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Abstract

:

In the present article, we consider certain subfamilies of analytic functions connected with the cardioid domain in the region of the unit disk. The purpose of this article is to investigate the estimates of the third Hankel determinant for these families. Further, the same bounds have been investigated for two-fold and three-fold symmetric functions.
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1. Introduction and Definitions


Let A be the family of all functions that are holomorphic (or analytic) in the open unit disc Δ=z∈C:z<1 and having the following Taylor–Maclaurin series form:


f(z)=z+∑k=2∞akzkz∈Δ.



(1)




Further, let S represent a subfamily of A, which contains functions that are univalent in Δ. The familiar coefficient conjecture for the function f∈S of the form (1) was first presented by Bieberbach [1] in 1916 and proven by de-Branges [2] in 1985. In between the years 1916 and 1985, many researchers tried to prove or disprove this conjecture. Consequently, they defined several subfamilies of S connected with different image domains. Among these, the families S*, C, and K of starlike functions, convex functions, and close-to-convex functions, respectively, are the most fundamental subfamilies of S and have a nice geometric interpretation. These families are defined as:


S*=f∈S:zf′zfz≺1+z1−z,z∈Δ,C=f∈S:zf′z′f′z≺1+z1−z,z∈Δ,K=f∈S:zf′zgz≺1+z1−z,forgz∈S*,z∈Δ,








where the symbol “≺” denotes the familiar subordinations between analytic functions and is defined as: the function h1 is subordinate to a function h2, symbolically written as h1≺h2 or h1z≺h2z, if we can find a function w, called the Schwarz function, that is holomorphic in Δ with w0=0 and w(z)<1 such that h1z=h2wzz∈Δ. In the case of the univalency of h2 in Δ, then the following relation holds:


h1(z)≺h2(z)(z∈Δ)⟺h1(0)=h2(0)andh1(Δ)⊂h2(Δ).








In [3], Padmanabhan and Parvatham in 1985 defined a unified family of starlike and convex functions using familiar convolution with the function z/1−za, for a∈R. Later on, Shanmugam [4] generalized this idea by introducing the family:


Sh*ϕ=f∈A:zf∗h′f∗h≺ϕz,z∈Δ,








where “∗” stands for the familiar convolution, ϕ is a convex, and h is a fixed function in A. Furthermore, if we replace h in Sh*ϕ by z/1−z and z/1−z2, we obtain the families S*ϕ and Cϕ respectively. In 1992, Ma and Minda [5] reduced the restriction to a weaker supposition that ϕ is a function, with Re ϕ(z)>0 in Δ, whose image domain is symmetric about the real axis and starlike with respect to ϕ(0)=1 with ϕ′(0)>0 and discussed some properties including distortion, growth, and covering theorems. The family S*ϕ generalizes various subfamilies of the family A, for example;




	(i)

	
If ϕ(z)=1+Az1+Bz with −1≤B<A≤1, then S*[A,B]:=S*1+Az1+Bz is the family of Janowski starlike functions; see [6]. Further, if A=1−2α and B=−1 with 0≤α<1, then we get the family S*(α) of starlike functions of order α.




	(ii)

	
The family SL*:=S*(1+z) was introduced by Sokól and Stankiewicz [7], consisting of functions f∈A such that zf′(z)/f(z) lies in the region bounded by the right-half of the lemniscate of Bernoulli given by |w2−1|<1.




	(iii)

	
For ϕ(z)=1+sinz, the family S*(ϕ) leads to the family Ssin*, introduced in [8].




	(iv)

	
When we take ϕ(z)=ez, then we have Se*:=S*ez [9].




	(v)

	
The family SR*:=S*ϕ(z) with ϕ(z)=1+zkk+zk−z,k=2+1 was studied in [10].




	(vi)

	
By setting ϕ(z)=1+43z+23z2, the family S*(ϕ) reduces to Scar*, introduced by Sharma and his coauthors [11], consisting of functions f∈A such that zf′(z)/f(z) lies in the region bounded by the cardioid given by:


(9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0,








and also by the Alexandar-type relation, the authors in [11] defined the family Ccar by:


Ccar=f∈A:zf′z∈SC*z∈Δ;



(2)




see also [12,13]. For more special cases of the family S*(ϕ), see [14,15]. We now consider the following family connected with the cardioid domain:


Rcar=f∈A:f′z≺1+43z+23z2,z∈Δ.



