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Abstract: Inspired by the behavior of elephants in nature, elephant herd optimization (EHO) was
proposed recently for global optimization. Like most other metaheuristic algorithms, EHO does not
use the previous individuals in the later updating process. If the useful information in the previous
individuals were fully exploited and used in the later optimization process, the quality of solutions
may be improved significantly. In this paper, we propose several new updating strategies for EHO,
in which one, two, or three individuals are selected from the previous iterations, and their useful
information is incorporated into the updating process. Accordingly, the final individual at this iteration
is generated according to the elephant generated by the basic EHO, and the selected previous elephants
through a weighted sum. The weights are determined by a random number and the fitness of the
elephant individuals at the previous iteration. We incorporated each of the six individual updating
strategies individually into the basic EHO, creating six improved variants of EHO. We benchmarked
these proposed methods using sixteen test functions. Our experimental results demonstrated that the
proposed improved methods significantly outperformed the basic EHO.

Keywords: elephant herding optimization; EHO; swarm intelligence; individual updating strategy;
large-scale; benchmark

1. Introduction

Inspired by nature, a large variety of metaheuristic algorithms [1] have been proposed that provide
optimal or near-optimal solutions to various complex large-scale problems that are difficult to solve
using traditional techniques. Some of the many successful metaheuristic approaches include particle
swarm optimization (PSO) [2,3], cooperative coevolution [4–6], seagull optimization algorithm [7],
GRASP [8], clustering algorithm [9], and differential evolution (DE) [10,11], among others.

In 2015, Wang et al. [12,13] proposed a new metaheuristic algorithm called elephant herd
optimization (EHO), for finding the optimal or near-optimal function values. Although EHO exhibits
a good performance on benchmark evaluations [12,13], like most other metaheuristic methods, it does
not utilize the best information from the previous elephant individuals to guide current and future
searches. This gap will be addressed, because previous individuals can provide a variety of useful
information. If such information could be fully exploited and applied in the later updating process,
the performance of EHO may be improved significantly, without adding unnecessary operations and
fitness evaluations.

In the research presented in this paper, we extended and improved the performance of the
original EHO (which we call “the basic EHO”) by fully investigating the information in the previous
elephant individuals. Then, we designed six updating strategies to update the individuals. For each
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of the six individual updating strategies, first, we selected a certain number of elephants from the
previous iterations. This selection could be made in either a fixed or random way, with one, two,
or three individuals selected from previous iterations. Next, we used the information from these
selected previous individual elephants to update the individuals. In this way, the information from the
previous individuals could be reused fully. The final elephant individual at this iteration was generated
according to the elephant individual generated by the basic EHO at the current iteration, along with
the selected previous elephants using a weighted sum. While there are many ways to determine the
weights, in our current work, they were determined by random numbers. Last, by combining the six
individual updating strategies with EHO, we developed the improved variants of EHO. To verify our
work, we benchmarked these variants using sixteen cases involving large-scale complex functions.
Our experimental results showed that the proposed variants of EHO significantly outperformed the
originally described EHO.

The organization of the remainder of this paper is as follows. Section 2 reviews the main steps of
the basic EHO. In Section 3, we describe the proposed method for incorporating useful information
from previous elephants into the EHO. Section 4 provides details of our various experiments on sixteen
large-scale functions. Lastly, Section 5 offers our conclusion and suggestions for future work.

2. Related Work

As EHO [12,13] is a newly-proposed swarm intelligence-based algorithm, in this section, some
of the most representative work regarding swarm intelligence, including EHO, are summarized
and reviewed.

Meena et al. [14] proposed an improved EHO algorithm, which is used to solve the multi-objective
distributed energy resources (DER) accommodation problem of distribution systems by combining
a technique for order of preference by similarity to ideal solution (TOPSIS). The proposed technique is
productively implemented on three small- to large-scale benchmark test distribution systems of 33-bus,
118-bus, and 880-bus.

When the spectral resolution of the satellite imagery is increased, the higher within-class variability
reduces the statistical separability between the LU/LC classes in spectral space and tends to continue
diminishing the classification accuracy of the traditional classifiers. These are mostly per pixel and
parametric in nature. Jayanth et al. [15] used EHO to solve the problems. The experimental results
revealed that EHO shows an improvement of 10.7% on Arsikere Taluk and 6.63% on the NITK campus
over the support vector machine.

Rashwan et al. [16] carried out a series of experiments on a standard test bench, as well as engineering
problems and real-world problems, in order to understand the impact of the control parameters. On top
of that, the main aim of this paper is to propose different approaches to enhance the performance of EHO.
Case studies ranging from the recent test bench problems of Congress on Evolutionary Computation
(CEC) 2016, to the popular engineering problems of the gear train, welded beam, three-bar truss design
problem, continuous stirred tank reactor, and fed-batch fermentor, are used to validate and test the
performances of the proposed EHOs against existing techniques.

Correia et al. [17] firstly used a metaheuristic algorithm, namely EHO, to address the energy-based
source localization problem in wireless sensor networks. Through extensive simulations, the key
parameters of the EHO algorithm are optimized, such that they match the energy decay model between
two sensor nodes. The simulation results show that the new approach significantly outperforms
the existing solutions in noisy environments, encouraging further improvement and testing of
metaheuristic methods.

Jafari et al. [18] proposed a new hybrid algorithm that was based on EHO and cultural algorithm
(CA), known as the elephant herding optimization cultural (EHOC) algorithm. In this process, the belief
space defined by the cultural algorithm was used to improve the standard EHO. In EHOC, based on
the belief space, the separating operator is defined, which can create new local optimums in the
search space, so as to improve the algorithm search ability and to create an algorithm with an optimal



Mathematics 2019, 7, 395 3 of 35

exploration–exploitation balance. The CA, EHO, and EHOC algorithms are applied to eight mathematical
optimization problems and four truss weight minimization problems, and to assess the performance of
the proposed algorithm, the results are compared. The results clearly indicate that EHOC can accelerate
the convergence rate effectively and can develop better solutions compared with CA and EHO.

Hassanien et al. [19] combined support vector regression (SVR) with EHO in order to predict the
values of the three emotional scales as continuous variables. Multiple experiments are applied to evaluate
the prediction performance. EHO was applied in two stages of the optimization. Firstly, to fine-tune
the regression parameters of the SVR. Secondly, to select the most relevant features extracted from
all 40 EEG channels, and to eliminate the ineffective and redundant features. To verify the proposed
approach, the results proved EHO-SVR’s ability to gain a relatively enhanced performance, measured by
a regression accuracy of 98.64%.

Besides EHO, many other swarm intelligence-based algorithms have been proposed, and some of
the most representative ones are summarized and reviewed as follows.

Monarch butterfly optimization (MBO) [20] is proposed for global optimization problems, inspired
by the migration behavior of monarch butterflies. Yi et al. [21] proposed a novel quantum inspired MBO
methodology, called QMBO, by incorporating quantum computation into MBO, which is further used
to solve uninhabited combat air vehicles (UCAV) path planning navigation problem [22,23]. In addition,
Feng et al. proposed various variants of MBO algorithms to solve the knapsack problem [24–28].
In addition, Wang et al. also improved on the performance of the MBO algorithm from various
aspects [29–32]; a variant of the MBO method in combination with two optimization strategies, namely
GCMBO, was also put forward.

Inspired by the phototaxis and Lévy flights of the moths, Wang developed a new kind of
metaheuristic algorithm, called the moth search (MS) algorithm [33]. Feng et al. [34] divided twelve
transfer functions into three families, and combined them with MS, and then twelve discrete versions
of MS algorithms are proposed for solving the set-union knapsack problem (SUKP). Based on the
improvement of the moth search algorithm (MSA) using differential evolution (DE), Elaziz et al. [35]
proposed a new method for the cloud task scheduling problem. In addition, Feng and Wang [36]
verified the influence of the Lévy flights operator and fly straightly operator in MS. Nine types of new
mutation operators based on the global harmony search have been specially devised to replace the
Lévy flights operator.

Inspired by the herding behavior of krill, Gandomi and Alavi proposed a krill herd (KH) [37].
After that, Wang et al. improved the KH algorithms through different optimization strategies [38–46].
More literature regarding the KH algorithm can be found in the literature [47].

The artificial bee colony (ABC) algorithm [48] is a swarm-based meta-heuristic algorithm that
was introduced by Karaboga in 2005 for optimizing numerical problems. Wang and Yi [49] presented
a robust optimization algorithm, namely KHABC, based on hybridization of KH and ABC methods
and the information exchange concept. In addition, Liu et al. [50] presented an ABC algorithm based
on the dynamic penalty function and Lévy flight (DPLABC) for constrained optimization problems.

