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Abstract: In this work, we applied the improved differential transform method to find the solutions of
the systems of equations of Lane-Emden type arising in various physical models. With our proposed
scheme, the desired solutions take the form of a convergent series with easily computable components.
The results disclosing the relation between the differential transforms of multi-variables and the
corresponding Adomian polynomials are proven. One can see that both the differential transforms
and the Adomian polynomials of those nonlinearities have the same mathematical structure merely
with constants instead of variable components. By using this relation, we computed the differential
transforms of nonlinear functions given in the systems. The validity and applicability of the proposed
method are illustrated through several homogeneous and nonhomogeneous nonlinear systems.

Keywords: systems of equations of Lane-Emden type; differential transform method; Adomian
polynomials; singular behavior

1. Introduction

The differential transform method (DTM) was firstly introduced by Pukhov [1–3]. However, his
work passed unnoticed. Zhou [4] rediscovered it to solve the linear and nonlinear equations in electrical
circuit problems. Recently, a detailed comparison between the DTM and the Taylor series method (TSM)
was carried out by Bervillier [5]. The author pointed out that the DTM exactly coincides with the TSM
when DTM is applied to solve the ODEs. Whereas, the DTM is a semi-numerical-analytic method,
through which one can generates a Taylor series solution in a different manner. Firstly, the given problem
is converted to a recurrence relation by using this approach. Furthermore, we can easily obtain the
coefficients of a Taylor series solution. With this technique, we can apply directly to nonlinear problems
without linearization, discretization or perturbation, and obtain an explicit and numerical solution with
minimal calculations. Many researchers have successfully applied the DTM and its modifications have
to solve various functional equations [6–15] and systems of non-singular equations [16–21].

Although being powerful, there still exist some difficulties in solving various of equations by
the DTM. One of obstacles is to find a simple and effective way to obtain the differential transforms
of nonlinear components. The traditional method is to expand those nonlinearities in an infinite
series, and obtain its transformed function by imposing the differential transform upon the series.
Subsequently, the transformed functions of nonlinear terms would readily be achieved by the one of
its equivalent series. By using this approach, the computational difficulties will inevitably arise in
determining the transformed function of this infinity series. In [8], Chang and Chang proposed a new
algorithm for calculating the differential transform F(k), k = 0, 1, 2, · · · of nonlinear function f (u(x))
through a straightforward manner: obtaining the first term F(0) according to the definition of transform
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function, and taking the differentiation operation upon f (u(x)) to get an identity; the recursive
relation would be deduced by combing this identity and F(0); finally, one may obtain the other
terms F(k), k = 1, 2, · · · through the recursive relation. By using the same manner, authors [22] also
considered the differential transform of nonlinear function f (u(x, y)). If we apply this method to those
differential equations which have two or more nonlinearities, the computational budget will also
inevitably be increased. In [23,24], an alternative algorithm was presented to calculate the differential
transform of nonlinearities by using the Adomian polynomials. Meanwhile, due to the analytic
operations of addition and multiplication without the differentiation operator, Duan’s Corollary
3 algorithm [25] is eminently convenient for symbolic implementation to compute the Adomian’s
polynomials with the help of Maple or Mathematica. However, it should be pointed out that this new
and effective technique to handle differential transform of nonlinearities by the Adomian polynomials
was merely subject to the nonlinear function with one variable.

In this study, we shall apply the DTM to solve the following systems of equations of Lane-Emden
type: {

u′′ + λ1
x u′ + f1(u, v) = φ1(x), x > 0, λ1 > 0,

v′′ + λ2
x v′ + f2(u, v) = φ2(x), x > 0, λ2 > 0,

, (1)

subject to the initial conditions

u(0) = α, u′(0) = 0, v(0) = β, v′(0) = 0, (2)

where λ1, λ2, α and β are real constants, u = u(x) and v = v(x) are the solutions of the given system to
be determined. If we set φi(x) = 0, i = 1, 2, system (1) becomes{

u′′ + λ1
x u′ + f1(u, v) = 0, x > 0, λ1 > 0,

v′′ + λ2
x v′ + f2(u, v) = 0, x > 0, λ2 > 0.

. (3)

Systems (1) and (3), with the initial conditions (2), are called nonhomogeneous and homogeneous
systems, respectively.