(3)













For given parameters q,n∈N=1,2,…, the Hankel determinant Hq,nf was defined by Pommerenke [16,17] for a function f∈S of the form (1) given by:


Hq,nf=anan+1…an+q−1an+1an+2…an+q⋮⋮…⋮an+q−1an+q…an+2q−2.



(4)




The growth of Hq,nf has been investigated for different subfamilies of univalent functions. Specifically, the absolute sharp bounds of the functional H2,2f=a2a4−a32 were found in [18,19] for each of the families C,S* and R, where the family R contains functions of bounded turning. However, the exact estimate of this determinant for the family of close-to-convex functions is still undetermined [20]. Recently, Srivastava and his coauthors [21] found the estimate of the second Hankel determinant for bi-univalent functions involving the symmetric q-derivative operator, while in [22], the authors studied Hankel and Toeplitz determinants for subfamilies of q-starlike functions connected with the conic domain. For more literature, see [23,24,25,26,27,28,29,30].



The Hankel determinant of third order is given as:


H3,1f=1a2a3a2a3a4a3a4a5=−a5a22+2a2a3a4−a33+a5a3−a42.



(5)




The estimation of the determinant H3,1f is very hard as compared to deriving the bound of H2,2f. The very first paper on H3,1f was given in 2010 by Babalola [31], in which he obtained the upper bound of H3,1f for the families of S*,C, and R. Later on, many authors published their work regarding H3,1f for different subfamilies of univalent functions; see [32,33,34,35,36]. In 2017, Zaprawa [37] improved the results of Babalola as under:


H3,1f≤1,forf∈S*,49540,forf∈C,4160,forf∈R..








and claimed that these bounds are still not the best possible. Further, for the sharpness, he examined the subfamilies of S*,C, and R consisting of functions with m-fold symmetry and obtained the sharp bounds. Moreover, in 2018, Kwon et al. [38] improved the bound of Zaprawa for f∈S* and proved that H3,1f≤8/9, but it is not yet the best possible. The authors in [39,40,41] contributed in a similar direction by generalizing different families of univalent functions with respect to symmetric points. In 2018, Kowalczyk et al. [42] and Lecko et al. [43] obtained the sharp inequalities:


H3,1f≤4/135andH3,1f≤1/9,








for the recognizable families K and S*1/2, respectively, where the symbol S*1/2 stands for the family of starlike functions of order 1/2. Furthermore, we would like to cite the work done by Mahmood et al. [44] in which they studied the third Hankel determinant for a subfamily of starlike functions in the q-analogue. Additionally, Zhang et al. [45] studied this determinant for the family Se* and obtained the bound H3,1f≤0.565.



In the present article, our aim is to investigate the estimate of H3,1f for the subfamilies Scar*,Ccar, and Rcar of analytic functions connected with the cardioid domain. Moreover, we also study this problem for families of m-fold symmetric functions connected with the cardioid domain.




2. A lemma


Let P denote the family of all functions p that are analytic in Δ with ℜp(z)>0 and having the following series representation:


llpz=1+∑n=1∞cnznz∈Δ.



(6)







Lemma 1.

If p∈P and it has the form (6), then:


cn≤2forn≥1,



(7)






cmcn−ckcl≤4form+n=k+l,



(8)






cn+2k−μcnck2≤2(1+2μ);forμ∈R,



(9)






c2−c122≤2−c122,



(10)






cn+k−μcnck≤2,0≤μ≤1;22μ−1,elsewhere.



(11)




where the inequalities (7), (10), (11), and (9) are taken from [46].






3. Bound of H3,1f for the Family Scar*


Theorem 1.

If fz of the form (1) belongs to Scar*, then:


a2≤43,a3≤119anda4≤6881.








These bounds are the best possible.





Proof. 

Let f∈Scar*. Then, in the form of the Schwarz function, we have:


zf′zfz=1+43wz+23wz2z∈Δ.








