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Abstract

:

In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived networks HDN3(r), THDN3(r), RHDN3(r), CHDN3(r), and compute exact results for topological indices which are based on degrees of end vertices.
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1. Introduction and Preliminary Results


Graph theory has provided chemists with a variety of useful tools, such as topological indices. Molecules and molecular compounds are often modeled by molecular graph. A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Cheminformatics is new subject which is a combination of chemistry, mathematics, and information science. It studies quantitative structure–activity (QSAR) and structure–property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. Biological indicators such as the Randic´ Index, Zagreb Index, Wiener Index, and Balaban index are used to predict and study the physical and chemical properties of chemical structures. The topological index is a numeric quantity associated with chemical constitutions purporting the correlation of chemical structures with many physicochemical properties, chemical reactivity or biological activity. Topological indices are made on the grounds of the transformation of a chemical network into a number that characterizes the topology of the chemical network. Some of the major types of topological indices of graphs are distance-based topological indices, degree-based topological indices, and counting-related topological indices.



Recently, many researchers have found topological indices vital for the study of structural properties of molecular graph or network or chemical tree. An acyclic connected graph is called a tree graph. The degree 3 or greater of every vertex of a tree is called the branching point of the tree. A chemical tree is a connected acyclic graph having maximum degree 4. The first and second Zagreb index of star-like trees and sun-like graphs and also caterpillar trees containing the hydrocarbons, especially ethane, propane, and butane, was studied and computed in Reference [1]. Imran et al. [2] also computed the topological indices of fractal and cayley tree type dendrimers.



For any graph, G=(V,E) where V is be the vertex set and E to be the edge set of G. The degree κ(x) of vertex x is the amount of edges of G episode with x. A graph can be spoken by a polynomial, a numerical esteem or by network shape.



In the present paper, we consider the topological indices of hex-derived networks which are derived from a hexagonal graph that include molecular graphs of unbranched benzenoid hydrocarbons [3]. Graphs of hexagonal systems consist of mutually fused hexagons. Since this class of chemical compounds is attracting the great attention of theoretical chemists, the theory of the topological index of the respective molecular graphs have been intensively developed in the last 4 decades. Benzenoid hydrocarbons are important raw materials of the chemical industry (used, for instance, for the production of dyes and plastics) but are also dangerous pollutants [3,4,5]. A hexagonal mesh was derived by Chen et al. [6]. A set of triangles made a hexagonal mesh, as shown in Figure 1. No hexagonal mesh with dimension 1 exists. A composition of six triangles made a 2-dimensional hexagonal mesh HX(2) (see Figure 1 (1)). By adding a new layer of triangles around the boundary of HX(2), we have a 3-dimensional hexagonal mesh HX(3) (see Figure 1 (2)). Similarly, we formed HX(n) by adding n layers around the boundary of each proceeding hexagonal mesh.



Drawing algorithm of HDN3 networks

	Step-1: 

	
First, we draw a hexagonal network of dimension r.




	Step-2: 

	
Replace all K3 subgraphs into a planar octahedron POH once. The resulting graph is called an HDN3 (see Figure 2) network.




	Step-3: 

	
From the HDN3 network, we can easily form THDN3 (see Figure 3), RHDN3 (see Figure 4), and CHDN3 (see Figure 5).









In this article, we consider G as a network, with V(G) as the set of vertices and edge set E(G); the degree of any vertex p´∈V(G) is denoted by κ(p´).



The Estrada index is a graph–spectrum-based topological index, which is defined as [7]:


EE(G)=∑i=1neλi.



(1)




In full analogy with the Estrada index, Fath-Tabar et al. [8] proposed the Laplacian Estrada index, which is defined as:


LEE(G)=∑i=1neμi.



(2)







The Randić index [9] was denoted by R−12(G) and acquainted by Milan Randić and written as:


R−12(G)=∑p´q´∈E(G)1κ(p´)κ(q´).



(3)







The general Randić index Rα(G) is the sum of (κ(p´)κ(q´))α over all edges e=p´q´∈E(G), defined as:


Rα(G)=∑p´q´∈E(G)(κ(p´)κ(q´))αforα=1,12,−1,−12.



(4)







Gutman and Trinajstić were acquainted with a substantial topological index, which is the Zagreb index denoted by M1(G) and formalised as:


M1(G)=∑p´q´∈E(G)(κ(p´)+κ(q´)).



(5)







The augmented Zagreb index was presented by Furtula et al. [10], and it is defined as:


AZI(G)=∑p´q´∈E(G)κ(p´)κ(q´)κ(p´)+κ(q´)−23.



(6)







The harmonic index was presented by Zhong [11], and it is defined as:


H(G)=∑p´q´∈E(G)2κ(p´)+κ(q´)



(7)







The Atom-bond connectivity (ABC) index is one of the famous degree-based topological indices denoted by Estrada et al. in Reference [12] and formalised as:


ABC(G)=∑p´q´∈E(G)κ(p´)+κ(q´)−2κ(p´)κ(q´).



(8)







The Geometric-arithmetic (GA) index is another famous connectivity topological descriptor, which was introduced by Vukičević et al. in Reference [13] and written as:


GA(G)=∑p´q´∈E(G)2κ(p´)κ(q´)(κ(p´)+κ(q´)).



(9)







By taking α=1, the general Randić index is the second Zagreb index for any graph G.




2. Main Results for Third Type of Hex-Derived Networks


Simonraj et al. [14] derived a new third type of hex-derived networks and found the metric dimension of HDN3 and PHDN3. In this work, we discuss the newly derived third type of hex-derived networks and compute the exact results for degree-based topological indices. At present, there is an extensive research activity on these topological indices and their variants, see [15,16,17,18,19,20,21,22,23,24,25,26]. For basic definitions and notations, see [27,28,29,30,31].