Also, many other researchers have proposed other state-of-the-art metaheuristic algorithms,
such as particle swarm optimization (PSO) [51–56], cuckoo search (CS) [57–61], probability-based
incremental learning (PBIL) [62], differential evolution (DE) [63–66], evolutionary strategy (ES) [67,68],
monarch butterfly optimization (MBO) [20], firefly algorithm (FA) [69–72], earthworm optimization
algorithm (EWA) [73], genetic algorithms (GAs) [74–76], ant colony optimization (ACO) [77–79], krill
herd (KH) [37,80,81], invasive weed optimization [82–84], stud GA (SGA) [85], biogeography-based
optimization (BBO) [86,87], harmony search (HS) [88–90], and bat algorithm (BA) [91,92], among others

Besides benchmark evaluations [93,94], these proposed state-of-the-art metaheuristic algorithms
are also used to solve various practical engineering problems, like test-sheet composition [95],
scheduling [96,97], clustering [98–100], cyber-physical social systems [101], economic load dispatch [102,103],
fault diagnosis [104], flowshop [105], big data optimization [106,107], gesture segmentation [108], target
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recognition [109,110], prediction of pupylation sites [111], system identification [112], shape design [113],
multi-objective optimization [114], and many-objective optimization [115–117].

3. Elephant Herd Optimization

The basic EHO can be described using the following simplified rules [12]:

(1) Elephants belonging to different clans live together led by a matriarch. Each clan has a fixed
number of elephants. For the purposes of modelling, we assume that each clan consists of
an equal, unchanging number of elephants.

(2) The positions of the elephants in a clan are updated based on their relationship to the matriarch.
EHO models this behavior through an updating operator.

(3) Mature male elephants leave their family groups to live alone. We assume that during each
generation, a fixed number of male elephants leave their clans. Accordingly, EHO models the
updating process using a separating operator.

(4) Generally, the matriarch in each clan is the eldest female elephant. For the purposes of modelling
and solving the optimization problems, the matriarch is considered the fittest elephant individual
in the clan.

As this paper is focused on improving the EHO updating process, in the following subsection,
we provide further details of the EHO updating operator as it was originally presented. For details
regarding the EHO separating operator, see the literature [12].

3.1. Clan Updating Operator

The following updating strategy of the basic EHO was described by the authors of [12], as follows.
Assume that an elephant clan is denoted as ci. The next position of any elephant, j, in the clan is
updated using (1), as follows:

xnew,ci, j = xci, j + α×
(
xbest,ci − xci, j

)
× r, (1)

where xnew,ci,j is the updated position, and xci,j is the prior position of elephant j in clan ci. xbest,ci
denotes the matriarch of clan ci; she is the fittest elephant individual in the clan. The scale factor
α ∈ [0, 1] determines the influence of the matriarch of ci on xci,j. r ∈ [0, 1], which is a type of stochastic
distribution, can provide a significant improvement for the diversity of the population in the later
search phase. For the present work, a uniform distribution was used.

It should be noted that xci,j = xbest,ci,, which means that the matriarch (fittest elephant) in the
clan cannot be updated by (1). To avoid this situation, we can update the fittest elephant using the
following equation:

xnew,ci, j = β× xcenter,ci, (2)

where the influence of xcenter,ci on xnew,ci, is regulated by β ∈ [0, 1].
In Equation (2), the information from all of the individuals in clan ci is used to create the new

individual xnew,ci,j. The centre of clan ci, xcenter,ci, can be calculated for the d-th dimension through D
calculations, where D is the total dimension, as follows:

xcenter,ci,d =
1

nci
×

nci∑
j=1

xci, j,d (3)

Here, 1 ≤ d ≤ D represents the d-th dimension, nci is the number of individuals in ci, and xci,j,d is the
d-th dimension of the individual xci,j.

Algorithm 1 provides the pseudocode for the updating operator.
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Algorithm 1: Clan updating operator [12]

Begin
for ci = 1 to nClan (for all clans in elephant population) do

for j = 1 to nci (for all elephant individuals in clan ci) do
Update xci,j and generate xnew,ci,j according to (1).

if xci,j = xbest,ci then

Update xci,j and generate xnew,ci,j according to (2).
end if

end for j
end for ci

End.

3.2. Separating Operator

In groups of elephants, male elephants leave their family group and live alone upon reaching
puberty. This process of separation can be modeled into a separating operator when solving optimization
problems. In order to further improve the search ability of the EHO method, let us assume that the
individual elephants with the worst fitness will implement the separating operator for each generation,
as shown in (4).

xworst,ci = xmin + (xmax − xmin + 1) × rand (4)

where xmax and xmin are the upper and lower bound, respectively, of the position of the individual
elephant. xworst,ci is the worst individual elephant in clan ci. rand ∈ [0, 1] is a kind of stochastic
distribution, and the uniform distribution in the range [0, 1] is used in our current work.

Accordingly, the separating operator can be formed, as shown in Algorithm 2.

Algorithm 2: Separating operator

Begin
for ci =1 to nClan (all of the clans in the elephant population) do

Replace the worst elephant individual in clan ci using (4).
end for ci

End.

3.3. Schematic Presentation of the Basic EHO Algorithm

For EHO, like the other metaheuristic algorithms, a kind of elitism strategy is used with the aim
of protecting the best elephant individuals from being ruined by the clan updating and separating
operators. In the beginning, the best elephant individuals are saved, and the worst ones are replaced
by the saved best elephant individuals at the end of the search process. This elitism ensures that the
later elephant population is not always worse than the former one. The schematic description can be
summarized as shown in Algorithm 3.

As described before, the basic EHO algorithm does not take the best available information in the
previous group of individual elephants to guide the current and later searches. This may lead to a slow
convergence during the solution of certain complex, large-scale optimization problems. In our current
work, some of the information used for the previous individual elephants was reused, with the aim of
improving the search ability of the basic EHO algorithm.
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Algorithm 3: Elephant Herd Optimization (EHO) [12]

Begin
Step 1: Initialization.

Set the generation counter t = 1.

Initialize the population P of NP elephant individuals randomly, with uniform distribution in the
search space.
Set the number of the kept elephants nKEL, the maximum generation MaxGen, the scale factor α and β,
the number of clan nClan, and the number of elephants for the ci-th clan nci.

Step 2: Fitness evaluation.
Evaluate each elephant individual according to its position.

Step 3: While t < MaxGen do the following:
Sort all of the elephant individuals according to their fitness.
Save the nKEL elephant individuals.
Implement the clan updating operator as shown in Algorithm 1.
Implement the separating operator as shown in Algorithm 2.
Evaluate the population according to the newly updated positions.
Replace the worst elephant individuals with the nKEL saved ones.
Update the generation counter, t = t + 1.

Step 4: End while
Step 5: Output the best solution.

End.

4. Improving EHO with Individual Updating Strategies

In this research, we propose six new versions of EHO based on individual updating strategies.
In theory, k (k ≥ 1) previous elephant individuals can be selected, but as more individuals (k ≥ 4) are
chosen, the calculations of the weights become more complex. Therefore, for this paper, we investigate
k ∈ {1, 2, 3}.

Suppose that xt
i is the ith individual at iteration t, and xi and f t

i are its position and fitness values,
respectively. Here, t is the current iteration, 1 ≤ i ≤ NP is an integer number, and NP is the population
size. yt+1

i is the individual generated by the basic EHO, and f t+1
i is its fitness. The framework of our

proposed method is given through the individuals at the (t − 2)th, (t − 1)th, tth, and (t + 1)th iterations.

4.1. Case of k = 1

The simplest case is when k = 1. The ith individual xt+1
i can be generated as follows:

xt+1
i = θyt+1

i +ωxt
j, (5)

where xt
j is the position for individual j ( j ∈ {1, 2, · · · , NP}) at iteration t, and f t

j is its fitness. θ and ω
are weighting factors satisfying θ + ω = 1. They can be given as follows:

θ = r, ω = 1− r (6)

Here, r is a random number that is drawn from the uniform distribution in [0, 1]. The individual j can
be determined in the following ways:

(1) j = i;

(2) j = r1, where r1 is an integer between 1 and NP that is selected randomly.