Furthermore, we easily get:


zf′zfz=1+a2z+2a3−a22z2+3a4−3a2a3+a23z3










+4a5−2a32−4a2a4+4a22a3−a24z4+⋯.



(12)




and from series expansion of w with simple calculations, we can write:


1+43wz+23wz2=1+23c1z+23c2−c126z2+23c3−13c1c2z3+23c4+c1424−c226−c1c33z4+⋯.



(13)




By comparing (12) and (13), we get:


a2=23c1,



(14)






a3=12518c12+23c2,



(15)






a4=13c1c23+23c3−c1354,



(16)






a5=1423c4+c2218+727c1c3+7486c14−c12c29.



(17)




Applying (7) in (14) and (15), we have:


a2≤43anda3≤119.








Now, reshuffling (16), we get:


a4=1323c3+827c1c2+c127c2−c122.








If we insert c1=x∈0,2, then we have:


a4≤1343+1627x+x272−x22.








The above function has its maximum value at x=2. Therefore:


a4≤6881.








Equalities are obtained if we take:


fz=exp43z+lnz+13z2=z+43z2+119z3+6881z4+235486z5+⋯.



(18)




 □





Theorem 2.

If f∈Scar* and it has the series form (1), then:


H3,1f≤874729.













Proof. 

From (5), the third Hankel determinant can be written as:


H31=−a22a5+2a2a3a4−a33+a3a5−a42.








Inserting (14)–(17), we get:


H3,1f=7729c14c2+28111664c13c3+c2c418+23324c1c2c3−2083419904c16−7216c23−11216c12c4−592592c12c22−481c32.








Now, rearranging, it yields:


H3,1f=2083209952c14c2−c122+c418c2−c122+28123328c13c3−672559c1c2+5216c1c2c3−c1c4−c1c3648c2−c122+26323328c12c1c3−c22−481c3c3−c1c2−675832c12c22−7216c23.








Applying the triangle inequality:


H3,1f≤2083209952c14c2−c122+c418c2−c122+28123328c13c3−672559c1c2+5216c1c2c3−c1c4+c1c3648c2−c122+26323328c12c1c3−c22+481c3c3−c1c2+675832c12c22+7216c23;








besides, (7), (10), (11) and (8) lead us to:


H3,1f≤2083209952c142−c122+192−c122+28111664c13+554c1+c13242−c122+2635832c12+1681+671458c12+727.








If we insert c1=x∈0,2, then we have:


H3f≤2083209952x42−x22+192−x22+28111664x3+554x+x3242−x22+2635832x2+1681+671458x2+727=Φx,say.








Then, the function Φx is increasing. Therefore, we get its maximum value by putting x=2,


H3,1f≤874729.








Thus, the proof follows. □





From the function given by (18), we conclude the following conjecture.



Conjecture 3.1.

Let f ∈ Scar* and in the form (1). Then, the sharp bound is:


H3,1f≤82713122.














4. Bound of H3,1f for the Family Ccar


Theorem 3.

If f∈Ccar and has the series form (1), then:


a2≤23,a3≤1127anda4≤1781.








These bounds are the best possible.





Proof. 

Let the function f∈Ccar. Then, by the Alexandar-type relation, we say that zf′∈Scar*, and hence, using the coefficient bounds of the family Scar*, which was proven in the last Theorem, we get the needed bounds.  □





Theorem 4.

Let f have the form (1) and belong to Ccar. Then:


H3,1f≤3194374.













Proof. 

From (5), the third Hankel determinant can be obtained as:


H3,1f=−a22a5+2a2a3a4−a33+a3a5−a42.








Utilizing the definition of the family Ccar, we easily have:


H3,1f=97174960c14c2+6158320c13c3+1270c2c4+1405c1c2c3−6173149280c16−3129160c23−73240c12c4−143116640c12c22−1324c32.








After reordering, it yields:


H3,1f=97349920c14(c2−617873c12)−143116640c12c2(c2−97429c12)−73240c12(c4−61126c1c3)+c2270(c4−31108c22)−c3324(c3−324405c1c2).