It is worth mentioning that fi(u, v), i = 1, 2 given in systems (1) and (3) are the analytical functions
of two independent variables. We inevitably encounter the complicated differential transforms of
those nonlinearities with multi-variables, if the traditional DTM is employed to obtain the solution of
them. As far as we know, there is not any new work which engaged in calculating the differential
transforms of nonlinear functions with multi-variables. In this regard, We firstly disclose the relation
between the differential transform and the Adomian polynomials of those nonlinear functions with
multi-variables, and then employe the Adomian polynomials to evaluate the differential transform of
nonlinear functions fi(u, v), i = 1, 2. Furthermore, as we mentioned above, some researchers [16–21]
discussed the systems of differential equations by using the DTM. However, all of these mentioned
systems are non-singular. Whereas, systems (1) and (3) discussed in this study have a singular point
x = 0 represented as x with shape factors λ1 and λ2.

This system has arisen in the modelling of several physical problems such as pattern formation,
population evolution, chemical reactions, and so on (see for example [26] and references therein).
Many researchers [27–33] have focused their studies on the existence, uniqueness and classification
of the systems by using the different methods. Compared with quite a number of the works on
theoretical aspects, studies of the analytical approximate solutions of the systems have proceeded
rather slowly. The numerical approaches for single Lane-Emden equation were presented in [34–36]
and references therein. In this work, we discuss the different systems (1) and (3), which have two
equations. To our best knowledge, there were only two works devoted to this topic. In [37], Wazwaz
proposed the variation iteration method (VIM) to solve the systems, including the homogeneous and
nonhomogeneous cases. In [38], the authors obtained the analytical approximate solutions of the
homogeneous systems by the Adomian decomposition method (ADM). The main difficulty of the
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systems of Lane-Emden type equations is the singular behavior at the origin. Both the VIM and the
ADM overcome this obstacle by finding a corresponding Volterra integral form for the given system.
However, there exists an inherent inaccuracy in identifying the Lagrange multiplier for the VIM,
and the ADM is subject to a complicated n−fold integration for solving the systems of differential
equations. Here, we want to make fully use of those advantages of the DTM to reconsider the solutions
of problems (1) and (3) under initial conditions (2).

The rest of the paper is organized as follows. Section 2 introduces the concept and fundamental
operations of the DTM and the Adomian polynomials. In Section 3, we shall present an easy and
effective formula by using the Adomian polynomials to calculate the differential transform of any
analytic nonlinearity. Some systems, including homogeneous and nonhomogeneous, are listed in
Section 4 to testify the validity and applicability of the proposed method. A brief conclusion is given
in Section 5 to end this paper.

2. Dtm and Adomian Polynomial

2.1. Dtm

For THE convenience of the readers, we shall give a review of the definition and fundamental
operations of the DTM. The interested reader is referred to Refs. [6–14] for the details of this approach.

The differential transform of the k− th differentiable function u(x) at x = 0 is defined by

U(k) =
1
k!

[
dku(x)

dxk

]
x=0

, (4)

where U(k) is the transformed function and u(x) is the original function. The differential inverse
transform of U(k) is defined by

u(x) =
∞

∑
k=0

U(k)xk. (5)

Combining Equations (4) and (5), we have

u(x) =
∞

∑
k=0

xk

k!

[
dku(x)

dxk

]
x=0

,

from which one can see that the differential transform is derived from the classical Taylor series
method. However, there is no need to calculate the higher derivatives at the origin symbolically by
using this approach. From Equations (4) and (5), it is easy to deduce the transformed functions of the
fundamental operations listed in Table 1.

Table 1. The fundamental operations of the differential transform method (DTM).

Original Function Transformed Function

w(x) = αu(x)± βv(x) W(k) = αU(k)± βV(k)
w(x) = u(x)v(x) W(k) = ∑k

m=0 U(m)V(k−m)

w(x) = dmu(x)/dxm W(k) = (k+m)!
k! U(k + m)

w(x) = xm W(k) = δ(k−m) =

{
1, if k = m,
0, if k 6= m.

w(x) = exp(x) W(k) = 1/k!
w(x) = sin(αx + β) W(k) = αk/k! sin(kπ/2 + β)
w(x) = cos(αx + β) W(k) = αk/k! cos(kπ/2 + β)

Note that α, β are constants and m is a nonnegative integer.

2.2. Adomian Polynomial

In this subsection, we shall give a brief presentation of the ADM. For the details of this method
the interested reader is referred to Refs. [39,40].
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The ADM has been efficiently used to solve linear and nonlinear scientific problems. In the
decomposition method, we usually express the solution of the given equation in a series form
defined by

u =
∞

∑
m=0

um, v =
∞

∑
m=0

vm,

and the infinite series of polynomials

fi(u, v) =
∞

∑
m=0

Am,i, i = 1, 2.

for the nonlinear terms fi(u, v), i = 1, 2, where Am,i, i = 1, 2 depending on the solution components
u0, u1, · · · ; v0, v1, · · · are called the Adomian polynomials, which can be calculated by using the
different method such as in [25,40–46]. As mentioned in [47], Adomian and Rach [40,41] defined the
Adomian polynomials of two variables via the parametrization:

u(λ) =
∞

∑
m=0

umλm, v(λ) =
∞

∑
m=0

vmλm,

and

fi
(
u(λ), v(λ)

)
=

∞

∑
m=0

Am,iλ
m, i = 1, 2. (6)

The Taylor expansion about λ = 0 on the left hand side of (6) yields

An,i =
1
n!

dn

dλn fi
( ∞

∑
m=0

umλm,
∞

∑
m=0

vmλm)∣∣
λ=0, i = 1, 2.