2.1. Results for Third Type of Hex-Derived Network HDN3(r)


In this section, we discuss the newly derived third type of hex-derived network and compute the exact results for Randic´, Zagreb, Harmonic, augmented Zagreb, atom–bond connectivity and geometric–arithmetic indices for the very first time.



Theorem 1. 

Consider the hex-derived network of type 3 HDN3(n), the general Randić index is equal to:


Rα(HDN3(n))=12(777+r(−1237+483r)),α=1;6(72+842−245+87−2410+314+270+r(−113−1082+125(1+2)+(39+362)r)),α=12;(50921+7r(−15256+8925r))37800,α=−1;13130+6235+27−1825+72−45+127+(−30730+925−92+25)r+(5+32)r2,α=−12.













Proof. 

Let G1 be the hex-derived network of type 3, HDN3(r) shown in Figure 2, where r≥4. The hex-derived network G1 has 21r2−39r+19 vertices, and the edge set of G1 is divided into nine partitions based on the degree of end vertices. The first edge partition E1(G1) contains 18r2−36r+18 edges p´q´, where κ(p´)=κ(q´)=4. The second edge partition E2(G1) contains 24 edges p´q´, where κ(p´)=4 and κ(q´)=7. The third edge partition E3(G1) contains 36r−72 edges p´q´, where κ(p´)=4 and κ(q´)=10. The fourth edge partition E4(G1) contains 36r2−108r+84 edges p´q´, where κ(p´)=4 and κ(q´)=18. The fifth edge partition E5(G1) contains 12 edges p´q´, where κ(p´)=7 and κ(q´)=10. The sixth edge partition E6(G1) contains 6 edges p´q´, where κ(p´)=7 and κ(q´)=18. The seventh edge partition E7(G1) contains 6r−18 edges p´q´, where κ(p´)=κ(q´)=10, the eighth edge partition E8(G1) contains 12r−24 edges p´q´, where κ(p´)=10 and κ(q´)=18, and the ninth edge partition E9(G1) contains 9r2−33r+30 edges p´q´, where κ(p´)=κ(q´)=18. Table 1 shows such an edge partition of G1. Thus, from Equation (3), it follows that:


Rα(G1)=∑p´q´∈E(G1)(κ(p´)κ(q´))α.








For α=1



The general Randic´ index Rα(G1) can be computed as follows:


R1(G1)=∑j=19∑p´q´∈Ej(G1)(κ(p´)·κ(q´)).











Using the edge partition given in Table 1, we get:


R1(G1)=16|E1(G1)|+28|E2(G1)|+40|E3(G1)|+72|E4(G1)|+70|E5(G1)|+126|E6(G1)|+100|E7(G1)|+180|E8(G1)|+324|E9(G1)|










⟹R1(G1)=12(777+r(−1237+483r)).








For α=12



We apply the formula of Rα(G1):


R12(G1)=∑j=19∑p´q´∈Ej(G1)κ(p´)·κ(q´).











Using the edge partition given in Table 1, we get:


R12(G1)=4|E1(G1)|+27|E2(G1)|+210|E3(G1)|+62|E4(G1)|+70|E5(G1)|+214|E6(G1)|+10|E7(G1)|+65|E8(G1)|+18|E9(G1)|










⟹R12(G1)=6(72+842−245+87−2410+314+270+r(−113−1082+125(1+2)+(39+362)r)).








For α=−1



We apply the formula of Rα(G1):


R−1(G1)=∑j=19∑p´q´∈Ej(G1)1κ(p´)·κ(q´)










R−1(G1)=116|E1(G1)|+128|E2(G1)|+140|E3(G1)|+172|E4(G1)|+170|E5(G1)|+1126|E6(G1)|+1100|E7(G1)|+1180|E8(G1)|+1324|E9(G1)|










⟹R−1(G1)=(50921+7r(−15256+8925r))37800.








For α=−12



We apply the formula of Rα(G1):


R−12(G1)=∑j=19∑p´q´∈Ej(G1)1κ(p´)·κ(q´)










R−12(G1)=14|E1(G1)|+127|E2(G1)|+1210|E3(G1)|+162|E4(G1)|+170|E5(G1)|+1314|E6(G1)|+110|E7(G1)|+165|E8(G1)|+118|E9(G1)|










⟹R−12(G1)=13130+6235+27−1825+72−45+127+(−30730+925−92+25)r+(5+32)r2.








 □





In the following theorem, we compute the first Zagreb index of hex-derived network G1.



Theorem 2. 

For hex-derived network G1, the first Zagreb index is equal to:


M1(G1)=6(275−482r+210r2).













Proof. 

Let G1 be the hex-derived network HDN3(r). Using the edge partition from Table 1, the result follows. The Zagreb index can be calculated using Equation (5) as follows:


M1(G1)=∑p´q´∈E(G1)(κ(p´)+κ(q´))=∑j=19∑p´q´∈Ej(G1)(κ(p´)+κ(q´))










M1(G1)=8|E1(G1)|+11|E2(G1)|+14|E3(G1)|+22|E4(G1)|+17|E5(G1)|+25|E6(G1)|+20|E7(G1)|+28|E8(G1)|+36|E9(G1)|.











By doing some calculations, we get:


⟹M1(G1)=6(275−482r+210r2).








 □





Now, we compute H, AZI, ABC, and GA indices of the third type of hex-derived network G1.



Theorem 3. 