The individual generated by the second method has more population diversity than the individual
generated the first way. We refer to these updating strategies as R1 and RR1, respectively. Their
incorporation into the basic EHO results in EHOR1 and EHORR1, respectively.
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4.2. Case of k = 2

Two individuals at two previous iterations are collected and used to generate elephant i. For this
case, the ith individual xt+1

i can be generated as follows:

xt+1
i = θyt+1

i +ω1xt
j1
+ω2xt−1

j2
, (7)

where xt
j1

and xt−1
j2

are the positions for individuals j1 and j2 ( j1, j2 ∈ {1, 2, · · · , NP}) at iterations t

and t − 1, and f t
j1

and f t−1
j2

are their fitness values, respectively. θ, ω1, and ω2 are weighting factors
satisfying θ + ω1 + ω2 = 1. They can be calculated as follows:

θ = r,

ω1 = (1− r) ×
f t−1
j2

f t−1
j2

+ f t
j1

,

ω2 = (1− r) ×
f t
j1

f t−1
j2

+ f t
j1

.

(8)

Here, r is a random number that is drawn from the uniform distribution in [0, 1]. Individuals j1 and
j2 in (8) can be determined in several different ways, but in this paper, we focus on the following
two approaches:

(1) j1 = j2 = i;
(2) j1 = r1, and j2 = r2, where r1 and r2 are integers between 1 and NP selected randomly.

As in the previous case, the individuals generated by the second method have more population
diversity than the individuals generated the first way. We refer to these updating strategies as R2 and
RR2, respectively. Their incorporation into EHO yields EHOR2 and EHORR2, respectively.

4.3. Case of k = 3

Three individuals at three previous iterations are collected and used to generate individual i.
For this case, the ith individual xt+1

i can be generated as follows:

xt+1
i = θyt+1

i +ω1xt
j1
+ω2xt−1

j2
+ω3xt−2

j3
, (9)

where xt
j1

, xt−1
j2

and xt−2
j3

are the positions of individuals j1, j2, and j3 ( j1, j2, j3 ∈ {1, 2, · · · , NP}) at

iterations t, t − 1, and t − 2, and f t
j1

, f t−1
j2

, and f t−2
j3

are their fitness values, respectively. Their weighting
factors are θ, ω1, ω2, and ω3 with θ + ω1 + ω2 + ω3 = 1. The calculation can be given as follows:

θ = r,

ω1 = 1
2 × (1− r) ×

f t−1
j2

+ f t−2
j3

f t
j1
+ f t−1

j2
+ f t−2

j3

,

ω2 = 1
2 × (1− r) ×

f t
j1
+ f t−2

j3
f t
j1
+ f t−1

j2
+ f t−2

j3

,

ω3 = 1
2 × (1− r) ×

f t
j1
+ f t−1

j2
f t
j1
+ f t−1

j2
+ f t−2

j3

.

(10)

Although j1∼j3 can be determined in several ways, in this work, we adopt the following
two methods:

(1) j1 = j2 = j3 = i;
(2) j1 = r1, j2 = r2, and j3 = r3, where r1∼r3 are integer numbers between 1 and NP selected at random.
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As in the previous two cases, the individuals generated using the second method have more
population diversity. We refer to these updating strategies as R3 and RR3, respectively. Their
incorporation into EHO leads to EHOR3 and EHORR3, respectively.

5. Simulation Results

As discussed in Section 4, in the experimental part of our work, the six individual updating
strategies (R1, RR1, R2, RR2, R3, and RR3) were incorporated separately into the basic EHO. Accordingly,
we proposed six improved versions of EHO, namely: EHOR1, EHORR1, EHOR2, EHORR2, EHOR3,
and EHORR3. For the sake of clarity, the basic EHO can also be identified as EHOR0, and we can call
the updating strategies R0, R1, RR1, R2, RR2, R3, and RR3 for short. To provide a full assessment
of the performance of each of the proposed individual updating strategies, we compared the six
improved EHOs with each other and with the basic EHO. Through this comparison, we could look at
the performance of the six updating strategies in order to determine whether these strategies were able
to improve the performance of the EHO.

The six variants of the EHO were investigated fully from various respects through a series of
experiments, using sixteen large-scale benchmarks with dimensions D = 50, 100, 200, 500, and 1000.
These complicated large-scale benchmarks can be found in Table 1. More information about all the
benchmarks can be found in the literature [86,118,119].

Table 1. Sixteen benchmark functions.

No. Name No. Name

F01 Ackley F09 Rastrigin
F02 Alpine F10 Schwefel 2.26
F03 Brown F11 Schwefel 1.2
F04 Holzman 2 function F12 Schwefel 2.22
F05 Levy F13 Schwefel 2.21
F06 Penalty #1 F14 Sphere
F07 Powell F15 Sum function
F08 Quartic with noise F16 Zakharov

As all metaheuristic algorithms are based on a certain distribution, different runs will generate
different results. With the aim of getting the most representative statistical results, we performed 30
independent runs under the same conditions, as shown in the literature [120].

For all of the methods studied in this paper, their parameters were set as follows: the scale factor
α = 0.5, β = 0.1, the number of the kept elephants nKEL = 2, and the number of clans nClan = 5. In the
simplest form, all of the clans have an equal number of elephants. In our current work, all of the clans
have the same number of elephants (i.e., nci = 20). Except for the number of elephants in each clan,
the other parameters are the same as in the basic EHO, which can be found in the literature [12,13].
The best function values found by a certain intelligent algorithm are shown in bold font.

5.1. Unconstrained Optimization

5.1.1. D = 50

In this section of our work, seven kinds of EHOs (the basic EHO plus the six proposed improved
variants) were evaluated using the 16 benchmarks mentioned previously, with dimension D = 50.
The obtained mean function values and standard values from thirty runs are recorded in Tables 2 and 3.

From Table 2, we can see that in terms of the mean function values, R2 performed the best,
at a level far better than the other methods. As for the other methods, R1 and RR1 provided a similar
performance to each other, and they could find the smallest fitness values successfully on only one of
the complex functions used for benchmarking. From Table 3, obviously, R2 performed in the most
stable way, while for the other algorithms, EHO has a significant advantage over the other algorithms.
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Table 2. Mean function values obtained by elephant herd optimization (EHO) and six improved
methods with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 2.57 × 10−4 7.11 × 10−4 0.05 8.38 × 10−5 1.57 1.53 × 10−4 0.01
F02 1.04 × 10−4 2.69 × 10−4 0.01 2.74 × 10−5 0.23 5.13 × 10−5 2.38 × 10−3

F03 4.41 × 10−7 9.16 × 10−6 3.37 × 10−3 6.14 × 10−9 0.76 4.32 × 10−8 8.25 × 10−5

F04 1.50 × 10−15 4.97 × 10−11 3.58 × 10−6 2.27 × 10−16 0.03 3.38 × 10−16 1.82 × 10−9

F05 4.49 4.25 3.95 4.43 4.89 4.44 4.50
F06 1.22 1.06 1.62 1.72 2.01 1.76 1.79
F07 5.13 × 10−7 2.55 × 10−6 0.02 3.50 × 10−8 2.25 1.51 × 10−7 4.85 × 10−4

F08 2.57 × 10−16 1.24 × 10−15 7.23 × 10−9 2.21 × 10−16 1.72 × 10−5 2.21 × 10−16 4.03 × 10−13

F09 2.59 × 10−6 6.86 × 10−5 0.03 9.83 × 10−8 9.28 5.06 × 10−7 3.92 × 10−3

F10 1.65 × 104 1.64 × 104 1.63 × 104 1.65 × 104 1.61 × 104 1.64 × 104 1.64 × 104

F11 1.44 × 10−5 4.47 × 10−4 0.36 1.02 × 10−6 49.04 3.52 × 10−6 2.18
F12 1.07 × 10−3 3.81 × 10−3 0.14 2.96 × 10−4 2.37 5.31 × 10−4 0.02
F13 6.69 × 10−4 1.34 × 10−3 0.07 1.52 × 10−4 1.21 3.05 × 10−4 0.01
F14 1.27 × 10−8 1.63 × 10−7 3.85 × 10−4 7.00 × 10−10 0.04 2.50 × 10−9 3.02 × 10−6

F15 6.70 × 10−7 1.40 × 10−5 7.03 × 10−3 4.76 × 10−8 3.61 1.77 × 10−7 9.87 × 10−4

F16 1.28 × 10−3 0.30 512.90 3.00 × 10−5 3.87 × 107 1.71 × 10−4 0.56
TOTAL 0 1 1 14 0 0 0

Table 3. Standard values obtained by EHO and six improved methods with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 2.39 × 10−5 9.89 × 10−4 0.06 3.60 × 10−5 0.22 4.89 × 10−5 0.01
F02 1.37 × 10−5 3.32 × 10−4 0.01 1.14 × 10−5 0.04 1.38 × 10−5 2.17 × 10−3