3. Differential Transform of Nonlinearities

In this section, we shall present an easy and effective formula to evaluate the differential transform
of any desired nonlinear function of multi-variables by using the Adomian polynomials.

Theorem 1. If u(x) = ∑∞
m=0 amxm, and v(x) = ∑∞

m=0 bmxm, then

f (u, v) =
∞

∑
m=0

Amxm,

where Am = Am(a0, · · · , am; b0, · · · , bm) are the Adomian polynomials of nonlinear function f (u, v) with
two variables.

Proof. See ref. [48].

More generally, we have

Theorem 2. If u(i)(x) = ∑∞
m=0 ai

mxm, for 1 ≤ i ≤ n, then

f (u(1), u(2), · · · , u(n)) =
∞

∑
m=0

Amxm,

where Am = Am(a(1)0 , · · · , a(1)m ; · · · ; a(n)0 , · · · , a(n)m ) are the Adomian polynomials of function
f (u(1), u(2), · · · , u(n)) with multi-variables.

Proof. See ref. [48].
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Theorem 3. Denote the differential transform of function f (u, v) by F(k), it holds that

F(k) = Ak
(
U(0), · · · , U(k); V(0), · · · , V(k)

)
, (7)

where Ak, k = 0, 1, 2, · · · are the Adomian polynomials of nonlinear function f (u, v), U(k) and V(k) are the
transformed functions of u(x) and v(x), respectively.

Proof. According to Equation (5), we have

u(x) =
∞

∑
m=0

U(m)xm, v(x) =
∞

∑
m=0

V(m)xm.

Using Theorem 1, we obtain

f (u, v) =
∞

∑
m=0

Am
(
U(0), · · · , U(m); V(0), · · · , V(m)

)
xm. (8)

Furthermore, the following relation can be deduced by applying the differential transform to both
sides of Equation (8):

F(k) = DT
{ ∞

∑
m=0

Am
(
U(0), · · · , U(m); V(0), · · · , V(m)

)
xm
}

, (9)

where DT{} denotes the differential transform for short. Noting that Am is independent of x, and using
the properties listed in Table 1, Equation (9) yields:

F(k) = ∑∞
m=0 Am

(
U(0), · · · , U(m); V(0), · · · , V(m)

)
DT{xm}

= ∑∞
m=0 Am

(
U(0), · · · , U(m); V(0), · · · , V(m)

)
δ(k−m)

= Ak
(
U(0), · · · , U(k); V(0), · · · , V(k)

)
.

Theorem 3 enables us to derive the differential transform of any nonlinear term f (u, v) by
merely calculating the relevant Adomian polynomials. Once obtaining the Adomian polynomial of
f (u, v), the only thing we have to do is to replace uk, vk by U(k), V(k), respectively. This widens
the applicability of the DTM as the Adomian polynomials can be generated quickly by a variety
of algorithms with the help of computer algebraic systems, such as Maple. Furthermore, by using
Theorem 2 and the similar manner to prove Theorem 3, we have the general result as follows:

Theorem 4. Denote the differential transform of function f (u(1), u(2), · · · , u(n)) by F(k), it holds that

F(k) = Ak

(
U(1)(0), · · · , U(1)(k); · · · ; U(n)(0), · · · , U(n)(k)

)
,

where Ak, k = 0, 1, 2, · · · are the Adomian polynomials of nonlinear function f (u(1), u(2), · · · , u(n)).

4. Applications

In this section, we presented several homogeneous and nonhomogeneous systems to testify the
applicability and validity of the proposed technique. With the help of mathematical software Maple
12, we completed all the symbolical and numerical computations. In what follows, we denoted the
differential transforms of functions f1(u, v) and f2(u, v) by F1(k) and F2(k), respectively.

In Examples 6 and 7, we discussed the numerical behavior and introduced the following denotations:

• The exact solution: u(x), v(x).
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• The approximate solutions: uN(x) = ∑N
m=0 U(m)xm, vN(x) = ∑N

m=0 V(m)xm.
• The maximal absolute errors of uN(x): Lu

∞ = ||u(x)− uN(x)||∞ = max
0≤x≤1

|u(x)− uN(x)|.
• The maximal absolute errors of vN(x): Lv

∞ = ||v(x)− vN(x)||∞ = max
0≤x≤1

|v(x)− vN(x)|.

