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Abstract: The time-fractional diffusion equation with mass absorption in a sphere is considered
under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used.
The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the
spatial coordinate are employed. A graphical representation of the obtained analytical solution for
different sets of the parameters including the order of fractional derivative is given.
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1. Introduction

The classical parabolic diffusion equation with heat or mass absorption [1]

∂u
∂t

= a∆u− bu (1)

also describes bioheat transfer, lateral surface mass or heat exchange in a thin plate, heating of tissue
during laser treatment irradiation, etc. (see, for example [2–5]). The Klein-Gordon equation

∂2u
∂t2 = a∆u− bu (2)

is used in solid state physics, classical mechanics, nonlinear optics, and quantum field theory [6,7].
The time-fractional equation

∂αu
∂tα

= a∆u− bu, 0 < α ≤ 2, (3)

can be considered as the extension of the parabolic Equation (1) and hyperbolic Equation (2) and was
studied in several publications [8–14].

It should be noted that such a generalization of many classical differential equations with integer
derivatives has numerous applications in rheology, geology, physics, plasma physics, chemistry,
geophysics, engineering, biology, bio-engineering, finance, and medicine (see [15–29], among many
others). There is a great variety of inhomogeneous media where transport phenomena exhibit
anomalous properties, the investigation of which is essential to refine understanding the basic
characteristics of complex systems widely met in nature. Therefore, studying fractional equations
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has generated increasing attention of scientists in many disciplines. At present, the fractional
diffusion-wave equation is generally used to describe a large class of systems at different scales
(from the molecular [30] to the space one [31]) which cover media of the diverse nature (from plasma
physics [29] to living tissue [3]). The study of this equation is also of interest from the point of view of
understanding the complex spatio-temporal dynamics in nonlinear systems of fractional order [32,33].

In Equation (3) and further in this paper, for more concise notation, d α f (t)
dtα denotes the Caputo

fractional derivative [16,34]

dα f (t)
dtα

=
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 dn f (τ)

dτn dτ, n− 1 < α < n, (4)

and Γ(α) denotes the gamma function.
Ångström was the first to investigate the standard parabolic heat conduction equation under

harmonic impact and laid the foundations for the new area of study known as “oscillatory diffusion”
or “diffusion-waves” (see [35–37] and references therein). Periodic solutions of the bioheat equation
were investigated in [38]. The harmonic point source in the bioheat equation was used in therapeutic
hypotermia [39,40]; applications of the time-harmonic impact in ultrasound surgery were studied
in [41].

As a rule, in the previous studies of diffusion or heat conduction equation the quasi-steady-state
oscillations were investigated when the solution u(x, t) was represented as a product of a function of
the spatial coordinates U(x) and the time-harmonic term eiωt with the angular frequency ω

u(x, t) = U(x) eiωt (5)

without consideration of the initial conditions.
The use of assumption (5) is based on the well known formula for the derivative of the integer

order n of the exponential function
dneλt

dtn = λn eλt. (6)

In the event of the non-integer order of time derivative, the assumption (5) cannot be used
since [42]

dαeλt

dtα
= λα eλt γ(n− α), λt)

Γ(n− α)
6= λα eλt, n− 1 < α < n, (7)

with γ(a, x) being the incomplete gamma function [43]

γ(a, x) =
∫ x

0
e−uua−1 du. (8)

It is worthy of notice that for the Riemann-Liouville fractional derivative [16,34] with the lower
limit of integration at 0

D α
RL f (t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ

]
, n− 1 < α < n, (9)

we also have [16]
D α

RLeλt = t−α E1,1−α (λt) 6= λα eλt. (10)

Here Eα,β(z) is the Mittag-Leffler function in two parameters α and β [16,34]

Eα,β (z) =
∞

∑
n=0

zn

Γ(αn + β)
, < (α) > 0, β ∈ C, z ∈ C. (11)
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In this paper, the initial-boundary-value problem for Equation (3) is studied in a spherical domain
for the case of central symmetry under the Dirichlet boundary condition varying harmonically in time.
The present paper develops and extends the results of the previous investigations [44,45], where the
corresponding problems for line and half-line domains were investigated.