F03 1.55 × 10−8 3.34 × 10−5 6.16 × 10−3 3.72 × 10−9 0.07 3.52 × 10−8 7.80 × 10−5

F04 4.50 × 10−16 2.49 × 10−10 1.08 × 10−5 6.72 × 10−18 0.01 2.92 × 10−16 5.64 × 10−9

F05 0.16 0.26 0.52 0.30 0.20 0.30 0.33
F06 0.23 0.18 0.41 0.28 0.32 0.25 0.27
F07 1.40 × 10−7 5.25 × 10−6 0.04 2.71 × 10−8 0.76 7.78 × 10−8 1.58 × 10−3

F08 6.86 × 10−18 3.99 × 10−15 1.96 × 10−8 1.68 × 10−20 6.10 × 10−6 1.26 × 10−19 1.17 × 10−12

F09 4.61 × 10−7 1.75 × 10−4 0.09 6.36 × 10−8 1.60 3.11 × 10−7 0.02
F10 444.40 591.40 502.50 506.70 486.40 454.70 349.00
F11 3.73 × 10−6 1.98 × 10−3 0.71 8.92 × 10−7 29.12 2.30 × 10−6 9.49
F12 1.03 × 10−4 5.54 × 10−3 0.15 1.03 × 10−4 0.28 1.21 × 10−4 0.01
F13 9.58 × 10−5 1.97 × 10−3 0.07 5.39 × 10−5 0.15 6.84 × 10−5 6.05 × 10−3

F14 2.07 × 10−9 5.02 × 10−7 1.09 × 10−3 6.10 × 10−10 0.01 2.04 × 10−9 3.90 × 10−6

F15 1.00 × 10−7 4.76 × 10−5 0.02 3.41 × 10−8 0.73 8.84 × 10−8 3.40 × 10−3

F16 8.21 × 10−4 1.43 1.23 × 103 2.06 × 10−5 1.92 × 107 1.21 × 10−4 0.44
TOTAL 3 1 0 11 0 0 1

5.1.2. D = 100

As above, the same seven kinds of EHOs were evaluated using the sixteen benchmarks mentioned
previously, with dimension D = 100. The obtained mean function values and standard values from 30
runs are recorded in Tables 4 and 5.

Regarding the mean function values, Table 4 shows that R2 performed much better than the
other algorithms, providing the smallest function values on 13 out of 16 functions. As for the other
algorithms, R0, R1, and RR1 gave a similar performance to each other, performing the best only on one
function each (F10, F06, and F05, respectively). From Table 5, obviously, R2 performed in the most
stable way, while for the other algorithms, EHO has significant advantage over other algorithms.
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Table 4. Mean function values obtained by EHO and six improved methods with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.22 × 10−4 6.27 × 10−4 0.12 6.92 × 10−5 1.70 1.78 × 10−4 0.01
F02 2.55 × 10−4 6.86 × 10−4 0.04 6.28 × 10−5 0.48 1.08 × 10−4 4.78 × 10−3

F03 9.83 × 10−7 2.65 × 10−5 1.27 × 10−3 1.55 × 10−8 1.50 9.96 × 10−8 2.01 × 10−4

F04 1.18 × 10−14 1.85 × 10−9 7.43 × 10−6 2.55 × 10−16 0.13 7.25 × 10−16 1.04 × 10−9

F05 9.19 9.01 8.41 9.22 9.51 9.07 9.26
F06 3.11 2.91 3.89 3.74 4.30 3.80 3.80
F07 2.56 × 10−6 4.65 × 10−5 0.02 7.34 × 10−8 5.33 3.31 × 10−7 3.35 × 10−3

F08 4.18 × 10−16 1.13 × 10−13 1.38 × 10−7 2.21 × 10−16 8.16 × 10−5 2.24 × 10−16 3.03 × 10−12

F09 8.20 × 10−6 4.58 × 10−5 0.08 2.47 × 10−7 19.19 1.05 × 10−6 1.30 × 10−3

F10 3.58 × 104 3.56 × 104 3.50 × 104 3.55 × 104 3.59 × 104 3.56 × 104 3.68 × 104

F11 6.15 × 10−5 4.45 × 10−3 3.54 5.51 × 10−6 200.20 1.74 × 10−5 0.07
F12 2.53 × 10−3 5.37 × 10−3 0.26 5.94 × 10−4 5.27 1.04 × 10−3 0.05
F13 8.12 × 10−4 1.50 × 10−3 0.06 1.72 × 10−4 1.46 3.52 × 10−4 0.02
F14 3.99 × 10−8 1.09 × 10−6 5.59 × 10−4 1.23 × 10−9 0.09 4.99 × 10−9 8.68 × 10−6

F15 4.45 × 10−6 5.90 × 10−4 0.11 2.52 × 10−7 15.00 8.77 × 10−7 1.83 × 10−3

F16 0.04 2.20 7.85 × 105 7.09 × 10−4 1.58 × 1010 3.31 × 10−3 987.40
TOTAL 1 1 1 13 0 0 0

Table 5. Standard values obtained by EHO and six improved methods with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.85 × 10−5 8.00 × 10−4 0.38 2.47 × 10−5 0.12 4.83 × 10−5 0.01
F02 1.24 × 10−5 1.10 × 10−3 0.08 2.65 × 10−5 0.08 3.99 × 10−5 3.78 × 10−3

F03 2.22 × 10−8 9.04 × 10−5 1.77 × 10−3 8.47 × 10−9 0.21 4.81 × 10−8 1.77 × 10−4

F04 2.03 × 10−15 1.02 × 10−8 2.98 × 10−5 3.90 × 10−17 0.05 6.76 × 10−16 4.03 × 10−9

F05 0.11 0.29 0.76 0.25 0.10 0.31 0.25
F06 0.31 0.33 0.38 0.29 0.41 0.25 0.29
F07 3.85 × 10−7 1.44 × 10−4 0.04 6.16 × 10−8 0.95 1.70 × 10−7 0.01
F08 2.21 × 10−17 5.63 × 10−13 4.37 × 10−7 4.23 × 10−20 3.09 × 10−5 3.81 × 10−19 9.87 × 10−12

F09 8.05 × 10−7 1.53 × 10−4 0.18 1.46 × 10−7 3.21 6.43 × 10−7 5.79 × 10−4

F10 733.60 769.20 834.60 606.00 547.10 725.00 621.20
F11 1.18 × 10−5 0.01 13.78 4.34 × 10−6 114.20 9.54 × 10−6 0.25
F12 1.23 × 10−4 0.01 0.32 2.23 × 10−4 0.50 2.95 × 10−4 0.03
F13 6.13 × 10−5 3.10 × 10−3 0.08 4.52 × 10−5 0.17 1.02 × 10−4 0.01
F14 3.74 × 10−9 3.58 × 10−6 1.84 × 10−3 8.08 × 10−10 0.01 2.98 × 10−9 8.97 × 10−6

F15 5.46 × 10−7 2.88 × 10−3 0.23 2.59 × 10−7 2.76 6.25 × 10−7 4.04 × 10−3

F16 3.18 × 10−3 8.63 3.03 × 106 4.19 × 10−4 3.52 × 109 1.74 × 10−3 4.76 × 103

TOTAL 3 0 0 10 2 1 0

5.1.3. D = 200

Next, the seven types of EHOs were evaluated using the 16 benchmarks mentioned previously,
with dimension D = 200. The obtained mean function values and standrd values from 30 runs are
recorded in Tables 6 and 7.