Let G1 be the third type of hex-derived network, then:

	
H(G1) = 159592550+1330r(−4637+2730r);



	
AZI(G1) = 8(9690243075343773626+85169r(−163548617818123+57430071805041r))3989115543655125;



	
ABC(G1) = 667+467+367+952(−3+r)+1865(−2+r)+2265(−2+r)+932(−1+r)2+13172(−2+r)(−5+3r)+210(7+3(−3+r)r);



	
GA(G1) = 30+96711+361425+247011+3675(−2+r)+72710(−2+r)+2265(−2+r)+932(−1+r)2+13172(−2+r)(−5+3r)+210(7+3(−3+r)r).










Proof. 

Using the edge partition given in Table 1, The Harmonic index can be calculated using Equation (7) as follows:


H(G1)=∑p´q´∈E(G1)2κ(p´)+κ(q´)=∑j=19∑p´q´∈Ej(G1)2κ(p´)+κ(q´)










H(G1)=14|E1(G1)|+211|E2(G1)|+17|E3(G1)|+111|E4(G1)|+217|E5(G1)|+225|E6(G1)|+110|E7(G1)|+114|E8(G1)|+118|E9(G1)|.











By doing some calculations, we get:


⟹H(G1)=159592550+1330r(−4637+2730r).











The augmented Zagreb index can be calculated from Equation (6) as follows:


AZI(G1)=∑p´q´∈E(G1)κ(p´)·κ(q´)κ(p´)+κ(q´)−23=∑j=19∑p´q´∈Ej(G1)κ(p´)·κ(q´)κ(p´)+κ(q´)−23










AZI(G1)=51227|E1(G1)|+21952729|E2(G1)|+100027|E3(G1)|+5832125|E4(G1)|+274427|E5(G1)|+200037612167|E6(G1)|+125000729|E7(G1)|+7290002197|E8(G1)|+42515284913|E9(G1)|.











By doing some calculations, we get:


⟹AZI(G1)=8(9690243075343773626+85169r(−163548617818123+57430071805041r))3989115543655125.











The atom–bond conectivity index can be calculated from Equation (8) as follows:


ABC(G1)=∑p´q´∈E(G1)κ(p´)+κ(q´)−2κ(p´)·κ(q´)=∑j=19∑p´q´∈Ej(G1)κ(p´)+κ(q´)−2κ(p´)·κ(q´)










ABC(G1)=1232|E1(G1)|+327|E2(G1)|+310|E3(G1)|+1352|E4(G1)|+314|E5(G1)|+132314|E6(G1)|+352|E7(G1)|+131310|E8(G1)|+19172|E9(G1)|.











By doing some calculations, we get:


⟹ABC(G1)=667+467+367+952(−3+r)+1865(−2+r)+2265(−2+r)+932(−1+r)2+13172(−2+r)(−5+3r)+210(7+3(−3+r)r).











The geometric–arithmetic index can be calculated from Equation (9) as follows:


GA(G1)=∑p´q´∈E(G1)2κ(p´)κ(q´)(κ(p´)+κ(q´))=∑j=19∑p´q´∈Ej(G1)2κ(p´)κ(q´)(κ(p´)+κ(q´)).











By doing some calculations, we get:


GA(G1)=|E1(G1)|+4711|E2(G1)|+2107|E3(G1)|+6211|E4(G1)|+27017|E5(G1)|+61425|E6(G1)|+|E7(G1)|+357|E8(G1)|+|E9(G1)|










⟹GA(G1)=30+96711+361425+247011+3675(−2+r)+72710(−2+r)+2265(−2+r)+932(−1+r)2+13172(−2+r)(−5+3r)+210(7+3(−3+r)r).








 □






2.2. Results for Third Type of Triangular Hex-Derived Network THDN3(r)


In this section, we calculate certain degree-based topological indices of a triangular hex-derived network of type 3, THDN3(r) of dimension r. We compute general Randić index Rα(THDN3(r)) with α={1,−1,12,−12}, M1, H, AZIABC, and GA indices in the coming theorems of THDN3(r).



Theorem 4. 

Consider the triangular hex-derived network of type 3, THDN3(r), the general Randić index is equal to:


Rα(THDN3(r))=6(588+r(−593+161r)),α=1;3(4(25+182−95−510)+r(−61−602+125(1+2)+(13+122)r)),α=12;(2247+r(−3356+2975r))10800,α=−1;5320+32−352−35+(−10760−52+15+910)r+(56+12)r2,α=−12.













Proof. 

Let G2 be the third type of a triangular hex-derived network of type 3, THDN3(r) shown in Figure 3, where r≥4. The triangular hex-derived network G2 has (7r2−11r+6)2 vertices and the edge set of G2 is divided into six partitions based on the degree of end vertices. The first edge partition E1(G2) contains 3r2−6r+9 edges p´q´, where κ(p´)=κ(q´)=4. The second edge partition E2(G2) contains 18r−30 edges p´q´, where κ(p´)=4 and κ(q´)=10. The third edge partition E3(G2) contains 6r2−30r+36 edges p´q´, where κ(p´)=4 and κ(q´)=18. The fourth edge partition E4(G2) contains 3r−6 edges p´q´, where κ(p´)=κ(q´)=10. The fifth edge partition E5(G2) contains 6r−18 edges p´q´, where κ(p´)=10 and κ(q´)=18, and the sixth edge partition E6(G2) contains 3r2−21r+362 edges p´q´, where κ(p´)=κ(q´)=18. Table 2 shows such an edge partition of G2. Thus, from Equation (3), it follows that:


Rα(G2)=∑p´q´∈E(G2)(κ(p´)κ(q´))α.