2. Statement of the Problem

The time-fractional diffusion equation with mass absorption (mass release) is examined in a sphere

∂αu
∂tα

= a
(

∂2u
∂r2 +

2
r

∂u
∂r

)
− bu, 0 < r < R, 0 < t < ∞, 0 < α ≤ 2, (12)

under zero initial conditions

t = 0 : u = 0, 0 < α ≤ 2, (13)

t = 0 :
∂u
∂t

= 0, 1 < α ≤ 2, (14)

and harmonic impact on the surface of a sphere

r = R : u = u0eiωt. (15)

As in the case of classical diffusion equation (when α = 1) and the wave equation (when α = 2)
the boundedness condition at the origin is also adopted:

r = 0 : u 6= ∞. (16)

In what follows, the integral transform technique will be used. Recall the Laplace transform rule
for the Caputo derivative

L
{

dα f (t)
dtα

}
= sα f ∗(s)−

n−1

∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n, (17)

where the transform is marked by the asterisk, and s is the Laplace transform variable.
The following finite sin-Fourier transform is amenable to the central symmetric problem in a

spherical domain 0 ≤ r ≤ R [46]. For the Dirichlet boundary condition:

F{ f (r)} = f̃ (ξk) =
∫ R

0
r f (r)

sin(rξk)

ξk
dr, (18)

F −1{ f̃ (ξk)} = f (r) =
2
R

∞

∑
k=1

ξk f̃ (ξk)
sin(rξk)

r
, (19)

where the transform is marked by the tilde, and

ξk =
kπ

R
(20)

is the Fourier transform variable.
For the central symmetric Laplace operator

F
{

d2 f (r)
dr2 +

2
r

d f (r)
dr

}
= −ξ2

k f̃ (ξk) + (−1)k+1R f (R). (21)
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Applying to the problems (12)–(16) the Laplace transform with respect to time t and the finite
sin-Fourier transform (18) with respect to the radial coordinate r, we get in the transform domain

ũ ∗(ξk, s) = (−1)k+1aRu0
1

sα + aξ2
k + b

1
s− iω

. (22)

The solution is obtained after inversion of the integral transforms:

u(r, t) =
2au0

r

∞

∑
k=1

(−1)k+1ξk sin (rξk)
∫ t

0
τα−1Eα,α

[
−
(

aξ2
k + b

)
τα
]

eiω(t−τ) dτ, (23)

where Eα,β(z) is the Mittag-Leffler function (11), and the convolution theorem as well as the following
equation for the inverse Laplace transform [16]

L−1
{

sα−β

sα + γ

}
= tβ−1Eα,β (−γtα) , α > 0, β > 0, (24)

have been used.
In numerical calculations, the nondimensional quantities are used:

ū =
u
u0

, r̄ =
r
R

, t̄ =
a1/α

R2/α
t, ω̄ =

R2/α

a1/α
ω,

b̄ =
R2

a
b, ηk = Rξk = kπ. (25)

Hence, using in integral in (23) the substitution τ = tw, for the real part of the solution we get

ū(r̄, t̄, b̄, ω̄) =
2t̄ α

r̄

∞

∑
k=1

(−1)k+1ηk sin (r̄ηk)
∫ 1

0
wα−1Eα,α

[
−
(

η2
k + b̄

)
t̄αwα

]
cos [ω̄t̄(1− w)] dw, (26)

where we can see that the solution ū depends not only on time and spatial coordinate, but also on the
parameters b̄ and ω̄.

To simplify calculations, it would be worthwhile to introduce a substitution z = wα. Hence,

ū(r̄, t̄, b̄, ω̄) =
2t̄ α

r̄

∞

∑
k=1

(−1)k+1ηk sin (r̄ηk)
∫ 1

0
Eα,α

[
−
(

η2
k + b̄

)
t̄ αz
]

cos
[
ω̄t̄
(

1− z1/α
)]

dz. (27)

To evaluate the Mittag-Leffler function the algorithms suggested in [47] were used; see also the
MATLAB function [48] that implements these algorithms.