From Table 6, we can see that in terms of the mean function values, R2 performed much better
than the other algorithms, providing the smallest function values on 13 out of 16 of the benchmark
functions. As for the other methods, R1 ranked second, having performed the best on two of the
benchmark functions. RR1 ranked third, giving the best result on one of the functions. From Table 7,
obviously, R2 performed in the most stable way, while for the other algorithms, EHO has a significant
advantage over the other algorithms.
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Table 6. Mean function values obtained by EHO and six improved methods with D = 200.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.68 × 10−4 8.01 × 10−4 0.03 8.94 × 10−5 1.71 1.78 × 10−4 9.60 × 10−3

F02 5.65 × 10−4 7.10 × 10−4 0.06 1.08 × 10−4 1.06 2.19 × 10−4 0.01
F03 2.17 × 10−6 2.23 × 10−5 8.24 × 10−3 2.72 × 10−8 3.12 1.83 × 10−7 7.55 × 10−4

F04 7.43 × 10−14 1.46 × 10−9 1.82 × 10−5 3.25 × 10−16 0.56 3.46 × 10−15 2.37 × 10−8

F05 18.45 18.39 17.57 18.53 18.70 18.50 18.50
F06 6.90 6.89 8.03 7.60 8.67 7.72 7.82
F07 7.24 × 10−6 2.87 × 10−5 0.04 1.76 × 10−7 11.34 6.97 × 10−7 2.21 × 10−3

F08 1.20 × 10−15 2.20 × 10−12 1.05 × 10−8 2.22 × 10−16 3.94 × 10−4 2.21 × 10−16 8.55 × 10−11

F09 2.16 × 10−5 1.46 × 10−4 0.14 6.14 × 10−7 40.87 2.38 × 10−6 0.01
F10 7.58 × 104 7.43 × 104 7.59 × 104 7.58 × 104 7.50 × 104 7.58 × 104 7.58 × 104

F11 2.41 × 10−4 2.46 × 10−3 7.16 2.72 × 10−5 699.60 7.04 × 10−5 0.14
F12 5.71 × 10−3 0.02 0.37 1.29 × 10−3 11.26 2.41 × 10−3 0.12
F13 9.65 × 10−4 2.89 × 10−3 0.06 1.93 × 10−4 1.57 3.64 × 10−4 0.02
F14 1.08 × 10−7 1.82 × 10−6 6.24 × 10−4 2.74 × 10−9 0.19 1.24 × 10−8 1.46 × 10−5

F15 2.25 × 10−5 1.90 × 10−4 0.96 1.02 × 10−6 63.15 4.19 × 10−6 0.01
F16 1.52 1.53 × 103 4.00 × 108 0.01 5.17 × 1012 0.08 4.61 × 105

TOTAL 0 2 1 13 0 0 0

Table 7. Standard values obtained by EHO and six improved methods with D = 200.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.10 × 10−5 1.35 × 10−3 0.04 4.38 × 10−5 0.13 5.87 × 10−5 4.78 × 10−3

F02 2.70 × 10−5 8.25 × 10−4 0.10 3.76 × 10−5 0.12 4.61 × 10−5 0.01
F03 3.50 × 10−8 7.44 × 10−5 0.02 1.65 × 10−8 0.27 1.10 × 10−7 1.55 × 10−3

F04 1.35 × 10−14 5.94 × 10−9 4.19 × 10−5 1.21 × 10−16 0.14 9.76 × 10−15 1.22 × 10−7

F05 0.12 0.16 0.76 0.17 0.05 0.18 0.18
F06 0.34 0.40 0.28 0.30 0.58 0.22 0.29
F07 6.49 × 10−7 6.58 × 10−5 0.04 1.11 × 10−7 2.00 4.21 × 10−7 5.56 × 10−3

F08 7.08 × 10−17 1.13 × 10−11 1.80 × 10−8 1.61 × 10−19 1.28 × 10−4 1.05 × 10−18 4.33 × 10−10

F09 1.44 × 10−6 3.78 × 10−4 0.23 5.66 × 10−7 3.79 1.43 × 10−6 0.05
F10 897.80 853.40 971.60 1.12 × 103 833.10 1.02 × 103 907.60
F11 4.63 × 10−5 5.96 × 10−3 14.39 2.64 × 10−5 353.00 5.11 × 10−5 0.27
F12 2.72 × 10−4 0.03 0.36 4.03 × 10−4 1.09 8.39 × 10−4 0.13
F13 7.38 × 10−5 4.15 × 10−3 0.08 7.99 × 10−5 0.16 9.51 × 10−5 0.01
F14 7.41 × 10−9 7.42 × 10−6 1.10 × 10−3 1.96 × 10−9 0.02 1.03 × 10−8 1.03 × 10−5

F15 1.88 × 10−6 3.50 × 10−4 2.13 8.43 × 10−7 9.40 2.12 × 10−6 0.04
F16 0.14 4.85 × 103 1.74 × 109 8.45 × 10−3 7.73 × 1011 0.04 2.00 × 106

TOTAL 4 0 0 9 2 1 0

5.1.4. D = 500

The seven kinds of EHOs also were evaluated using the same 16 benchmarks mentioned previously,
with dimension D = 500. The obtained mean function values and standard values from 30 runs are
recorded in Tables 8 and 9.

In terms of the mean function values, Table 8 shows that R2 performed much better than the
other methods, providing the smallest function values on 13 out of 16 functions. In comparison, R0,
RR1, and RR3 gave similar performances to each other, performing the best on only one function each.
From Table 9, obviously, R2 performed in the most stable way, while for the other algorithms, EHO has
a significant advantage over the other algorithms.
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Table 8. Mean function values obtained by EHO and six improved methods with D = 500.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.92 × 10−4 7.03 × 10−4 0.03 8.75 × 10−5 1.76 1.72 × 10−4 8.52 × 10−3

F02 1.53 × 10−3 3.40 × 10−3 0.11 2.99 × 10−4 2.58 5.47 × 10−4 0.02
F03 5.60 × 10−6 8.70 × 10−5 0.04 5.67 × 10−8 7.91 4.15 × 10−7 2.14 × 10−3

F04 6.51 × 10−13 4.40 × 10−9 7.69 × 10−3 1.48 × 10−15 3.94 1.45 × 10−14 7.70 × 10−8

F05 45.80 45.90 45.44 45.92 45.99 45.91 45.93
F06 18.55 19.23 19.93 19.44 21.13 19.43 19.62
F07 2.35 × 10−5 6.78 × 10−5 0.24 4.42 × 10−7 27.03 1.59 × 10−6 8.63 × 10−3

F08 8.52 × 10−15 3.89 × 10−13 1.60 × 10−7 2.23 × 10−16 2.42 × 10−3 2.39 × 10−16 1.51 × 10−10

F09 6.13 × 10−5 2.15 × 10−3 0.87 1.31 × 10−6 107.70 6.53 × 10−6 0.02
F10 1.96 × 105 1.97 × 105 1.97 × 105 1.99 × 105 1.99 × 105 1.92 × 105 1.95 × 105

F11 1.61 × 10−3 0.17 10.43 1.40 × 10−4 5.30 × 103 4.16 × 10−4 0.71
F12 0.02 0.03 1.30 3.15 × 10−3 30.31 6.04 × 10−3 0.57
F13 1.07 × 10−3 3.01 × 10−3 0.06 2.07 × 10−4 1.72 4.22 × 10−4 0.02
F14 3.12 × 10−7 4.56 × 10−6 5.26 × 10−3 6.15 × 10−9 0.48 2.74 × 10−8 6.08 × 10−5

F15 1.71 × 10−4 7.41 × 10−4 1.85 7.59 × 10−6 427.30 2.17 × 10−5 0.07
F16 1.60 × 103 3.60 × 107 1.33 × 1012 1.20 8.83 × 1015 16.25 2.37 × 109

TOTAL 1 0 1 13 0 0 1

Table 9. Standard function values obtained by EHO and six improved methods with D = 500.

EHO R1 RR1 R2 RR2 R3 RR3

F01 7.22 × 10−6 8.01 × 10−4 0.02 2.66 × 10−5 0.08 4.32 × 10−5 4.04 × 10−3

F02 4.67 × 10−5 4.09 × 10−3 0.11 1.19 × 10−4 0.20 1.49 × 10−4 0.01
F03 5.65 × 10−8 2.10 × 10−4 0.13 2.62 × 10−8 0.51 2.91 × 10−7 5.94 × 10−3

F04 6.17 × 10−14 1.83 × 10−8 0.04 3.12 × 10−15 0.98 2.53 × 10−14 2.84 × 10−7

F05 0.09 0.02 0.75 0.03 0.05 0.04 0.02
F06 0.31 0.32 0.18 0.21 0.85 0.15 0.25
F07 1.05 × 10−6 1.35 × 10−4 0.78 3.05 × 10−7 3.86 9.25 × 10−7 0.02
F08 3.61 × 10−16 1.72 × 10−12 4.03 × 10−7 2.01 × 10−18 5.40 × 10−4 1.31 × 10−17 6.30 × 10−10

F09 2.15 × 10−6 0.01 1.71 9.91 × 10−7 12.30 4.69 × 10−6 0.04
F10 1.54 × 103 1.43 × 103 1.30 × 103 1.28 × 103 1.38 × 103 1.45 × 103 1.65 × 103

F11 3.44 × 10−4 0.70 12.21 9.50 × 10−5 2.00 × 103 2.38 × 10−4 1.51
F12 3.52 × 10−4 0.04 1.93 1.23 × 10−3 2.11 2.09 × 10−3 1.24
F13 5.90 × 10−5 4.79 × 10−3 0.06 6.75 × 10−5 0.12 1.69 × 10−4 0.01
F14 1.75 × 10−8 1.60 × 10−5 0.02 3.39 × 10−9 0.05 1.32 × 10−8 1.16 × 10−4

F15 8.50 × 10−6 1.04 × 10−3 3.96 6.20 × 10−6 50.28 1.15 × 10−5 0.19
F16 113.00 1.90 × 108 4.50 × 1012 2.37 1.61 × 1015 17.62 1.27 × 1010

TOTAL 4 0 0 9 0 1 2

5.1.5. D = 1000

Finally, the same seven types of EHOs were evaluated using the 16 benchmarks mentioned
previously, with dimension D = 1000. The obtained mean function values and standard values from 30
runs are recorded in Tables 10 and 11.