For α=1



The general Randic´ index Rα(G2) can be computed as follows:


R1(G1)=∑j=16∑p´q´∈Ej(G2)(κ(p´)·κ(q´)).











Using the edge partition given in Table 2, we get:


R1(G2)=16|E1(G2)|+40|E2(G2)|+72|E3(G2)|+100|E4(G2)|+180|E5(G2)|+324|E6(G2)|










⟹R1(G2)=6(588+r(−593+161r)).








For α=12



We apply the formula of Rα(G2):


R12(G2)=∑j=16∑p´q´∈Ej(G2)κ(p´)·κ(q´).











Using the edge partition given in Table 2, we get:


R12(G2)=4|E1(G2)|+210|E2(G2)|+62|E3(G2)|+10|E4(G2)|+65|E5(G2)|+18|E6(G2)|










⟹R12(G2)=3(4(25+182−95−510)+r(−61−602+125(1+2)+(13+122)r)).








For α=−1



We apply the formula of Rα(G2):


R−1(G2)=∑j=16∑p´q´∈Ej(G2)1κ(p´)·κ(q´)










R−1(G2)=116|E1(G2)|+140|E2(G2)|+172|E3(G2)|+1100|E4(G2)|+1180|E5(G2)|+1324|E6(G2)|










⟹R−1(G2)=(2247+r(−3356+2975r))10800.








For α=−12



We apply the formula of Rα(G2):


R−12(G2)=∑j=16∑p´q´∈Ej(G2)1κ(p´)·κ(q´)










R−12(G2)=14|E1(G2)|+1210|E2(G2)|+162|E3(G2)|+110|E4(G2)|+165|E5(G2)|+118|E6(G2)|










⟹R−12(G2)=5320+32−352−35+(−10760−52+15+910)r+(56+12)r2.








 □





In the following theorem, we compute the first Zagreb index of the third type of triangular hex-derived network G2.



Theorem 5. 

For the third type of triangular hex-derived network G2, the first Zagreb index is equal to:


M1(G2)=6(78+r(−101+35r)).













Proof. 

Let G2 be the triangular hex-derived network THDN3(r). Using the edge partition from Table 2, the result follows. The first Zagreb index can be calculated using Equation (5) as follows:


M1(G2)=∑p´q´∈E(G2)(κ(p´)+κ(q´))=∑j=16∑p´q´∈Ej(G2)(κ(p´)+κ(q´))










M1(G2)=8|E1(G2)|+14|E2(G2)|+17|E3(G2)|+20|E4(G2)|+28|E5(G2)|+36|E6(G2)|.











By doing some calculations, we get:


⟹M1(G2)=6(78+r(−101+35r)).








 □





Now, we compute the H, AZI, ABC, and GA indices of the third type of triangular hex-derived network G2.



Theorem 6. 

Let G2 be the third type of a triangular hex-derived network, then:

	
H(G2) =(1623+7r(−997+910r))4620;



	
AZI(G2) = (4(763447224726824+7r(−86975188744735+19143357268347r)))327863527875;



	
ABC(G2) = 1265(−3+r)+517(−4+r)(−3+r)+54(−2+r)+605(−3+r)(−2+r)302+3615(−5+3r)+4545(3+(−2+r)r)302;



	
GA(G2) = 3+1875(−3+r)+32(−4+r)(−3+r)+36112(−3+r)(−2+r)−3r+3r2+12710(−5+3r)).










Proof. 

Using the edge partition given in Table 2, The Harmonic index can be calculated using Equation (7) as follows:


H(G2)=∑p´q´∈E(G2)2κ(p´)+κ(q´)=∑j=16∑p´q´∈Ej(G2)2κ(p´)+κ(q´)










H(G2)=14|E1(G2)|+17|E2(G2)|+111|E3(G2)|+110|E4(G2)|+114|E5(G2)|+118|E6(G2)|.











By doing some calculations, we get:


⟹H(G2)=(1623+7r(−997+910r))4620.











The augmented Zagreb index can be calculated from Equation (6) as follows:


AZI(G2)=∑p´q´∈E(G2)κ(p´)·κ(q´)κ(p´)+κ(q´)−23=∑j=16∑p´q´∈Ej(G2)κ(p´)·κ(q´)κ(p´)+κ(q´)−23










AZI(G2)=51227|E1(G2)|+100027|E2(G2)|+5832125|E3(G2)|+125000729|E4(G2)|+7290002197|E5(G2)|+42515284913|E6(G2)|.











By doing some calculations, we get:


⟹AZI(G2)=(4(763447224726824+7r(−86975188744735+19143357268347r)))327863527875.











The atom–bond connectivity index can be calculated from Equation (8) as follows:


ABC(G2)=∑p´q´∈E(G2)κ(p´)+κ(q´)−2κ(p´)·κ(q´)=∑j=16∑p´q´∈Ej(G2)κ(p´)+κ(q´)−2κ(p´)·κ(q´)










ABC(G2)=1232|E1(G2)|+310|E2(G2)|+1352|E3(G2)|+352|E4(G2)|+131310|E5(G2)|+19172|E6(G2)|.











By doing some calculations, we get:


⟹ABC(G2)=1265(−3+r)+517(−4+r)(−3+r)+54(−2+r)302+605(−3+r)(−2+r)+3615(−5+3r)+4545(3+(−2+r)r)302.











The geometric–arithmetic index can be calculated from Equation (9) as follows:


GA(G2)=∑p´q´∈E(G2)2κ(p´)κ(q´)(κ(p´)+κ(q´))=∑j=16∑p´q´∈Ej(G2)2κ(p´)κ(q´)(κ(p´)+κ(q´)).