The numerical results are shown in Figures 1–5. Calculations were carried out for the grid size
step ∆t̄ = 0.1, ∆r̄ = 0.05. A graphical representation of the solution (27) makes it possible to analyze
not only the limiting cases of the problem (see Section 3), but also to understand the influence of
the main parameters of the problem (including the value of the order of fractional derivative) on the
spatial-temporal evolution of the solution.

It is seen from Figures that time oscillations of the solution are governed by the harmonic term
eiωt. The increasing of absorption parameter b decreases the oscillation amplitude (Figures 2b and 3d),
whereas increasing α increases it (Figures 2a–d and 3d). As the Mittag-Leffler function

E2,2

(
−x2

)
=

sin x
x

, (28)

the space oscillations of the solution depending on the order of fractional derivative appear for α ≥ 1.5
(Figures 1d and 2d) and become well-marked for α approaching 2. The influence of both factors is
evident from Figures 4 and 5.
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(a) (b)

(c) (d)

Figure 1. Evolution of the solution for the problems (12)–(15) under constant impact. The results of
computer simulation of the formula (27) for the parameters b̄ = 4, ω̄ = 0 and different values of α:
α = 0.5—(a); α = 0.75—(b); α = 1.25—(c); α = 1.5—(d).

(a) (b)

(c) (d)

Figure 2. Evolution of the solution for the problems (12)–(15) under harmonic impact. The results of
computer simulation of the formula (27) for the parameters b̄ = 4, ω̄ = 4 and different values of α:
α = 0.5—(a); α = 0.75—(b); α = 1.25—(c); α = 1.5—(d).
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(a) (b)

(c) (d)

Figure 3. Evolution of the solution for the problems (12)–(15) with increasing the frequency ω̄ in the
sub-diffusive case. The results of computer simulation of the formula (27) for the parameters b̄ = 1,
α = 0.75 and different values of ω̄: ω̄ = 0.0—(a); ω̄ = 1.0—(b); ω̄ = 2.0—(c); ω̄ = 4.0—(d).

(a) (b)

(c) (d)

Figure 4. Evolution of the solution for the problems (12)–(15) with increasing the frequency ω̄ in
the sub-wave case. The results of computer simulation of the formula (27) for the parameters b̄ = 1,
α = 1.75 and different values of ω̄: ω̄ = 0.0—(a); ω̄ = 1.0—(b); ω̄ = 2.0—(c); ω̄ = 4.0—(d).
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(a) (b)

(c) (d)

Figure 5. Evolution of the solution for the problems (12)–(15) for different orders of fractional derivative.
The results of computer simulation of the formula (27) for the parameters b̄ = 2, ω̄ = 2.0 and different
values of α: α = 0.75—(a); α = 0.95—(b); α = 1.75—(c); α = 1.95—(d).

3. Analysis of the Quasi-Steady-State Oscillations

Now, we shall investigate two particular cases of the problem studied in the previous section
corresponding to the integer values of the order of time derivative. For α = 1, we have

ũ ∗(ξk, s) = (−1)k+1aRu0
1

s + aξ2
k + b

1
s− iω

. (29)

Taking into account that [49]

L−1
{

1
(s + p) (s + q)

}
=

e−qt − e−pt

p− q
, (30)

we arrive at the solution to the bioheat equation

u(r, t) =
2au0

r

∞

∑
k=1

(−1)k+1 ξk sin (rξk)

aξ2
k + b + iω

eiωt

− 2au0

r

∞

∑
k=1

(−1)k+1 ξk sin (rξk)

aξ2
k + b + iω

e−(aξ2
k+b)t. (31)

Similarly, for α = 2,

ũ ∗(ξk, s) = (−1)k+1aRu0
1

s2 + aξ2
k + b

1
s− iω

. (32)

Taking into consideration that [49]

L−1
{

1
(s2 + p2) (s + q)

