U}$ such that $\lim_{n \to \infty} u_n = u$. Then for every $n \in \mathbb{N}$, we have:

$$d_{\phi}(u_{n+1}, Tu) = d_{\phi}(Tu_{n}, Tu) \leq H_{\Phi}(Tu_{n}, Tu) \leq \eta N_{c_{1}, c_{2}}(u_{n}, u)$$

$$\leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, Tu_{n}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(d_{\phi}(u_{n}, Tu) + d_{\phi}(u, Tu_{n}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, u_{n+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(d_{\phi}(u_{n}, Tu) + d_{\phi}(u, Tu_{n}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, u_{n+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(\phi(u_{n}, Tu))$$
(37)

$$(d_{\phi}(u_n, u) + d_{\phi}(u, Tu))) + d_{\phi}(u, u_{n+1})\}.$$
(38)

Now, we will take two cases:

Case (i): If $d_{\phi}(u, Tu) \leq \lim_{n \to \infty} \sup d_{\phi}(u_n, Tu)$, then there exists a subsequence $\{u_{n_l}\}_{n \in \mathbb{N}}$ of $\{u_n\}$ such that $d_{\phi}(u, Tu) \leq \lim_{l \to \infty} d_{\phi}(u_{n_l+1}, Tu)$, so for each $\epsilon > 0$, $\exists l_{\epsilon} \in \mathbb{N}$ such that for every $l \in \mathbb{N}$, $l \geq l_{\epsilon}$, we have:

$$d_{\phi}(u, Tu) - \epsilon \leq d_{\phi}(u_{n_{l}+1}, Tu)$$

$$\leq \eta \max\{d_{\phi}(u_{n_{l}}, u), c_{1}d_{\phi}(u_{n_{l}}, u_{n_{l}+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}$$

$$(d_{\phi}(u_{n_{l}}, Tu) + d_{\phi}(u, u_{n_{l}+1}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n_{l}}, u), c_{1}d_{\phi}(u_{n_{l}}, u_{n_{l}+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}$$

$$(\phi(u_{n_{l}}, Tu)(d_{\phi}(u_{n_{l}}, u) + d_{\phi}(u, Tu)) + d_{\phi}(u, u_{n_{l}+1})\}.$$
(40)

Since $\lim_{l\to\infty} u_{n_l} = u$, $\lim_{l\to\infty} d_{\phi}(u_{n_l}, u_{n_l+1}) = 0$. Therefore, by taking limit $l \to \infty$ in Equations (39) and (40), we obtain:

$$d_{\phi}(u,Tu) - \epsilon \leq \eta \max\{0, c_1 d_{\phi}(u,Tu), \frac{c_2 \lim_{l \to \infty} \phi(u_{n_l},Tu)}{2} d_{\phi}(u,Tu)\}$$
$$\leq \eta \max\{c_1, \eta \frac{c_2 \lim_{l \to \infty} \phi(u_{n_l},Tu)}{2}\} d_{\phi}(u,Tu),$$

for every $\epsilon > 0$. Thus,

$$d_{\phi}(u,Tu) \leq \max\{\eta c_1, \eta \frac{\eta c_2 \lim_{l \to \infty} \phi(u_{n_l},Tu)}{2}\} d_{\phi}(u,Tu).$$

As max $\{\eta c_1, \eta \frac{\eta c_2 \lim_{l \to \infty} \phi(u_{n_l}, Tu)}{2}\} < 1$, so from above inequality $d_{\phi}(u, Tu) < d_{\phi}(u, Tu)$, which is impossible, therefore $d_{\phi}(u, Tu) = 0$, i.e., $u \in Tu$. Hence *T* has a fixed point in **U**.