By doing some calculations, we get:


GA(G2)=|E1(G2)|+2107|E2(G2)|+6211|E3(G2)|+|E4(G2)|+357|E5(G2)|+|E6(G2)|










⟹GA(G2)=3+1875(−3+r)+32(−4+r)(−3+r)+36112(−3+r)(−2+r)−3r+3r2+12710(−5+3r)).








 □






2.3. Results of the Third Type of Rectangular Hex-Derived Network RHDN3(r,s)


In this section, we compute certain degree-based topological indices of the third type of rectangular hex-derived network RHDN3(r,s) of dimension r=s. We compute general Randić index Rα(RHDN3(r)) with the α={1,−1,12,−12}, M1, H, AZIABC, and GA indices in the coming theorems of RHDN3(r,s).



Theorem 7. 

Consider the rectangular hex-derived network of type 3, RHDN3(r), the general Randić index is equal to:


Rα(RHDN3(r))=4816+4r(−1508+483r),α=1;2(159+1442−605+87−4410+314+270+4(−37−362+65(1+2))r+(39+362)r2),α=12;(45825+7r(−12662+8925r))113400,α=−1;83+2235+1327−1125+42−1325+47+(−15745+625−42+45)r+(53+2)r2,α=−12.













Proof. 

Let G3 be the rectangular hex-derived network of type 3, RHDN3(r) shown in Figure 4, where r=s≥4. The rectangular hex-derived network G3 has 7r2−12r+6 vertices and the edge set of G3 is divided into nine partitions based on the degree of end vertices. The first edge partition E1(G3) contains 6r2−12r+10 edges p´q´, where κ(p´)=κ(q´)=4. The second edge partition E2(G3) contains 8 edges p´q´, where κ(p´)=4 and κ(q´)=7. The third edge partition E3(G3) contains 24r−44 edges p´q´, where κ(p´)=4 and κ(q´)=10. The fourth edge partition E4(G3) contains 12r2−48r+48 edges p´q´, where κ(p´)=4 and κ(q´)=18. The fifth edge partition E5(G3) contains 4 edges p´q´, where κ(p´)=7 and κ(q´)=10. The sixth edge partition E6(G3) contains 2 edges p´q´, where κ(p´)=7 and κ(q´)=18. The seventh edge partition E7(G3) contains 4r−10 edges p´q´, where κ(p´)=κ(q´)=10, the eighth edge partition E8(G3) contains 8r−20 edges p´q´, where κ(p´)=10 and κ(q´)=18, and the ninth edge partition E9(G3) contains 3r2−16r+21 edges p´q´, where κ(p´)=κ(q´)=18, Table 3 shows such an edge partition of G3. Thus, from Equation (3), it follows that:


Rα(G3)=∑p´q´∈E(G3)(κ(p´)κ(q´))α.








For α=1



The general Randic´ index Rα(G3) can be computed as follows:


R1(G3)=∑j=19∑p´q´∈Ej(G3)(κ(p´)·κ(q´)).











Using the edge partition given in Table 3, we get:


R1(G3)=16|E1(G3)|+28|E2(G3)|+40|E3(G3)|+72|E4(G3)|+70|E5(G3)|+126|E6(G3)|+100|E7(G3)|+180|E8(G3)|+324|E9(G3)|










⟹R1(G3)=4816+4r(−1508+483r).








For α=12



We apply the formula of Rα(G3):


R12(G3)=∑j=19∑p´q´∈Ej(G)κ(p´)·κ(q´).











Using the edge partition given in Table 3, we get:


R12(G3)=4|E1(G3)|+27|E2(G3)|+210|E3(G3)|+62|E4(G3)|+70|E5(G3)|+214|E6(G3)|+10|E7(G3)|+65|E8(G3)|+18|E9(G3)|










⟹R12(G3)=2(159+1442−605+87−4410+314+270+4(−37−362+65(1+2))r+(39+362)r2).








For α=−1



We apply the formula of Rα(G3):


R−1(G3)=∑j=19∑p´q´∈Ej(G3)1κ(p´)·κ(q´)










R−1(G3)=116|E1(G3)|+128|E2(G3)|+140|E3(G3)|+172|E4(G3)|+170|E5(G3)|+1126|E6(G3)|+1100|E7(G3)|+1180|E8(G3)|+1324|E9(G3)|










⟹R−1(G3)=(45825+7r(−12662+8925r))113400.








For α=−12



We apply the formula of Rα(G3):


R−12(G3)=∑j=19∑p´q´∈Ej(G3)1κ(p´)·κ(q´)










R−12(G3)=14|E1(G3)|+127|E2(G3)|+1210|E3(G3)|+162|E4(G3)|+170|E5(G3)|+1314|E6(G3)|+110|E7(G3)|+165|E8(G3)|+118|E9(G3)|










⟹R−12(G3)=83+2235+1327−1125+42−1325+47+(−15745+625−42+45)r+(53+2)r2.








 □





In the following theorem, we compute the first Zagreb index of rectangular hex-derived network G3.



Theorem 8. 

For the third type of rectangular hex-derived network G3, the first Zagreb index is equal to:


M1(G3)=722+4r(−272+105r).













Proof. 

Let G3 be the hex-derived network RHDN3(r). Using the edge partition from Table 3, the result follows. The Zagreb index can be calculated using Equation (5) as follows:


M1(G3)=∑p´q´∈E(G3)(κ(p´)+κ(q´))=∑j=19∑p´q´∈Ej(G3)(κ(p´)+κ(q´))










M1(G3)=8|E1(G3)|+11|E2(G3)|+14|E3(G3)|+22|E4(G3)|+17|E5(G3)|+25|E6(G3)|+20|E7(G3)|+28|E8(G3)|+36|E9(G3)|.