}
=

1
p2 + q2

[
e−qt − cos (pt) +

q
p

sin (pt)
]

, (33)
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we obtain the solution to the Klein-Gordon equation

u(r, t) =
2au0

r

∞

∑
k=1

(−1)k+1 ξk sin (rξk)

aξ2
k + b−ω2

eiωt

− 2au0

r

∞

∑
k=1

(−1)k+1 ξk sin (rξk)

aξ2
k + b−ω2

cos
(√

aξ2
k + b t

)
+

iω√
aξ2

k + b
sin
(√

aξ2
k + b t

). (34)

For integer α, we can assume that

u(r, t) = U(r)eiωt. (35)

For α = 1, the function U(r) fulfills the equation

d2U
dr2 +

2
r

dU
dr
− b + iω

a
U = 0, (36)

under the boundary condition
r = R : U(r) = u0, (37)

and for b > 0 has the solution bounded at the origin

U(r) =
Ru0

r

sinh
[
r
√
(b + iω)/a

]
sinh

[
R
√
(b + iω)/a

] . (38)

Therefore,

u(r, t) =
Ru0

r

sinh
[
r
√
(b + iω)/a

]
sinh

[
R
√
(b + iω)/a

] eiωt (39)

(for negative value of b, sinh will be substituted by sin).
The first term in the solution (31) can be evaluated analytically using the following formula [50]

∞

∑
k=1

(−1)k+1 k
k2 + p2 sin (kr) =

π

2
sinh(rp)
sinh(πp)

, −π < r < π, . (40)

∞

∑
k=1

(−1)k+1 k
k2 − p2 sin (kr) =

π

2
sin(rp)
sin(πp)

, −π < r < π. (41)

It was emphasized in [51] that Equation (41) is also valid for complex values of p and hence turns
into Equation (40) for imaginary p.

Taking into account Equation (40), we obtain that the first term in the solution (31) coincides
with the quasi-steady-state solution (39), whereas the second term in Equation (31) describes the
transient process.

The similar analysis can be carried out for α = 2 based on the assumption (35). In this case, the
function U(r) fulfills the equation

d2U
dr2 +

2
r

dU
dr
− b−ω2

a
U = 0, (42)

under the boundary condition
r = R : U(r) = u0, (43)
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and for b > ω2 has the solution bounded at the origin

U(r) =
Ru0

r

sinh
[
r
√
(b−ω2)/a

]
sinh

[
R
√
(b−ω2)/a

] , (44)

whereas for b < ω2

U(r) =
Ru0

r

sin
[
r
√
(ω2 − b)/a

]
sin
[

R
√
(ω2 − b)/a

] . (45)

Hence, for b > ω2

u(r, t) =
Ru0

r

sinh
[
r
√
(b−ω2)/a

]
sinh

[
R
√
(b−ω2)/a

] eiωt. (46)

and for b < ω2

u(r, t) =
Ru0

r

sin
[
r
√
(ω2 − b)/a

]
sin
[

R
√
(ω2 − b)/a

] eiωt. (47)

The first term in the solution (34) after accounting for Equations (40) and (41) coincides with the
quasi-steady-state solutions (46) and (47), respectively, whereas the second term in (34) describes the
transient process.

4. Conclusions

The time-fractional diffusion-wave equation with the Caputo fractional derivative of the order
0 < α ≤ 2 with mass absorption was studied in a spherical domain under the Dirichlet boundary
condition varying harmonically in time. The Caputo derivative of the exponential function has
a much more complicated form than the corresponding derivative of the integer order. Hence,
the assumption that the solution of the problem can be represented as a product of a function of the
spatial coordinate and the time-harmonic term without consideration of the initial conditions cannot
be used. The solution is obtained using the Laplace transform with respect to time and the finite
sin-Fourier transform specifically adapted for a spherical domain and is expressed in terms of the
Mittag-Leffler function. A graphical representation of the obtained analytical solution demonstrates
the influence of the main parameters of the problem including the value of the order of fractional
derivative on the spatial-temporal evolution of the solution.
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