It is worth to indicate that an upper bound for the estimation of approximate error can be found
in [36], if the exact solutions of the problem are given.

Example 1. We consider the following homogeneous nonlinear system of equations of Lane-Emden type [38]:{
u′′ + 1

x u′ − v3(u2 + 1) = 0,

v′′ + 3
x v′ + v5(u2 + 3) = 0,

, (10)

subject to the initial conditions

u(0) = v(0) = 1, u′(0) = v′(0) = 0, (11)

where λ1 = 1, λ2 = 3. Here, f1(u, v) = −v3(u2 + 1), f2(u, v) = v5(u2 + 3), and the corresponding
differential transforms evaluated via Equation (7) are as follows:

F1(0) = −V(0)3(U(0)2 + 1
)
,

F2(0) = V(0)5(U(0)2 + 3
)
,

F1(1) = −2U(0)U(1)V(0)3 − 3
(
U(0)2 + 1

)
V(0)2V(1),

F2(1) = 2U(0)U(1)V(0)5 + 5
(
U(0)2 + 3

)
V(0)4V(1),

F1(2) = −U(1)2V(0)3 − 2U(0)U(2)V(0)3 − 6U(0)U(1)V(0)2V(1)− 3
(
U(0)2 + 1

)
V(0)V(1)2

−3
(
U(0)2 + 1

)
V(0)2V(2),

F2(2) = U(1)2V(0)5 + 2U(0)U(2)V(0)5 + 10U(0)U(1)V(0)4V(1) + 10
(
U(0)2 + 3

)
V(0)3V(1)2

+5
(
U(0)2 + 3

)
V(0)4V(2),

...

.

(12)
According to the initial conditions (11), we have

U(0) = V(0) = 1, U(1) = V(1) = 0. (13)

Furthermore, we deduce
F1(0) = −2, F2(0) = 4, (14)

by combining Equations (12) and (13).
Multiplying both sides of problem (10) by x, it yields{

xu′′ + u′ − xv3(u2 + 1) = 0,

xv′′ + 3v′ + xv5(u2 + 3) = 0,
. (15)

By applying the differential transform (4) to system (15), we obtain the following recurrence relation:{
(k + 1)(k + 1)U(k + 1) + F1(k− 1) = 0,

(k + 3)(k + 1)V(k + 1) + F2(k− 1) = 0.
(16)
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Combining Equations (13), (14) and (16), we get

U(2) = 1/2, U(4) = −1/8, U(6) = 1/16, U(8) = −5/128, · · · ,

U(3) = U(5) = U(7) = U(9) = · · · = 0,

V(2) = −1/2, V(4) = 3/8, V(6) = −5/16, V(8) = 35/128, · · · ,

V(3) = V(5) = V(7) = V(9) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (10) under the conditions (11):

u(x) = 1 + 1
2 x2 − 1

8 x4 + 1
16 x6 − 5

128 x8 + · · · ,

v(x) = 1− 1
2 x2 + 3

8 x4 − 5
16 x6 + 35

128 x8 − · · · .

This in turn gives the solution in closed form by

u(x) =
√

1 + x2, v(x) =
1√

1 + x2
.

Example 2. We now consider the following homogeneous nonlinear system of equations of Lane-Emden
type [38]: {

u′′ + 8
x u′ + (18u− 4ulnv) = 0,

v′′ + 4
x v′ + (4vlnu− 10v) = 0,

(17)

subject to the initial conditions

u(0) = v(0) = 1, u′(0) = v′(0) = 0, (18)

where λ1 = 8, λ2 = 4. Here, f1(u, v) = 18u − 4ulnv, f2(u, v) = 4vlnu − 10v, and the corresponding
differential transforms evaluated via Equation (7) are as follows:

F1(0) = 18U(0)− 4U(0)lnV(0),

F2(0) = 4V(0)lnU(0)− 10V(0),

F1(1) = 18U(1)− 4U(0)V(1)
V(0) − 4U(1)lnV(0),

F2(1) = −10V(1) + 4V(0)U(1)
U(0) + 4V(1)lnU(0),

F1(2) = 18U(2) + 2U(0)V(1)2

V(0)2 − 4U(1)V(1)+4U(0)V(2)
V(0) − 4U(2)lnV(0),

F2(2) = −10V(2) + 4V(1)U(1)+4V(0)U(2)
U(0) − 2V(0)U(1)2

U(0)2 + 4V(2)lnU(0),
...