Case (ii): If $d_{\phi}(u, Tu) > \lim_{n \to \infty} \sup d_{\phi}(u_n, Tu)$, then there exists $N_0 \in \mathbb{N}$ such that for every $n \ge N_0$, we have

$$d_{\phi}(u_{n_l}, Tu) \leq d_{\phi}(u, Tu)$$

From the triangle inequality, $d_{\phi}(u, Tu) \leq \phi(u, Tu)(d_{\phi}(u, u_{n+1}) + d_{\phi}(u_{n+1}, Tu))$, we obtain:

$$d_{\phi}(u, Tu) - \phi(u, Tu)(d_{\phi}(u, u_{n+1}) \le \phi(u, Tu)d_{\phi}(u_{n+1}, Tu) \le \phi(u, Tu)\eta \max\{d_{\phi}(u_n, u), c_1d_{\phi}(u_n, u_{n+1}), c_1d_{\phi}(u, Tu), \frac{c_2}{2}(d_{\phi}(u_n, Tu) + d_{\phi}(u, u_{n+1}))\}$$

$$\leq \eta \max\{d_{\phi}(u_{n}, u), c_{1}d_{\phi}(u_{n}, u_{n+1}), c_{1}d_{\phi}(u, Tu), \frac{c_{2}}{2}(\phi(u_{n}, Tu))$$
(41)

$$(d_{\phi}(u_n, u) + d_{\phi}(u, Tu))) + d_{\phi}(u, u_{n+1})\}.$$
(42)

Since $\lim_{n\to\infty} u_n = u$, $\lim_{n\to\infty} d_{\phi}(u_n, u_{n+1}) = 0$. Therefore by taking limit $n \to \infty$ in Equations (41) and (42), we obtain:

$$d_{\phi}(u, Tu) - \phi(u, Tu)d_{\phi}(u, u_{n+1}) \leq$$

$$\phi(u, Tu)\eta \max\{0, c_1d_{\phi}(u, Tu), \frac{c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2} d_{\phi}(u, Tu)$$

$$\leq \phi(u, Tu) \max\{\eta c_1, \eta \frac{\eta c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2}\} d_{\phi}(u, Tu),$$
(43)

from condition (*ii*), since $\phi(u, Tu) \max\{\eta c_1, \eta \frac{\eta c_2 \lim_{n \to \infty} \phi(u_n, Tu)}{2}\} < 1$, so from Equation (43), $d_{\phi}(u, Tu) < d_{\phi}(u, Tu)$, which is impossible, therefore $d_{\phi}(u, Tu) = 0$, i.e., $u \in Tu$. Hence *T* has a fixed point in **U**.

Remark 7.

- (i) For $c_1, c_2 = 0$ in Theorem 12, we obtain Nadler's contraction principle for multi valued-mappings, i.e., Theorem 5 from [24].
- (ii) Theorem 14 generalizes Theorems 12 and 13;
- (ii) Theorem 14 generalizes Theorem 3.3 from [42], which generalizes Theorem 7 of [30]. Also, Theorem 7, which is a generalization of Theorem 2.2 from [29], improves Theorem 3.3 from [43], Corollary 3.3 from [5], and Theorem 1 from [28].

Example 2. Let $\mathbf{U} = \{\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots\} \cup \{0, 1\}, d_{\phi}(u_1, u_2) = (u_1 - u_2)^2$, for $u_1, u_2 \in \mathbf{U}$, where $\phi : \mathbf{U} \times \mathbf{U} \rightarrow [1, \infty)$ define by $\phi(u_1, u_2) = u_1 + u_2 + 1$. Then \mathbf{U} is a complete extended b-metric space. Define mapping $T : \mathbf{U} \rightarrow C\mathcal{B}(\mathbf{U})$ as

$$Tu = \begin{cases} \left\{\frac{1}{2^{n+1}}\right\}, & u = \frac{1}{2^n}, n = 0, 1, 2, \dots \\ u, & u = 0. \end{cases}$$