Using the triangle inequality, we get:


H3,1f≤97349920c14c2−617873c12+143116640c12c2c2−97429c12+73240c12c4−61126c1c3+c2270c4−31108c22+c3324c3−324405c1c2.








The application of (7) and (11) leads us to:


H3,1f≤9710935+1437290+7405+4270+4324=3194374.








Thus, the proof is completed. □






5. Bound of H3,1f for the Family Rcar


Theorem 5.

Let f∈Rcar and be given in the form (1). Then:


a2≤23,a3≤49,a4≤13.








These results are the best possible.





Proof. 

Let f∈Rcar. Then, we can write (3), in the form of the Schwarz function, as:


f′z=1+43wz+23wz2,z∈Δ.








Since:


f′z=1+2a2z+3a3z2+4a4z3+5a5z4+⋯,



(19)




by comparing (19) and (13), we may get:


a2=c13,



(20)






a3=29c2−c124,



(21)






a4=16c3−c1c22,



(22)






a5=1152c4+c148−c222−c1c3.



(23)




Using (7) in (20), we get:


a2≤23.








Applying (11) in (21) and (22), we obtain:


a3≤49anda4≤13.








Thus, the proof is completed.



Equalities in each coefficient a2,a3, and a4 are obtained respectively by taking:


f1z=z+23z2+29z3,f2z=z+49z3+215z5,f3z=z+13z4+221z7.








 □





Theorem 6.

Let f∈Rcar and be given in the form (1). Then:


H3,1f≤7541215.













Proof. 

From (5), the third Hankel determinant can be written as:


H31=−a22a5+2a2a3a4−a33+a3a5−a42.








Utilizing (20)–(23), we have:


H3,1f=72430c14c2+2405c13c3+4135c2c4+611620c1c2c3−7158320c16−671620c23−c12c445−10719440c12c22−c3236.








By rearranging, it yields:


H3,1f=74860c14c2−7184c12−10719440c12c2c2−28107c12−c1245c4−29c1c3−c336c3−6145c1c2+4135c2c4−67108c22.








Implementing the triangle inequality, we have:


H3,1f≤74860c14c2−7184c12+10719440c12c2c2−28107c12+c1245c4−29c1c3+c336c3−6145c1c2+4135c2c4−67108c22.








(7) and (11) lead us to:


H3,1f≤2244860+171219440+845+77405+16135.=7541215.








Thus, the proof of this result is completed. □






6. Bounds of H3,1ffor Two-fold and Three-fold functions


Let m∈N=1,2,…. If a rotation Ω about the origin through an angle 2π/m carries Ω on itself, then such a domain Ω is called m-fold symmetric. An analytic function f is m-fold symmetric in Δ, if:


fe2πi/mz=e2πi/mfzz∈Δ.








By S(m), we define the family of m-fold univalent functions having the following Taylor series form:


fz=z+∑k=1∞amk+1zmk+1z∈Δ.



(24)




The subfamilies Scar*(m), Ccar(m), and Rcar(m) of S(m) are the families of the m-fold symmetric starlike, convex, and bounded turning functions, respectively, associated with the cardioid functions. More intuitively, an analytic function f of the form (24) belongs to the families Scar*(m), Ccar(m), and Rcar(m) if and only if:


zf′(z)f(z)=1+43pz−1pz+1+23pz−1pz+12,p∈P(m),



(25)






1+zf″zf′z=1+43pz−1pz+1+23pz−1pz+12,p∈P(m),



(26)






f′z=1+43pz−1pz+1+23pz−1pz+12,p∈P(m),



(27)




where the family P(m) is defined by:


P(m)=p∈P:pz=1+∑k=1∞cmkzmk,z∈D.



(28)




Now, we prove some theorems concerned with two-fold and three-fold symmetric functions.



Theorem 7.

If f∈Scar*2 and it has the form given in (24), then:


H3,1f≤29.













Proof. 

Let f∈Scar*2. Then, there exists a function p∈P2 such that:


zf′(z)f(z)=1+43pz−1pz+1+23pz−1pz+12.








Using the series form (24) and (28), when m=2 in the above relation, we can get:


a3=c23,



(29)






a5=14c2218+23c4.