(19)

According to the initial conditions (18), we have

U(0) = V(0) = 1, U(1) = V(1) = 0. (20)

Furthermore, we deduce
F1(0) = 18, F2(0) = −10, (21)

by combining Equations (19) and (20).
Proceeding as before, we obtain the following recurrence relation:{

(k + 8)(k + 1)U(k + 1) + F1(k− 1) = 0,

(k + 4)(k + 1)V(k + 1) + F2(k− 1) = 0.
(22)
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Combining Equations (20), (21) and (22), we get

U(2) = −1, U(4) = 1/2!, U(6) = −1/3!, U(8) = 1/4!, · · · ,

U(3) = U(5) = U(7) = U(9) = · · · = 0,

V(2) = 1, V(4) = 1/2!, V(6) = 1/3!, V(8) = 1/4!, · · · ,

V(3) = V(5) = V(7) = V(9) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (17) under the conditions (18):

u(x) = 1− x2 + 1
2! x4 − 1

3! x6 + 1
4! x8 − · · · ,

v(x) = 1 + x2 + 1
2! x4 + 1

3! x6 + 1
4! x8 + · · · .

This in turn gives the solution in closed form by

u(x) = e−x2
, v(x) = ex2

.

Example 3. We now consider the following homogeneous nonlinear system of equations of Lane-Emden type:{
u′′ + 1

x u′ − 8(eu − 2e2v) = 0,

v′′ + 2
x v′ + 2(ev + 2eu) = 0,

(23)

subject to the initial conditions

u(0) = v(0) = 0, u′(0) = v′(0) = 0, (24)

where λ1 = 1, λ2 = 2. Here, f1(u, v) = −8(eu − 2e2v), f2(u, v) = 2(ev + 2eu), and the corresponding
differential transforms evaluated via Equation (7) are as follows:

F1(0) = −8(eU(0) − 2e2V(0)),

F2(0) = 2(eV(0) + 2eU(0)),

F1(1) = −8U(1)eU(0) + 32V(1)e2V(0),

F2(1) = 2V(1)eV(0) + 4U(1)eU(0),

F1(2) = −8U(2)eU(0) − 4U(1)2eU(0) + 32V(2)e2V(0) + 32V(1)2e2V(0),

F2(2) = 2V(2)eV(0) + V(1)2eV(0) + 4U(2)eU(0) + 2U(1)2eU(0),
...

(25)

According to the initial conditions (24), we have

U(0) = V(0) = U(1) = V(1) = 0. (26)

Furthermore, we deduce
F1(0) = 8, F2(0) = 6, (27)

by combining Equations (25) and (26).
Proceeding as before, we obtain the following recurrence relation:{

(k + 1)(k + 1)U(k + 1) + F1(k− 1) = 0,

(k + 2)(k + 1)V(k + 1) + F2(k− 1) = 0.
(28)
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Combining Equations (26), (27) and (28), we get

U(2) = −2, U(4) = 1, U(6) = −2/3, U(8) = 1/2, · · · ,

U(3) = U(5) = U(7) = U(9) = · · · = 0,

V(2) = −1, V(4) = 1/2, V(6) = −1/3, V(8) = 1/4, · · · ,

V(3) = V(5) = V(7) = V(9) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (23) under the conditions (24):

u(x) = −2x2 + x4 − 2
3 x6 + 1

2 x8 − · · · ,

v(x) = −x2 + 1
2 x4 − 1

3 x6 + 1
4 x8 − · · · .

This in turn gives the solution in closed form by

u(x) = −2ln(1 + x2), v(x) = −ln(1 + x2).

Example 4. We now consider the following nonhomogeneous nonlinear system of equations of Lane-Emden
type [37]: {

u′′ + 2
x u′ + v2 − u2 + 6v = 6 + 6x2,

v′′ + 2
x v′ + u2 − v2 − 6v = 6− 6x2,

(29)

subject to the initial conditions

u(0) = 1, v(0) = −1, u′(0) = v′(0) = 0, (30)

where λ1 = λ2 = 2. Here, f1(u, v) = v2− u2 + 6v = − f2(u, v), and the corresponding differential transforms
evaluated via Equation (7) are as follows:

F1(0) = V(0)2 −U(0)2 + 6V(0) = −F2(0),

F1(1) = 2V(0)V(1)− 2U(0)U(1) + 6V(1) = −F2(1),

F1(2) = V(1)2 −U(1)2 + 2V(0)V(2)− 2U(0)U(2) + 6V(2) = −F2(2),
...