Hence T is continuous. Since $N_{c_1,c_2}(\frac{1}{2^n}, 0) = \frac{1}{2^{2n}}$, for all $c_1, c_2 \in [0, 1]$, we get:

$$H_{\Phi}\Big(T\Big(rac{1}{2^n}\Big),T(0)\Big)=rac{1}{2^{2n+2}}\leq rac{1}{2^{2n+1}}\leq rac{1}{2}N_{c_1,c_2}\Big(rac{1}{2^n},0\Big),$$

where $\eta = \frac{1}{2}$. Also for each $u_0 \in \mathbf{U}$, $\lim_{n,m\to\infty} \eta c_2 \phi(u_n, u_m) < 1$. Clearly, it satisfies all the conditions of *Theorem 12, and so there exists a fixed point.*

Example 3. Let $\mathbf{U} = [0, \infty)$. Define $d_{\phi}(u_1, u_2) = (u_1 - u_2)^2$, for $u_1, u_2 \in \mathbf{U}$, where $\phi : \mathbf{U} \times \mathbf{U} \to [1, \infty)$, where $\phi(u_1, u_2) = u_1 + u_2 + 2$. Then \mathbf{U} is a complete extended b-metric space. Define mapping $T : \mathbf{U} \to C\mathcal{B}(\mathbf{U})$ as $Tu = \{\frac{8}{9}u\}$ for every $u \in \mathbf{U}$. Note that Theorem 14 is applicable by taking $c_1 = c_2 = 0$ and $\eta = \frac{8}{9}$.

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. *Fundam. Math.* 1922, 3, 133–181. [CrossRef]
- 2. Kannan, R. Some results on fixed points. Bull. Calc. Math. Soc. 1972, 25, 727–730. [CrossRef]
- 3. Edelstein, M. An extension of Banach's contraction principle. J. Lond. Math. Soc. 1961, 12, 7–10.
- 4. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. *Can. Math. Bull.* **1973**, *16*, 201–206. [CrossRef]
- Rouhani, B.D.; Moradi, S. Common fixed point of multivalued generalized *φ*-weak contractive mappings. *Fixed Point Theory Appl.* 2010, 2010, 708984.
- 6. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. *Comput. Math. Appl.* **2011**, *62*, 4222–4229. [CrossRef]
- la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Fixed point-type results for a class of extended cyclic self-mappings under three general weak contractive conditions of rational type. *Fixed Point Theory Appl.* 2011, 2011, 102. [CrossRef]
- 8. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff Metric and Nadler's Fixed Point Theorem on Partial Metric Spaces. *Topol. Its Appl.* **2012**, *159*, 3234–3242. [CrossRef]
- 9. Kakutani, S. A generalization of Brouwer's fixed point Theorem. Duke Math. J. 1941, 8, 457–459. [CrossRef]
- 10. Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak *φ*-contractions on b-metric spaces. *Fixed Point Theory* **2012**, *13*, 337–346.
- Aydi, H.; Karapinar, E.; Samet, B. Fixed point theorems for various classes of cyclic mappings. *J. Appl. Math.* 2012, 2012, 867216. [CrossRef]
- 12. Mitrović, Z.D.; Aydi, H.; Hussain, N.; Mukheimer, A. Reich, Jungck, and Berinde common fixed point results on *F*-metric spaces and an application. *Mathematics* **2019**, *7*, 387. [CrossRef]
- 13. Patle, P.R.; Patel, D.K.; Aydi, H.; Gopal, D.; Mlaiki, N. Nadler and Kannan type set valued mappings in *M*-metric spaces and an application. *Mathematics* **2019**, *7*, 373. [CrossRef]
- 14. Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1968, 60, 71-76. [CrossRef]
- 15. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
- 16. Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
- 17. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. *Atti Sem. Mat. Fis. Univ. Modena* **1998**, *46*, 263–276.