In terms of the mean function values, Table 10 shows that R2 had the absolute advantage over
the other metaheuristic algorithms, succeeding in finding function values on 12 out of 16 functions.
Among the other metaheuristic algorithms, R0 ranked second, having performed the best on three of
the benchmark functions. In addition, RR1 was successful in finding the best function value. From
Table 11, obviously, R2 performed in the most stable way, while for the other algorithms, EHO has
a significant advantage over the other algorithms.
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Table 10. Mean function values obtained by EHO and six improved methods with D = 1000.

EHO R1 RR1 R2 RR2 R3 RR3

F01 4.04 × 10−4 1.29 × 10−3 0.03 8.66 × 10−5 1.79 1.90 × 10−4 0.01
F02 3.14 × 10−3 5.68 × 10−3 0.20 6.20 × 10−4 5.45 1.29 × 10−3 0.04
F03 1.11 × 10−5 5.10 × 10−5 0.07 1.41 × 10−7 16.18 8.78 × 10−7 1.97 × 10−3

F04 3.05 × 10−12 1.17 × 10−9 7.48 × 10−4 4.48 × 10−15 16.77 3.01 × 10−14 4.97 × 10−7

F05 91.29 91.36 91.19 91.36 91.53 91.36 91.38
F06 38.23 38.90 39.79 39.11 42.71 39.08 39.26
F07 5.15 × 10−5 1.20 × 10−3 0.39 1.01 × 10−6 55.16 3.93 × 10−6 0.01
F08 3.73 × 10−14 1.00 × 10−11 3.77 × 10−6 2.28 × 10−16 0.01 2.73 × 10−16 1.66 × 10−8

F09 1.33 × 10−4 1.91 × 10−4 0.91 3.21 × 10−6 221.00 1.00 × 10−5 0.05
F10 3.94 × 105 3.94 × 105 4.01 × 105 4.00 × 105 3.98 × 105 3.97 × 105 3.98 × 105

F11 5.88 × 10−3 0.39 1.18 × 103 4.79 × 10−4 2.06 × 104 1.45 × 10−3 7.41
F12 0.03 0.09 1.94 66.74 72.28 54.85 56.84
F13 1.16 × 10−3 1.77 × 10−3 0.12 2.40 × 10−4 1.87 4.74 × 10−4 0.02
F14 6.68 × 10−7 4.59 × 10−6 0.03 1.79 × 10−8 1.00 5.22 × 10−8 1.46 × 10−4

F15 7.43 × 10−4 0.02 14.34 2.45 × 10−5 1.73 × 103 9.52 × 10−5 0.57
F16 4.71 × 105 8.97 × 108 1.28 × 1014 77.47 2.51 × 1018 3.89 × 103 4.76 × 1012

TOTAL 3 0 1 12 0 0 0

Table 11. Standard function values obtained by EHO and six improved methods with D = 1000.

EHO R1 RR1 R2 RR2 R3 RR3

F01 8.50 × 10−6 2.69 × 10−3 0.04 2.81 × 10−5 0.07 6.05 × 10−5 0.01
F02 6.45 × 10−5 6.76 × 10−3 0.24 3.09 × 10−4 0.39 4.28 × 10−4 0.03
F03 7.82 × 10−8 1.24 × 10−4 0.21 1.02 × 10−7 1.70 4.10 × 10−7 2.21 × 10−3

F04 2.22 × 10−13 3.61 × 10−9 1.86 × 10−3 8.75 × 10−15 2.65 3.01 × 10−14 1.80 × 10−6

F05 0.06 0.02 0.49 0.01 0.06 0.01 0.01
F06 0.22 0.39 0.15 0.22 1.08 0.18 0.22
F07 1.06 × 10−6 4.96 × 10−3 0.58 6.86 × 10−7 5.68 1.98 × 10−6 0.01
F08 9.68 × 10−16 2.77 × 10−11 1.55 × 10−5 3.36 × 10−18 2.65 × 10−3 6.47 × 10−17 9.11 × 10−8

F09 4.43 × 10−6 3.58 × 10−4 1.64 2.11 × 10−6 20.66 7.28 × 10−6 0.09
F10 2.19 × 103 2.04 × 103 2.11 × 103 1.98 × 103 1.60 × 103 1.93 × 103 2.75 × 103

F11 9.97 × 10−4 1.46 4.01 × 103 4.03 × 10−4 9.58 × 103 8.04 × 10−4 24.87
F12 5.39 × 10−4 0.15 1.76 4.90 1.61 2.31 1.48
F13 6.61 × 10−5 2.68 × 10−3 0.15 9.41 × 10−5 0.15 1.45 × 10−4 0.01
F14 2.21 × 10−8 1.05 × 10−5 0.10 1.05 × 10−8 0.08 2.83 × 10−8 2.89 × 10−4

F15 2.62 × 10−5 0.04 52.24 2.14 × 10−5 213.10 4.96 × 10−5 1.43
F16 2.34 × 104 3.39 × 109 4.12 × 1014 93.37 4.52 × 1017 3.42 × 103 2.67 × 1013

TOTAL 5 0 1 8 1 1 0

5.1.6. Summary of Function Values Obtained by Seven Variants of EHOs

In Section 4.1, the mean function values obtained from 30 runs were collected and analyzed.
In addition, the best, mean, worst, and standard (STD) function values obtained from 30 implementations
were summarized and are recorded, as shown in Table 12.

From Table 12, we can see that, in general, R2 performed far better than the six other algorithms.
R1 and R0 were second and third in performance, respectively, among all of the seven tested methods.
Except for R0, R1, and R2, the other metaheuristic algorithms provided similar performances, which
were highly inferior to R0, R1, and R2. Looking carefully at Table 12 for the best function values,
R1 provided the best performance among the seven metaheuristic algorithms, which was far better
than R2. This indicates that finding a means to improve the best performance of R2 further is
a challenging question in EHO studies.
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Table 12. Optimization results values obtained by EHO and six improved methods for 16 benchmark
functions. STD—standard.

D EHO R1 RR1 R2 RR2 R3 RR3

50

BEST 0 13 2 1 0 0 0
MEAN 0 1 1 14 0 0 0
WORST 0 2 0 13 0 0 1

STD 3 1 0 11 0 0 1
TOTAL 3 17 3 39 0 0 2

100

BEST 0 13 1 2 0 0 0
MEAN 1 1 1 13 0 0 0
WORST 1 2 0 13 0 0 0

STD 3 0 0 10 2 1 0
TOTAL 5 16 2 38 2 1 0

200

BEST 1 10 1 3 0 1 0
MEAN 0 2 1 13 0 0 0
WORST 1 2 0 13 0 0 0

STD 4 0 0 9 2 1 0
TOTAL 6 14 2 38 2 2 0

500

BEST 1 11 1 2 0 0 1
MEAN 1 0 1 13 0 0 1
WORST 2 0 0 14 0 0 0

STD 4 0 0 9 0 1 2
TOTAL 8 11 2 38 0 1 4

1000

BEST 0 11 1 3 0 0 1
MEAN 3 0 1 12 0 0 0
WORST 3 1 0 12 0 0 0

STD 5 0 1 8 1 1 0
TOTAL 11 12 3 35 1 1 1

To provide a clear demonstration of the effectiveness of the different individual updating strategies,
in this part of our work, we selected five functions randomly from the 16 large-scale complex functions,
and their convergence histories with dimension D = 50, 100, 200, 500, and 1000. From Figures 1–5,
we can see that of the seven metaheuristic algorithms, R2 succeeded in finding the best function values
at the end of the search in each of these five large-scale complicated functions. This trend coincided
with our previous analysis.



Mathematics 2019, 7, 395 15 of 35

Mathematics 2018, 6, x FOR PEER REVIEW  14 of 34 

 

WORST 3 1 0 12 0 0 0 
STD 5 0 1 8 1 1 0 

TOTAL 11 12 3 35 1 1 1 

 
To provide a clear demonstration of the effectiveness of the different individual updating 

strategies, in this part of our work, we selected five functions randomly from the 16 large-scale 
complex functions, and their convergence histories with dimension D = 50, 100, 200, 500, and 1000. 
From Figures 1–5, we can see that of the seven metaheuristic algorithms, R2 succeeded in finding the 
best function values at the end of the search in each of these five large-scale complicated functions. 
This trend coincided with our previous analysis. 