(31)

According to the initial conditions (30), we have

U(0) = 1, V(0) = −1, U(1) = V(1) = 0. (32)

Furthermore, we deduce
F1(0) = −6, F2(0) = 6, (33)

by combining Equations (31) and (32).
Proceeding as before, we obtain the following recurrence relation:{

(k + 2)(k + 1)U(k + 1) + F1(k− 1) = 6δ(k− 1) + 6δ(k− 3),

(k + 2)(k + 1)V(k + 1) + F2(k− 1) = 6δ(k− 1)− 6δ(k− 3).
(34)
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Combining Equations (32), (33) and (34), we get

U(2) = 2, U(4) = 1/2!, U(6) = 1/3!, U(8) = 1/4!, · · · ,

U(3) = U(5) = U(7) = U(9) = · · · = 0,

V(2) = 0, V(4) = −1/2!, V(6) = −1/3!, V(8) = −1/4!, · · · ,

V(3) = V(5) = V(7) = V(9) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (29) under the conditions (30):

u(x) = 1 + 2x2 + 1
2! x4 + 1

3! x6 + 1
4! x8 + · · · ,

v(x) = −1− 1
2! x4 − 1

3! x6 − 1
4! x8 − · · · .

This in turn gives the solution in closed form by

u(x) = x2 + ex2
, v(x) = x2 − ex2

.

Example 5. We now consider the following nonhomogeneous nonlinear system of equations of Lane-Emden type:{
u′′ + 1

x u′ −
√

u3 + v2 = φ1(x),

v′′ + 1
x v′ +

√
u2 − v3 = φ2(x),

(35)

subject to the initial conditions

u(0) = 2, v(0) = 1, u′(0) = v′(0) = 0, (36)

where φ1(x) = 4 −
√

2x6 + 6x4 + 12x2 + 9 + 2x3, φ2(x) = 9x +
√

x4 + 4x2 + 3− x9 − 3x6 − 3x3,
λ1 = λ2 = 1 Here, f1(u, v) = −

√
u3 + v2, f2(u, v) =

√
u2 − v3, and the corresponding differential

transforms evaluated via Equation (7) are as follows:

F1(0) = −
√

U(0)3 + V(0)2,

F2(0) =
√

U(0)2 −V(0)3,

F1(1) = − 1
2

3U(1)U(0)2+2V(1)V(0)√
U(0)3+V(0)2

,

F2(1) = 1
2

2U(1)U(0)−3V(1)V(0)2√
U(0)2−V(0)3

,

F1(2) = 1
8
(3U(1)U(0)2+2V(1)V(0))2

(U(0)3+V(0)2)3/2 − 1
4

6U(0)U(1)2+6U(2)U(0)2+2V(1)2+4V(2)V(0)√
U(0)3+V(0)2

,

F2(2) = − 1
8
(2U(1)U(0)−3V(1)V(0)2)2

(U(0)2−V(0)3)3/2 + 1
4

2U(1)2−6V(2)V(0)2−6V(1)2V(0)+4U(2)U(0)√
U(0)2−V(0)3

,

...

(37)

According to the initial conditions (36), we have

U(0) = 2, V(0) = 1, U(1) = V(1) = 0. (38)

Furthermore, we deduce
F1(0) = −3, F2(0) =

√
3, (39)

by combining Equations (37) and (38).
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Proceeding as before, we obtain the following recurrence relation:{
(k + 1)(k + 1)U(k + 1) + F1(k− 1) = DTk{xφ1(x)},
(k + 1)(k + 1)V(k + 1) + F2(k− 1) = DTk{xφ2(x)},

(40)

where DTk{xφi(x)}, i = 1, 2 denote the k − th differential transform of xφi(x) at x = 0. Table 2 lists the
corresponding results for the different k.

Combining Equations (38), (39) and (40), we get

U(2) = 1, U(3) = U(4) = U(5) = U(6) = · · · = 0,

V(2) = 0, V(3) = 1, V(4) = V(5) = V(6) = V(7) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (35) under the conditions (36):

u(x) = x2 + 2,

v(x) = x3 + 1,

which are the close solutions of the problem (35)–(36).

Table 2. The differential transform of xφi(x), i = 1, 2 for Example 5.

k 1 2 3 4 5 6 7 8 9 10

xφ1(x) 1 0 −2 − 1
3 − 1

3
2
9 − 5

54 − 1
9

1
18

29
486

xφ2(x)
√

3 9 2
√

3
3 −

√
3

2 −
√

3
18

√
3

3 − 127
√

3
216 −

√
3

4
361
√

3
648 − 119

√
3

432

Example 6. We now consider the following nonhomogeneous nonlinear system of equations of Lane-Emden type:{
u′′ + 2

x u′ − u
u2+v2 = φ1(x),

v′′ + 3
x v′ + v

u2−v2 = φ2(x),
(41)

subject to the initial conditions

u(0) = 2, v(0) = −1, u′(0) = v′(0) = 0, (42)

where λ1 = 2, λ2 = 3, φ1(x) = −2 cos x− 4 sin x
x − 2

5 cos x , φ2(x) = cos x + 3 sin x
x − 1

3 cos x . Here, f1(u, v) =
− u

u2+v2 , f2(u, v) = v
u2−v2 , and the corresponding differential transforms evaluated via Equation (7) are

as follows:

F1(0) = − U(0)
U(0)2+V(0)2 ,

F2(0) =
V(0)

U(0)2−V(0)2 ,

F1(1) = − U(1)
V(0)2+U(0)2 +

U(0)(2V(0)V(1)+2U(0)U(1))
(V(0)2+U(0)2)2 ,

F2(1) =
V(1)

U(0)2−V(0)2 −
V(0)(2U(0)U(1)−2V(0)V(1))

(U(0)2−V(0)2)2 ,

F1(2) = − U(2)
V(0)2+U(0)2 +

U(1)(2V(0)V(1)+2U(0)U(1))
(V(0)2+U(0)2)2 − U(0)(2V(0)V(1)+2U(0)U(1))2

(V(0)2+U(0)2)3

+ 1
2

U(0)(2V(1)2+4V(0)V(2)+2U(1)2+4U(0)U(2))
(V(0)2+U(0)2)2 ,

F2(2) =
V(2)

U(0)2−V(0)2 −
V(1)(2U(0)U(1)−2V(0)V(1))

(U(0)2−V(0)2)2 + V(0)(2U(0)U(1)−2V(0)V(1))2

(U(0)2−V(0)2)3

− 1
2

V(0)(2U(1)2+4U(0)U(2)−2V(1)2−4V(0)V(2))
(U(0)2−V(0)2)2 ,

...

(43)
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According to the initial conditions (42), we have

U(0) = 2, V(0) = −1, U(1) = V(1) = 0. (44)

Furthermore, we deduce

F1(0) = −
2
5

, F2(0) = −
1
3

, (45)

by combining Equations (43) and (44).
Proceeding as before, we obtain the following recurrence relation:{

(k + 2)(k + 1)U(k + 1) + F1(k− 1) = DTk{xφ1(x)},
(k + 3)(k + 1)V(k + 1) + F2(k− 1) = DTk{xφ2(x)},

(46)

where DTk{xφi(x)}, i = 1, 2 denote the k − th differential transform of xφi(x) at x = 0. Table 3 lists the
corresponding results for the different k.

Combining Equations (44), (45) and (46), we get

U(2) = −1, U(4) = 1/12, U(6) = −1/360, U(8) = 1/20160, · · · ,

U(3) = U(5) = U(7) = U(9) = · · · = 0,

V(2) = 1/2, V(4) = −1/24, V(6) = 1/720, V(8) = −1/40320, · · · ,

V(3) = V(5) = V(7) = V(9) = · · · = 0.

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (41) under the conditions (42):

u(x) = 2(1− 1
2! x2 + 1

4! x4 − 1
6! x6 + 1

8! x8 + · · · ),
v(x) = −1 + 1

2! x2 − 1
4! x4 + 1

6! x6 − 1
8! x8 + · · · .

This in turn gives the solution in closed form by

u(x) = 2 cos x, v(x) = − cos x.

Table 3. The differential transform of xφi(x), i = 1, 2 for Example 6.

k 1 2 3 4 5 6 7 8 9 10

xφ1(x) − 32
5 0 22

15 0 − 1
5 0 − 191

6300 0 − 313
22680 0

xφ2(x) 11
3 0 − 7

6 0 − 1
360 0 − 457

15120 0 − 1381
120960 0

The maximal absolute errors Lu
∞ and Lv

∞ of those numerical solutions uN(x) and vN(x) for N = 4 through
16 by step 2 of problem (41) are shown in Table 4, which demonstrates the convergence of the proposed approach.

Table 4. The maximal absolute errors Lu
∞ and Lv

∞ for Example 6.

N 4 6 8 10 12 14 16

Lu
∞ 8.0604× 10−2 2.7287× 10−3 4.9056× 10−5 5.4699× 10−7 4.1525× 10−9 2.2846× 10−11 9.5278× 10−14

Lv
∞ 4.0302× 10−2 1.3644× 10−3 2.4528× 10−5 2.7350× 10−7 2.0763× 10−9 1.1423× 10−11 4.7639× 10−14

Example 7. We now consider the following nonhomogeneous nonlinear system of equations of Lane-Emden type:{
u′′ + 4

x u′ − sin (u2v) = φ1(x),

v′′ + 3
x v′ + cos (uv2) = φ2(x),

(47)
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subject to the initial conditions
u(0) = v(0) = u′(0) = v′(0) = 0, (48)

where λ1 = 4, λ2 = 3, φ1(x) = 5+4x
(1+x)2 − sin

(
(x− ln (1 + x))2(x + ln (1− x))