By doing some calculations, we get:


⟹M1(G3)=722+4n(−272+105n).








 □





Now, we compute the H, AZI, ABC, and GA indices of the third type of rectangular hex-derived network G3.



Theorem 9. 

Let G3 be the third type of rectangular hex-derived network, then:

	
H(G3) = 13755898175+1495r(−1907+1365r);



	
AZI(G3) = (8(17348684863407195591+85169n(−212237092026164+57430071805041n)))11967346630965375;



	
ABC(G3) = 11260(21607+36042+60322+252010(−2+n)2+7562(−5+2r)+168130(−5+2r)+50430(−11+6r)+7034(21−16r+3r2)+6306(5−6r+3r2));



	
GA(G3) = 21+(327)11+(12v14)25+(8v70)17+72112(−2+n)2−24r+9r2+1275(−5+2r)+8710(−11+6r).










Proof. 

Using the edge partition given in Table 3, The Harmonic index can be calculated using Equation (7) as follows:


H(G3)=∑p´q´∈E(G3)2κ(p´)+κ(q´)=∑j=19∑p´q´∈Ej(G3)2κ(p´)+κ(q´)










H(G3)=14|E1(G3)|+211|E2(G3)|+17|E3(G3)|+111|E4(G3)|+217|E5(G3)|+225|E6(G3)|+110|E7(G3)|+114|E8(G3)|+118|E9(G3)|.











By doing some calculations, we get:


⟹H(G3)=13755898175+1495r(−1907+1365r).











The augmented Zagreb index can be calculated from Equation (6) as follows:


AZI(G3)=∑p´q´∈E(G3)κ(p´)·κ(q´)κ(p´)+κ(q´)−23=∑j=19∑p´q´∈Ej(G3)κ(p´)·κ(q´)κ(p´)+κ(q´)−23










AZI(G3)=51227|E1(G3)|+21952729|E2(G3)|+100027|E3(G3)|+5832125|E4(G3)|+274427|E5(G3)|+200037612167|E6(G3)|+125000729|E7(G3)|+7290002197|E8(G3)|+42515284913|E9(G3)|.











By doing some calculations, we get:


⟹AZI(G3)=(8(17348684863407195591+85169n(−212237092026164+57430071805041n)))11967346630965375.











The atom–bond connectivity index can be calculated from Equation (8) as follows:


ABC(G3)=∑p´q´∈E(G3)κ(p´)+κ(q´)−2κ(p´)·κ(q´)=∑j=19∑p´q´∈Ej(G3)κ(p´)+κ(q´)−2κ(p´)·κ(q´)










ABC(G3)=1232|E1(G3)|+327|E2(G3)|+310|E3(G3)|+1352|E4(G3)|+314|E5(G3)|+132314|E6(G3)|+352|E7(G3)|+131310|E8(G3)|+19172|E9(G3)|.











By doing some calculations, we get:


⟹ABC(G3)=11260(21607+36042+60322+252010(−2+n)2+7562(−5+2r)+168130(−5+2r)+50430(−11+6r)+7034(21−16r+3r2)+6306(5−6r+3r2)).











The geometric–arithmetic index can be calculated from Equation (9) as follows:


GA(G3)=∑p´q´∈E(G3)2κ(p´)κ(q´)(κ(p´)+κ(q´))=∑j=19∑p´q´∈Ej(G3)2κ(p´)κ(q´)(κ(p´)+κ(q´)).











By doing some calculations, we get:


GA(G3)=|E1(G3)|+4711|E2(G3)|+2107|E3(G3)|+6211|E4(G3)|+27017|E5(G3)|+61425|E6(G3)|+|E7(G3)|+357|E8(G3)|+|E9(G3)|










⟹GA(G3)=21+(327)11+(12v14)25+(8v70)17+72112(−2+n)2−24r+9r2+1275(−5+2r)+8710(−11+6r).








 □






2.4. Results of the Third Type of Chain Hex-Derived Network, CHDN3(r)


In this section, we compute certain degree-based topological indices of the third type of chain hex-derived network, CHDN3(r) of dimension r. We compute general Randić index Rα(CHDN3(r)) with the α={1,−1,12,−12}, M1, H, AZIABC, and GA indices in the coming theorems of CHDN3(r).



Theorem 10. 

Consider the chain hex-derived network of type 3, CHDN3(r), the general Randić index is equal to:


Rα(CHDN3(r))=336r−160,α=1;4(2−42+(7+62)r),α=12;164(14+33r),α=−1;18(10−42+(11+62)r),α=−12.













Proof. 

Let G4 be the chain hex-derived network of type 3, CHDN3(r) shown in Figure 5, where r≥2. The chain hex-derived network G4 has 5r+1 vertices, and the edge set of G4 is divided into three partitions based on the degree of end vertices. The first edge partition E1(G4) contains 5r+6 edges p´q´, where κ(p´)=κ(q´)=4. The second edge partition E2(G4) contains 6r−4 edges p´q´, where κ(p´)=4 and κ(q´)=8, and the third edge partition E3(G4) contains r−2 edges p´q´, where κ(p´)=κ(q´)=8. Table 4 shows such an edge partition of G4. Thus, from Equation (3), it follows that:


Rα(G4)=∑p´q´∈E(G4)(κ(p´)κ(q´))α.








For α=1



The general Randic´ index Rα(G4) can be computed as follows:


R1(G4)=∑j=13∑p´q´∈Ej(G4)(κ(p´)·κ(q´)).