 
(a) F03 

 
(b) F07 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-8

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 1. Cont.



Mathematics 2019, 7, 395 16 of 35Mathematics 2018, 6, x FOR PEER REVIEW  15 of 34 

 

 
(c) F11 

 
(d) F15 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-8

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 1. Cont.



Mathematics 2019, 7, 395 17 of 35Mathematics 2018, 6, x FOR PEER REVIEW  16 of 34 

 

 
(e) F16 

Figure 1. Optimization process of seven algorithms on five functions with D = 50. EHO—elephant 
herd optimization. 

 
(a) F03 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-5

100

105

1010

1015

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 1. Optimization process of seven algorithms on five functions with D = 50. EHO—elephant
herd optimization.

Mathematics 2018, 6, x FOR PEER REVIEW  16 of 34 

 

 
(e) F16 

Figure 1. Optimization process of seven algorithms on five functions with D = 50. EHO—elephant 
herd optimization. 

 
(a) F03 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-5

100

105

1010

1015

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 2. Cont.



Mathematics 2019, 7, 395 18 of 35Mathematics 2018, 6, x FOR PEER REVIEW  17 of 34 

 

 
(b) F07 

 
(c) F11 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-8

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

108

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 2. Cont.



Mathematics 2019, 7, 395 19 of 35Mathematics 2018, 6, x FOR PEER REVIEW  18 of 34 

 

 
(d) F15 

 
(e) F16 

Figure 2. Optimization process of seven algorithms on five functions with D = 100. 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-8

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-5

100

105

1010

1015

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 2. Optimization process of seven algorithms on five functions with D = 100.



Mathematics 2019, 7, 395 20 of 35Mathematics 2018, 6, x FOR PEER REVIEW  19 of 34 

 

 
(a) F03 

 
(b) F07 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

1025

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-8

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 3. Cont.



Mathematics 2019, 7, 395 21 of 35Mathematics 2018, 6, x FOR PEER REVIEW  20 of 34 

 

 
(c) F11 

 
(d) F15 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

108

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 3. Cont.



Mathematics 2019, 7, 395 22 of 35Mathematics 2018, 6, x FOR PEER REVIEW  21 of 34 

 

 
(e) F16 

Figure 3. Optimization process of seven algorithms on five functions with D = 200. 

 
(a) F03 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-5

100

105

1010

1015

1020

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

1025

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 3. Optimization process of seven algorithms on five functions with D = 200.

Mathematics 2018, 6, x FOR PEER REVIEW  21 of 34 

 

 
(e) F16 

Figure 3. Optimization process of seven algorithms on five functions with D = 200. 

 
(a) F03 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-5

100

105

1010

1015

1020

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

1015

1020

1025

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 4. Cont.



Mathematics 2019, 7, 395 23 of 35Mathematics 2018, 6, x FOR PEER REVIEW  22 of 34 

 

 
(b) F07 

 
(c) F11 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-10

10-5

100

105

1010

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

108

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 4. Cont.



Mathematics 2019, 7, 395 24 of 35Mathematics 2018, 6, x FOR PEER REVIEW  23 of 34 

 

 
(d) F15 

 
(e) F16 

Figure 4. Optimization process of seven algorithms on five functions with D = 500. 

0 10 20 30 40 50 60 70 80 90 100
Number of generations

10-6

10-4

10-2

100

102

104

106

108

EHO
R1
RR1
R2
RR2
R3
RR3

0 10 20 30 40 50 60 70 80 90 100
Number of generations

100

105

1010

1015

1020

1025

EHO
R1
RR1
R2
RR2
R3
RR3

Figure 4. Optimization process of seven algorithms on five functions with D = 500.



Mathematics 2019, 7, 395 25 of 35Mathematics 2018, 6, x FOR PEER REVIEW  24 of 34 

 

 
(a) F03 

 
(b) F07 

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
es

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
es

Figure 5. Cont.



Mathematics 2019, 7, 395 26 of 35Mathematics 2018, 6, x FOR PEER REVIEW  25 of 34 

 

 
(c) F11 

 
(d) F15 

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
es

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
es

Figure 5. Cont.



Mathematics 2019, 7, 395 27 of 35Mathematics 2018, 6, x FOR PEER REVIEW  26 of 34 

 

 
(e) F16 

Figure 5. Optimization process of seven algorithms on five functions with D = 1000. 

5.2. Constrained Optimization 

Besides the standard benchmark evaluation, in this section, fourteen constrained optimization 
problems originated from CEC 2017 [121] are selected in order to further verify the performance of 
six improved versions of EHO, namely: EHOR1, EHORR1, EHOR2, EHORR2, EHOR3, and EHORR3. 
The six variants of the EHO were investigated fully through a series of experiments, using fourteen 
large-scale constrained benchmarks with dimensions D = 50, and 100. These complicated large-scale 
benchmarks can be found in Table 13. More information about all of the benchmarks can be found in 
[86,118,119]. As before, we performed 30 independent runs under the same conditions as shown in 
the literature [120]. For all of the parameters, they are the same as before.  

Table 13. Details of 14 Congress on Evolutionary Computation (CEC) 2017 constrained functions. D 
is the number of decision variables, I is the number of inequality constraints, and E is the number of 
equality constraints. 

No. Problem Search Range Type of Objective 
Number of Constraints 
E I 

F01 C05 [−10, 10]D Non-Separable 0 
2 

Non-Separable, 
Rotated 

F02 C06 [−20, 20]D Separable 6 
0 

Separable 

F03 C07 [−50, 50]D Separable 2 
Separable 

0 

F04 C08 [−100, 100]D Separable 2 
Non-Separable 

0 

F05 C09 [−10, 10]D Separable 
2 

Non-Separable 0 

F06 C10 [−100, 100]D Separable 
2 

Non-Separable 0 

F07 C12 [−100, 100]D Separable 0 2 
Separable 

F08 C13 [−100, 100]D Non-Separable 0 3 

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
es

Figure 5. Optimization process of seven algorithms on five functions with D = 1000.

5.2. Constrained Optimization

Besides the standard benchmark evaluation, in this section, fourteen constrained optimization
problems originated from CEC 2017 [121] are selected in order to further verify the performance of six
improved versions of EHO, namely: EHOR1, EHORR1, EHOR2, EHORR2, EHOR3, and EHORR3.
The six variants of the EHO were investigated fully through a series of experiments, using fourteen
large-scale constrained benchmarks with dimensions D = 50, and 100. These complicated large-scale
benchmarks can be found in Table 13. More information about all of the benchmarks can be found
in [86,118,119]. As before, we performed 30 independent runs under the same conditions as shown in
the literature [120]. For all of the parameters, they are the same as before.

Table 13. Details of 14 Congress on Evolutionary Computation (CEC) 2017 constrained functions. D
is the number of decision variables, I is the number of inequality constraints, and E is the number of
equality constraints.

No. Problem Search Range Type of
Objective

Number of Constraints
E I

F01 C05 [−10, 10]D Non-Separable 0
2

Non-Separable,
Rotated

F02 C06 [−20, 20]D Separable 6 0
Separable

F03 C07 [−50, 50]D Separable 2
Separable 0

F04 C08 [−100, 100]D Separable 2
Non-Separable 0

F05 C09 [−10, 10]D Separable 2
Non-Separable 0

F06 C10 [−100, 100]D Separable 2
Non-Separable 0

F07 C12 [−100, 100]D Separable 0 2
Separable

F08 C13 [−100, 100]D Non-Separable 0 3
Separable
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Table 13. Cont.

No. Problem Search Range Type of
Objective

Number of Constraints
E I

F09 C15 [−100, 100]D Separable 1 1

F10 C16 [−100, 100]D Separable 1
Non-Separable

1
Separable

F11 C17 [−100, 100]D Non-Separable 1
Non-Separable

1
Separable

F12 C18 [−100, 100]D Separable 1 2
Non-Separable

F13 C25 [−100, 100]D Rotated 1
Rotated

1
Rotated

F14 C26 [−100, 100]D Rotated 1
Rotated

1
Rotated

5.2.1. D = 50

In this section of our work, seven kinds of EHOs were evaluated using the 14 constrained
benchmarks mentioned previously, with dimension D = 50. The obtained mean function values and
standard values from thirty runs are recorded in Tables 14 and 15.