)
, φ2(x) = 3x−4

(x−1)2 −
sin
(
(x− ln (1 + x))(x + ln (1− x))2). Here, f1(u, v) = − sin (u2v), f2(u, v) = cos (uv2), and the

corresponding differential transforms evaluated via Equation (7) are as follows:

F1(0) = − sin (U(0)2V(0)),

F2(0) = cos (U(0)V(0)2),

F1(1) = − cos (U(0)2V(0))(U(0)2V(1) + 2U(0)U(1)V(0)),

F2(1) = − sin (U(0)V(0)2)(U(1)V(0)2 + 2U(0)V(0)V(1)),

F1(2) = 1
2 sin (U(0)2V(0))(U(0)2V(1) + 2U(0)U(1)V(0))2

− 1
2 cos (U(0)2V(0))(2V(2)U(0)2 + 4V(1)U(0)U(1) + 2V(0)U(1)2 + 4V(0)U(0)U(2)),

F2(2) = − 1
2 cos (U(0)V(0)2)(U(1)V(0)2 + 2V(0)V(1)U(0))2

− 1
2 sin (U(0)V(0)2)(2U(0)V(1)2 + 4U(1)V(0)V(1) + 2V(0)2U(2) + 4V(0)V(2)U(0)),

...
(49)

According to the initial conditions (48), we have

U(0) = V(0) = U(1) = V(1) = 0. (50)

Furthermore, we deduce
F1(0) = 0, F2(0) = 1, (51)

by combining Equations (49) and (50).
Proceeding as before, we obtain the following recurrence relation:{

(k + 4)(k + 1)U(k + 1) + F1(k− 1) = DTk{xφ1(x)},
(k + 3)(k + 1)V(k + 1) + F2(k− 1) = DTk{xφ2(x)},

(52)

where DTk{xφi(x)}, i = 1, 2 denote the k-th differential transform of xφi(x) at x = 0. Table 5 lists the
corresponding results for the different k.

Combining Equations (50)–(52), we get

U(2) = 1/2, U(3) = −1/3, U(4) = 1/4, U(5) = −1/5, U(6) = 1/6, U(7) = −1/7, · · · ,

V(2) = −1/2, V(3) = −1/3, V(4) = −1/4, V(5) = −1/5, V(6) = −1/6, V(7) = −1/7, · · · .

Thus, using the differential inverse transform defined in Equation (5), we can easily identify the series
solution of (47) under the conditions (48):

u(x) = 1
2 x2 − 1

3 x3 + 1
4 x4 − 1

5 x5 + 1
6 x6 − 1

7 x7 + · · · ,

v(x) = − 1
2 x2 − 1

3 x3 − 1
4 x4 − 1

5 x5 − 1
6 x6 − 1

7 x7 − · · · .

This in turn gives the solution in closed form by

u(x) = x− ln (1 + x), v(x) = x + ln (1− x).
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Table 5. The differential transform of xφi(x), i = 1, 2 for Example 7.

k 1 2 3 4 5 6 7 8 9 10

xφ1(x) 5 −6 7 −8 9 −10 89
8 − 145

12
1891
144 − 1903

135
xφ2(x) −3 −5 −6 −7 −8 −9 −10 −11 −12 −13

The absolute errors |u(x)− uN(x)| and |v(x)− vN(x)| of those numerical solutions uN(x) and vN(x)
for N = 12 through 18 by step 2 of problem (47) are shown in Figure 1, which demonstrates the convergence of
the proposed approach.

(a) (b)

Figure 1. The curves of absolute errors of the approximate solutions in problem (47): (a) For the
approximate solution uN(x). (b) For the approximate solution vN(x).

5. Conclusions

In this study, we have successfully applied the improved DTM, i.e., the DTM coupled with
Adomian polynomials in dealing nonlinear functions, to solve the systems of equations of Lane-Emden
type. This technique takes the form of a convergent series with easily computable components and has
no particular technique to handle the singularity behavior. The obstacle of classical DTM in dealing
with those nonlinear terms with multi-variables have been overcome with the help of Adomian
polynomials generated via several fast algorithms that do not involve differentiation. One can see
that both the differential transforms and the Adomian polynomials of those nonlinearities have the
same mathematical structure merely with constants instead of variable components. The proposed
technique to evaluate the differential transform of the nonlinear function with multi-variables merely
entails simple arithmetic operations and evaluation of Adomian polynomials such that it is expected
to broaden the applications of the DTM. Furthermore, we are convinced that the systems (1) and (3)
can be generalized to those systems with multi-variables more than two.
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