Using the edge partition given in Table 4, we get:


R1(G4)=16|E1(G4)|+32|E2(G4)|+64|E3(G4)|










⟹R1(G4)=336r−160.








For α=12



We apply the formula of Rα(G4):


R12(G4)=∑j=13∑p´q´∈Ej(G)κ(p´)·κ(q´).











Using the edge partition given in Table 4, we get:


R12(G4)=4|E1(G4)|+42|E2(G4)|+8|E3(G4)|










⟹R12(G4)=4(2−42+(7+62)r).








For α=−1



We apply the formula of Rα(G4):


R−1(G4)=∑j=13∑p´q´∈Ej(G4)1κ(p´)·κ(q´)










R−1(G4)=116|E1(G4)|+132|E2(G4)|+164|E3(G4)|










⟹R−1(G4)=164(14+33r).








For α=−12



We apply the formula of Rα(G4):


R−12(G4)=∑j=13∑p´q´∈Ej(G4)1κ(p´)·κ(q´)










R−12(G4)=14|E1(G4)|+142|E2(G4)|+18|E3(G4)|










⟹R−12(G4)=18(10−42+(11+62)r).








 □





In the following theorem, we compute the first Zagreb index of chain hex-derived network G4.



Theorem 11. 

For the third type of chain hex-derived network G4, the first Zagreb index is equal to:


M1(G4)=32(−1+4n).













Proof. 

Let G4 be the hex-derived network CHDN3(r). Using the edge partition from Table 4, the result follows. The Zagreb index can be calculated using Equation (5) as follows:


M1(G4)=∑p´q´∈E(G4)(κ(p´)+κ(q´))=∑j=13∑p´q´∈Ej(G4)(κ(p´)+κ(q´))










M1(G4)=8|E1(G4)|+12|E2(G4)|+16|E3(G4)|.











By doing some calculations, we get:


⟹M1(G4)=32(−1+4n).








 □





Now, we compute the H, AZI, ABC and GA indices of the third type of chain hex-derived network G4.



Theorem 12. 

Let G4 be the third type of rectangular hex-derived network, then:

	
H(G4) = 712+198r;



	
AZI(G4) = 512(−471102+874903r)1157625;



	
ABC(G4) = 18(14(−2+r)+45(−2+3r)+26(6+5r));



	
GA(G4) = 4+6r+432(−2+3r).










Proof. 

Using the edge partition given in Table 4, the Harmonic index can be calculated using Equation (7) as follows:


H(G4)=∑p´q´∈E(G4)2κ(p´)+κ(q´)=∑j=13∑p´q´∈Ej(G4)2κ(p´)+κ(q´)










H(G4)=14|E1(G4)|+16|E2(G4)|+18|E3(G4)|.











By doing some calculations, we get:


⟹H(G4)=712+198r.











The augmented Zagreb index can be calculated from Equation (6) as follows:


AZI(G4)=∑p´q´∈E(G4)κ(p´)·κ(q´)κ(p´)+κ(q´)−23=∑j=13∑p´q´∈Ej(G4)κ(p´)·κ(q´)κ(p´)+κ(q´)−23










AZI(G4)=51227|E1(G4)|+4096125|E2(G4)|+32768343|E3(G4)|.











By doing some calculations, we get:


⟹AZI(G4)=512(−471102+874903r)1157625.











The atom–bond connectivity index can be calculated from Equation (8) as follows:


ABC(G4)=∑p´q´∈E(G4)κ(p´)+κ(q´)−2κ(p´)·κ(q´)=∑j=13∑p´q´∈Ej(G4)κ(p´)+κ(q´)−2κ(p´)·κ(q´)










ABC(G4)=1232|E1(G4)|+145|E2(G4)|+1472|E3(G4)|.











By doing some calculations, we get:


⟹ABC(G4)=18(14(−2+r)+45(−2+3r)+26(6+5r)).











The geometric–arithmetic index can be calculated from Equation (9) as follows:


GA(G4)=∑p´q´∈E(G4)2κ(p´)κ(q´)(κ(p´)+κ(q´))=∑j=13∑p´q´∈Ej(G4)2κ(p´)κ(q´)(κ(p´)+κ(q´)).











By doing some calculations, we get:


GA(G4)=|E1(G4)|+223|E2(G4)|+|E3(G4)|










⟹GA(G4)=4+6r+432(−2+3r).








 □





For the comparison of topological indices numerically for HDN3, THDN3, RHDN3, and CHDN3, we computed all indices for different values of r. From Table 5, Table 6, Table 7 and Table 8, we can easily see that all indices are in increasing order as the values of r increases.



The Zagreb and augmented Zagreb indices were found to occur for the computation of the total π-electron energy of molecules [30]. Thus, the total π-electron energy is in increasing order in the case of all networks.