(30)




Now:


H3f=a3a5−a33.








Utilizing (29) and (30), we get:


H3,1f=−7216c23+c2c418.








By reordering, it yields:


H3,1f=c218c4−712c22.








Using the triangle inequality long with (11) and (7), we have:


H3,1f≤29.








Hence, the proof is done. □





Theorem 8.

If f∈Scar*3 and it has the form (24), then:


H3,1f≤1681.








The result is sharp for the function:


fz=explnz+49z3+19z6=z+49z4+1781z7+⋯.



(31)









Proof. 

Let f∈Scar*(3). Then, there exists a function p∈P3 such that:


zf′(z)f(z)=1+43pz−1pz+1+23pz−1pz+12.








Utilizing the series form (24) and (28), when m=3 in the above relation, we can obtain:


a4=29c3.








Then,


H3,1f=−a42=−481c32.








Utilizing (7) along with triangle inequality, we have:


H3,1f≤1681.








Thus, the proof is completed. □





Theorem 9.

Let f∈Ccar2, and it has the form (24), then:


H3,1f≤2135.













Proof. 

Let f∈Ccar(2). Then, there exists a function p∈P2 such that:


1+zf′′(z)f′(z)=1+43pz−1pz+1+23pz−1pz+12.








Utilizing the series form (24) and (28), when m=2 in the above relation, we can obtain:


a3=c29,



(32)






a5=120c2218+23c4.



(33)






H3,1f=a3a5−a33.








Using (32) and (33), we have:


H3,1f=−3129160c23+c2c4270.








Now, reordering the above equation, we obtain:


H3f=c2270c4−31108c22.








Application of (7), (11), and the triangle inequality leads us to:


H3,1f≤2135.








Thus, the required result is completed. □





Theorem 10.

If f∈Ccar3 and it has the form given in (24), then:


H3,1f≤181.








The result is sharp for the function:


fz=∫0zexplnx+49x3+19x6xdx=z+19z4+17657z7+⋯.













Proof. 

Let f∈Ccar(3). Then, there exists a function p∈P3 such that:


1+zf′′(z)f′(z)=1+43pz−1pz+1+23pz−1pz+12.








Utilizing the series form (24) and (28), when m=3 in the above relation, we obtain:


a4=c318.








Then:


H3,1f=−a42=−c32324.








Implementing (7) and the triangle inequality, we have:


H3,1f≤181.








Hence, the proof is done. □





Theorem 11.

Let f∈Rcar(2) be of the form (24). Then:


H3,1f≤16135.













Proof. 

Since f∈Rcar(2), therefore there exists a function p∈P2 such that:


f′(z)=1+43pz−1pz+1+23pz−1pz+12.








For f∈Rcar(2), using the series form (24) and (28), when m=2 in the above relation, we can write:


a3=26c2,



(34)






a5=1523c4−c226.



(35)




It is clear that for f∈Rcar(2),


H3,1f:=a3a5−a33.








Applying (34) and (35), we have:


H3,1f=4135c2c4−673645c23.








By rearrangement, we have:


H3,1f=4135c2(c4−67108c22).








Using Lemma (7), (10), and triangle inequality, we get:


H3,1f≤16135.








Hence, the proof is completed. □





Theorem 12.

If f∈Rcar(3) and it is of the form (24), then:


H3,1f≤19.








This result is sharp for the function:


fz=∫0z1+43x3+23x6dx=z+13z4+221z7.













Proof. 

Since f∈Rcar(3), there exists a function p∈P3 such that:


f′(z)=1+43pz−1pz+1+23pz−1pz+12.








For f∈Rcar(3), using the series form (24) and (28), when m=2 in the above relation, we can write:


a4=c36.








Then:


H3,1f:=−a42=−c3236.








Implementing (7), we have:


H3,1f≤19.








Hence, the proof is completed. □






7. Conclusions


In this article, we studied the Hankel determinant H3,1f for the subfamilies Scar*, Ccar, and Rcar of the analytic function using a very simple technique. Further, these bounds were also discussed for two-fold symmetric and three-fold symmetric functions.
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