Table 14. Mean function values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 8.50 × 10−6 2.69 × 10−3 0.04 2.81 × 10−5 0.07 6.05 × 10−5 0.01
F02 6.45 × 10−5 6.76 × 10−3 0.24 3.09 × 10−4 0.39 4.28 × 10−4 0.03
F03 7.82 × 10−8 1.24 × 10−4 0.21 1.02 × 10−7 1.70 4.10 × 10−7 2.21 × 10−3

F04 2.22 × 10−13 3.61 × 10−9 1.86 × 10−3 8.75 × 10−15 2.65 3.01 × 10−14 1.80 × 10−6

F05 0.06 0.02 0.49 0.01 0.06 0.01 0.01
F06 0.22 0.39 0.15 0.22 1.08 0.18 0.22
F07 1.06 × 10−6 4.96 × 10−3 0.58 6.86 × 10−7 5.68 1.98 × 10−6 0.01
F08 9.68 × 10−16 2.77 × 10−11 1.55 × 10−5 3.36 × 10−18 2.65 × 10−3 6.47 × 10−17 9.11 × 10−8

F09 4.43 × 10−6 3.58 × 10−4 1.64 2.11 × 10−6 20.66 7.28 × 10−6 0.09
F10 2.19 × 103 2.04 × 103 2.11 × 103 1.98 × 103 1.60 × 103 1.93 × 103 2.75 × 103

F11 9.97 × 10−4 1.46 4.01 × 103 4.03 × 10−4 9.58 × 103 8.04 × 10−4 24.87
F12 5.39 × 10−4 0.15 1.76 4.90 1.61 2.31 1.48
F13 6.61 × 10−5 2.68 × 10−3 0.15 9.41 × 10−5 0.15 1.45 × 10−4 0.01
F14 2.21 × 10−8 1.05 × 10−5 0.10 1.05 × 10−8 0.08 2.83 × 10−8 2.89 × 10−4

TOTAL 1 2 9 2 0 0 0

Table 15. Standard values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 4.06 × 104 3.58 × 104 4.08 × 104 5.75 × 104 6.26 × 104 5.65 × 104 4.16 × 104

F02 127.50 123.10 100.70 86.83 102.00 122.10 59.11
F03 65.68 46.15 48.94 50.84 38.43 42.04 51.71
F04 0.37 0.61 0.72 0.72 0.34 0.70 0.76
F05 0.36 0.35 0.31 0.37 0.27 0.29 0.22
F06 2.75 2.56 1.91 2.73 2.66 2.15 1.19
F07 1.73 × 103 1.42 × 103 1.44 × 103 1.79 × 103 1.67 × 103 1.61 × 103 1.37 × 103

F08 2.51 × 108 2.07 × 108 2.54 × 108 2.49 × 108 3.87 × 108 2.38 × 108 2.63 × 108

F09 1.39 1.77 1.44 2.32 2.31 2.01 1.44
F10 41.32 40.76 33.77 39.29 41.69 36.24 34.50
F11 0.45 0.37 0.49 0.36 0.52 0.43 0.37
F12 1.81 × 103 1.48 × 103 1.65 × 103 1.84 × 103 1.85 × 103 1.75 × 103 1.63 × 103

F13 80.20 67.86 75.43 75.82 72.32 69.12 61.46
F14 1.39 1.54 2.28 1.66 2.11 1.88 1.76

TOTAL 2 3 1 1 2 0 5
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From Table 14, we can see that in terms of the mean function values, RR1 performed the best,
at a level far better than the other methods. As for the other methods, R1 and R2 provided a similar
performance to each other, and they could find the smallest fitness values successfully on two constrained
functions. From Table 15, it can be observed that RR3 performed in the most stable way, while for the
other algorithms, they have a similar stable performance.

5.2.2. D = 100

As above, the same seven kinds of EHOs were evaluated using the fourteen constrained
benchmarks mentioned previously, with dimension D = 100. The obtained mean function values and
standard values from 30 runs are recorded in Tables 16 and 17.

Table 16. Mean function values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.09 × 106 9.71 × 105 9.48 × 105 9.49 × 105 1.13 × 106 9.71 × 105 1.01 × 106

F02 3.88 × 103 3.76 × 103 3.80 × 103 3.77 × 103 4.00 × 103 3.77 × 103 3.88 × 103

F03 9.35 × 103 9.35 × 103 9.35 × 103 9.35 × 103 9.34 × 103 9.35 × 103 9.37 × 103

F04 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103

F05 9.39 9.37 9.37 9.36 9.76 9.35 9.43
F06 1.04 × 103 1.04 × 103 1.04 × 103 1.04 × 103 1.05 × 103 1.04 × 103 1.04 × 103

F07 6.99 × 104 6.79 × 104 6.58 × 104 6.50 × 104 7.20 × 104 6.68 × 104 6.96 × 104

F08 8.77 × 109 8.02 × 109 7.80 × 109 8.19 × 109 8.95 × 109 8.14 × 109 8.62 × 109

F09 47.52 47.20 47.73 47.98 49.02 47.56 46.86
F10 2.18 × 103 2.16 × 103 2.13 × 103 2.14 × 103 2.22 × 103 2.17 × 103 2.16 × 103

F11 17.99 17.63 17.18 17.22 18.60 17.51 17.96
F12 6.82 × 104 6.60 × 104 6.50 × 104 6.52 × 104 7.01 × 104 6.63 × 104 6.87 × 104

F13 3.60 × 103 3.55 × 103 3.58 × 103 3.57 × 103 3.78 × 103 3.59 × 103 3.66 × 103

F14 55.89 55.19 53.99 53.88 60.16 54.61 56.37
TOTAL 1 2 4 4 1 1 1

Table 17. Standard values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 7.04 × 104 6.49 × 104 7.85 × 104 8.34 × 104 9.27 × 104 6.51 × 104 7.03 × 104

F02 122.00 125.20 106.10 111.90 137.30 113.80 102.50
F03 73.82 74.87 72.61 66.75 96.82 80.98 65.38
F04 0.25 0.23 0.39 0.25 0.31 0.24 0.36
F05 0.14 0.14 0.14 0.19 0.13 0.14 0.09
F06 1.20 1.23 1.39 1.46 1.73 1.22 1.27
F07 2.93 × 103 2.42 × 103 3.14 × 103 3.02 × 103 3.25 × 103 2.73 × 103 2.52 × 103

F08 5.94 × 108 6.11 × 108 7.07 × 108 7.24 × 108 1.01 × 109 6.43 × 108 5.77 × 108

F09 0.77 0.64 1.25 0.93 0.57 0.95 1.06
F10 52.32 60.00 53.11 63.71 52.42 56.61 51.64
F11 0.67 0.72 0.73 0.72 0.84 0.57 0.59
F12 2.35 × 103 2.77 × 103 3.13 × 103 2.71 × 103 3.00 × 103 3.00 × 103 2.34 × 103

F13 80.54 77.54 125.50 116.70 119.80 108.50 72.75
F14 3.02 2.93 3.44 3.27 3.05 3.38 2.56

TOTAL 1 3 0 0 1 1 8

Regarding the mean function values, Table 16 shows that RR1 and R2 have the same performance,
which performed much better than the other algorithms, providing the smallest function values on 4
out of 14 functions. As for the other algorithms, R1 ranks R2, EHO, RR2, R3, and RR3 gave a similar
performance to each other, performing the best only on one function each. From Table 17, it can be
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observed that RR3 performed in the most stable way, while for the other algorithms, R1 has a significant
advantage over the other algorithms.

6. Conclusions

In optimization research, few metaheuristic algorithms reuse previous information to guide
the later updating process. In our proposed improvement for basic elephant herd optimization,
the previous information in the population is extracted to guide the later search process. We select one,
two, or three elephant individuals from the previous iterations in either a fixed or random manner.
Using the information from the selected previous elephant individuals, we offer six individual updating
strategies (R1, RR1, R2, RR2, R3, and RR3) that are then incorporated into the basic EHO in order to
generate six variants of EHO. The final EHO individual at this iteration is generated according to
the individual generated by the basic EHO at the current iteration, along with the selected previous
individuals using a weighted sum. The weights are determined by a random number and the fitness
of the elephant individuals at the previous iteration.

We tested our six proposed algorithms against 16 large-scale test cases. Among the six individual
updating strategies, R2 performed much better than the others on most benchmarks. The experimental
results demonstrated that the proposed EHO variations significantly outperformed the basic EHO.

In future research, we will propose more individual updating strategies to further improve the
performance of EHO. In addition, the proposed individual updating strategies will be incorporated
into other metaheuristic algorithms. We believe they will generate promising results on large-scale test
functions and practical engineering cases.
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