3. Conclusions


In this paper, we studied a newly formed third type of hex-derived networks, HDN3, THDN3, RHDN3, and CHDN3. The exact results were computed for Randic´, Zagreb, Harmonic, augmented Zagreb, atom–bond connectivity, and geometric–arithmetic indices for the very first time of the third type of hex-derived networks, and we also found the numerical computation for all the networks. As these important results are helpful from many chemical points of view as well as for pharmaceutical sciences, these results also provide the basis to understand the deep underlying topologies of the above networks. In future, we are interested in computing the distance-based and counting-related topological indices and polynomials for these networks. We are looking to find Estrada and L-Estrada indices of edge-independent random graphs [32]. We also put forward computing topological indices for random graphs in future.
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Figure 1. Hexagonal meshes: (1) HX(2), (2) HX(3), and (3), all facing HX(2). 
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Figure 2. Hex-derived network of type 3 (HDN3(4)). 
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Figure 3. Triangular hex-derived network of type 3 (THDN3(7)). 
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Figure 4. Rectangular hex-derived network of type 3 (RHDN3(4,4)). 
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Figure 5. Chain hex-derived network of type 3 (CHDN3(5)). 
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Table 1. Edge partition of hex-derived network of type 3 HDN3(r) based on degrees of end vertices of each edge.
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	(κx,κy) where p´q´∈E(G1)
	NumberofEdges
	(κu,κv) where p´q´∈E(G1)
	NumberofEdges





	(4,4)
	18r2−36r+18
	(7,18)
	6



	(4,7)
	24
	(10,10)
	6r−18



	(4,10)
	36r−72
	(10,18)
	12r−24



	(4,18)
	36r2−108r+84
	(18,18)
	9r2−33r+30



	(7,10)
	12
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Table 2. Edge partition of a hex-derived network of type 3 HDN3(r) based on degrees of end vertices of each edge.






Table 2. Edge partition of a hex-derived network of type 3 HDN3(r) based on degrees of end vertices of each edge.





	(κx,κy) where p´q´∈E(G1)
	NumberofEdges
	(κu,κv) where p´q´∈E(G1)
	NumberofEdges





	(4,4)
	3r2−6r+9
	(10,10)
	3r−6



	(4,10)
	18r−30
	(10,18)
	6r−18



	(4,18)
	6r2−30r+36
	(18,18)
	3r2−21r+362
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Table 3. Edge partition of rectangular hex-derived network of type 3, RHDN3(r) based on degrees of end vertices of each edge.






Table 3. Edge partition of rectangular hex-derived network of type 3, RHDN3(r) based on degrees of end vertices of each edge.











	(κx,κy) where p´q´∈E(G1)
	NumberofEdges
	(κu,κv) where p´q´∈E(G1)
	NumberofEdges





	(4,4)
	6r2−12r+10
	(7,18)
	2



	(4,7)
	8
	(10,10)
	4r−10



	(4,10)
	24r−44
	(10,18)
	8r−20



	(4,18)
	12r2−48r+48
	(18,18)
	3r2−16r+21



	(7,10)
	4
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Table 4. Edge partition of chain hex-derived network of type 3, CHDN3(r) based on degrees of end vertices of each edge.






Table 4. Edge partition of chain hex-derived network of type 3, CHDN3(r) based on degrees of end vertices of each edge.





	(κx,κy) where p´q´∈E(G1)
	NumberofEdges





	(4,4)
	6r2−12r+10



	(4,8)
	8



	(8,8)
	24r−44
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Table 5. Numerical computation of all indices for HDN3(r).






Table 5. Numerical computation of all indices for HDN3(r).





	[r]
	R1
	R12
	R−1
	R−12
	M1
	H
	AZI
	ABC
	GA





	4
	42,684
	4470.75
	16.49
	89.98
	10,242
	82.41
	64,642.58
	305.8
	514.21



	5
	80,004
	8120.25
	28.54
	156.78
	18,690
	142.81
	124,991
	539.17
	904.86



	6
	128,916
	12,848.69
	43.89
	242.08
	29,658
	219.76
	204,958
	838.37
	1405.05



	7
	189,420
	18,656.07
	62.55
	345.86
	43,146
	313.26
	304,543
	1203.39
	2014.77
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Table 6. Numerical computation of all indices for THDN3(r).






Table 6. Numerical computation of all indices for THDN3(r).





	[r]
	R1
	R12
	R−1
	R−12
	M1
	H
	AZI
	ABC
	GA





	4
	4752
	639.95
	3.37
	17.35
	1404
	16.36
	5760.91
	54.36
	91.95



	5
	9888
	1205.94
	5.54
	29.19
	2688
	27.26
	13,046.93
	94.25
	159.48



	6
	16,956
	1951.75
	8.26
	44.10
	4392
	40.92
	23,602.69
	145.12
	245.26



	7
	25,956
	2877.38
	11.53
	62.10
	6516
	49.92
	37,428.2
	206.95
	349.30
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Table 7. Numerical computation of all indices for RHDN3(r).






Table 7. Numerical computation of all indices for RHDN3(r).





	[r]
	R1
	R12
	R−1
	R−12
	M1
	H
	AZI
	ABC
	GA





	4
	11,600
	1377.42
	6.09
	32.32
	3090
	30.11
	15,578.92
	105.26
	177.94



	5
	22,956
	2551.65
	10.27
	55.29
	5782
	51.08
	32,923
	184.05
	310.57



	6
	38,176
	4085.54
	15.55
	84.43
	9314
	77.56
	56,206.57
	284.78
	479.72



	7
	57,260
	5979.54
	21.93
	119.72
	13,686
	109.56
	87,229.60
	407.45
	685.38
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Table 8. Numerical computation of all indices for CHDN3(r).






Table 8. Numerical computation of all indices for CHDN3(r).





	[r]
	R1
	R12
	R−1
	R−12
	M1
	H
	AZI
	ABC
	GA





	4
	1184
	233.14
	2.28
	10.28
	480
	10.08
	1339.46
	28.04
	46.86



	5
	1520
	295.08
	2.79
	12.72
	608
	12.46
	1726.42
	34.92
	58.51



	6
	1856
	357.02
	3.31
	15.16
	736
	14.83
	2113.38
	41.80
	70.17



	7
	2192
	418.96
	3.83
	17.59
	864
	17.21
	2500.33
	48.69
	81.83
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