- 18. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
- 19. Kir, M.; Kiziltunc, H. On some well known fixed point theorems in b-metric spaces. *Turk. Anal. Number Theory* **2013**, *1*, 13–16. [CrossRef]
- 20. Dubey, A.K.; Shukla, R.; Dubey, R.P. Some fixed point results in b-metric spaces. *Asian J. Math. Appl.* **2014**, *1*, 1–6.
- 21. Koleva, R.; Zlatanov, B. On fixed points for Chatterjeas maps in b-metric spaces. *Turk. J. Anal. Number Theory* **2016**, *4*, 31–34.
- Ilchev, A.; Zlatanov, B. On Fixed Points for Reich Maps in B-Metric Spaces; Annual of Konstantin Preslavski University of Shumen, Faculty of Mathematics and Computer Science XVII C: Shumen, Bulgaria, 2016; pp. 77–88.
- 23. Aleksic, S.; Mitrovic, Z.D.; Radenovic, S. On some recent fixed point results for single and multi-valued mapping in b-metric space. *Fasc. Math.* **2018**, *61*, 5–16.
- 24. Nadler, S.B. Multi-valued contraction mappings. Not. Am. Math. Soc. 1967, 14, 930. [CrossRef]
- 25. Singh, S.L.; Mishra, S.N.; Chugh, R.; Kamal, R. General Common Fixed Point Theorems and Applications. *J. Appl. Math.* **2012**, 2012, 902312. [CrossRef]
- la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Best proximity and fixed point results for cyclic multi-valued mappings under a generalized contractive condition. *Fixed Point Theory Appl.* 2013, 2013, 324. [CrossRef]
- 27. Petrusel, A.; Petrusel, G. On Reich's strict fixed point theorem for multi-valued operators in complete metric spaces. *J. Nonlinear Var. Anal.* **2018**, *2*, 103–112.
- 28. Ciric, L. A generalization of Banach's contraction principle. *Proc. Am. Math. Soc.* **1974**, 45, 267–273. [CrossRef]
- 29. Amini-Harandi, A. Fixed point theory for set-valued quasi-contraction maps in metric spaces. *Appl. Math. Lett.* **2011**, *24*, 1791–1794. [CrossRef]
- 30. Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrovic, S. A fixed point Theorem for set-valued quasi-contractions in b-metric spaces. *Fixed Point Theory Appl.* **2012**, 2012, 88. [CrossRef]
- 31. Subashi, L. Some topological properties of extended b-metric space. In Proceedings of the 5th International Virtual Conference on Advanced Scientific Results, Zilina, Slovakia, 26–30 June 2017; Volume 5, pp. 164–167.
- 32. Subashi, L.; Gjini, N. Fractals in extended b-metric space. J. Prog. Res. Math. 2017, 12, 2057–2065.
- 33. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. *Mathematics* **2018**, *6*, 320. [CrossRef]
- 34. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. *Mathematics* **2018**, *6*, 194. [CrossRef]
- 35. Subashi, L.; Gjini, N. Some results on extended b-metric spaces and Pompeiu-Hausdorff metric. *J. Prog. Res. Math.* **2017**, *12*, 2021–2029.
- 36. Alqahtani, B.; Fulga, A.; Karapinar, E. Non-Unique fixed point results in extended b-metric space. *Mathematics* **2018**, *6*, 68. [CrossRef]
- 37. Shatanawi, W.; Mukheimer, A.; Abodayeh, K. Some fixed point Theorems in extended b-metric spaces. *Appl. Math. Phys.* **2018**, *80*, 71–78.
- 38. Kamran, T. A Generalization of b-metric space and some fixed point theorems. *Mathematics* **2017**, *5*, 19. [CrossRef]
- 39. Alqahtani, B.; Fulga, A.; Karapinar, E. Contractions with rational expression in the extended b-metric space. 2019, in press.
- 40. Jovanovic, M.; Kadelburg, Z.; Radenovic, S. Common fixed point results in metric-type spaces. *Fixed Point Theory Appl.* **2010**, *1*, 978121. [CrossRef]
- 41. Shah, M.H.; Simic, S.; Hussain, N.; Sretenovic, A.; Radenovic, S. Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces. *J. Comput. Anal. Appl.* **2012**, *14*, 290–297.

- 42. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163 [CrossRef]
- Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. *J. Math. Anal. Appl.* 1995, 192, 655–666. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).