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Abstract: Since an interesting functional by P.L. Chebyshev was presented in the year 1882, many
results, which are called Chebyshev-type inequalities, have been established. Some of these
inequalities were obtained by using fractional integral operators. Very recently, a new variant of the
fractional conformable integral operator was introduced by Jarad et al. Motivated by this operator,
we aim at establishing novel inequalities for a class of differentiable functions, which are associated
with Chebyshev’s functional, by employing a fractional conformable integral operator. We also aim at
showing important connections of the results here with those including Riemann–Liouville fractional
and classical integrals.

Keywords: Riemann–Liouville (R-L) fractional integral; fractional conformable integral; Chebyshev’s
functional; differentiable functions; integral inequalities
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1. Introduction

In applied mathematics, fractional calculus (FC) is an influential branch that deals with derivatives
and integrals of arbitrary orders [1]. Recently, many theories and results have been presented in this
field, but still, there are huge amounts of non-local phenomena to be unexplored and waiting to be
found. The FC has many applications in various fields of physical sciences, especially in diffusion
equations [2,3]. The contemporary progress of FC in different fields is available in many recent
papers [4–9].

In [10], the Chebyshev functional for two integrable functions g and h, which are synchronous
(i.e., (g(x)− g(y))(h(x)− h(y)) ≥ 0, for any x, y ∈ [a, b]) on [a, b], is defined as:

T(g, h) =
1

b− a

∫ b

a
g(τ)h(τ)dτ − 1

b− a

( ∫ b

a
g(τ)dτ

) 1
b− a

( ∫ b

a
h(τ)dτ

)
. (1)
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The functional (1) has attracted many researcher’s attention due to applications in mathematics
and statistics and a number of inequalities associated with (1) (see, e.g., [11–15]). In [16] (also see [10]),
a variant of the Chebyshev functional was defined by:

T(g, h, f ) =
∫ b

a
f (τ)dτ

∫ b

a
f (τ)g(τ)h(τ)dτ −

∫ b

a
f (τ)g(τ)dτ

∫ b

a
f (τ)h(τ)dτ, (2)

where g and h are integrable on [a, b] and f is a positive and integrable function on [a, b].
The applications of the functional defined in (2) are found in probability and statistical problems.
Its further applications in differential and integral equations are found in [17–19]. In [11,12,20–24],
several inequalities related to the functional (2) were given. In [15], Dragomir obtained the resulting
inequality linked to this functional:

| T(g, h, f ) |≤‖ g′ ‖‖ h′ ‖
[ ∫ b

a
f (τ)dτ

∫ b

a
τ2 f (τ)dτ −

( ∫ b

a
τ f (τ)dτ

)2]
, (3)

where g and h are differentiable and g′, h′ ∈ L∞(a, b), and f is positive and integrable on [a, b].
Throughout this paper, we will use the space of all continuous functions C([0, ∞)) from [0, ∞) into R
and L∞([0, ∞)) the space of all bounded functions g(τ) on [0, ∞), with the norm defined by:

‖ g ‖∞= sup
τ∈[0,∞[

| g(τ) | .

Recently, Jarad et al. [25] introduced new fractional integral operators, which are a generalization of
R-L, Hadamard, and Katugampola fractional integrals through the idea of fractional integral operators
given by Abdeljawad [26]. Dahmani [27] developed some Chebyshev-type inequalities in the case
of two differentiable functions using the R-L fractional integrals. Here, motivated actually by the
works of Dahmani [27] and Jarad et al. [25], we aim at establishing several Chebyshev-type inequalities
associated with fractional conformable integrals by using differentiable functions. Some special cases
of these results are also considered. For our design, we recall some definitions and properties as
follows [28]:

Definition 1. A real-valued function g(τ), τ ≥ 0 is known to be in the space Cµ, µ ∈ R if there exist p ∈ R
such that p > µ and g(τ) = τpg1(τ) where g1(τ) ∈ C([0, ∞)).

Definition 2. A function g(τ), τ ≥ 0 is known to be in the space Cn
µ, µ ∈ R, if g(n) ∈ Cµ.

Definition 3. The R-L fractional integral operator of order γ ≥ 0, for a function g ∈ Cµ, (µ ≥ −1),
is given by:

Iγg(x) =
1

Γ(γ)

∫ x

a
(x− t)γ−1g(t)dt, (4)

where the gamma function Γ is given in [29].

In a similar manner, the definition of the fractional conformable integral can be given as:

Definition 4. The fractional conformable integral βIα of order β > 0, for a function g ∈ Cµ, (µ ≥ −1),
is defined by:

βIαg(τ) =
1

Γ(β)

∫ τ

0

(τα − tα

α

)β−1
tα−1g(t)dt; α > 0. (5)

Clearly, one can get 0Iαg(τ) = g(τ) and:
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βIα γIαg(τ) = β+γIαg(τ) = γIα βIαg(τ).

For more details, the readers are referred to [25,30].

Remark 1. The particular case of fractional conformable integral operator βIαg(z) in (5) when α = 1 reduces
directly to the Riemann–Liouville fractional operator.

2. Main Results

In this section, the Chebyshev-type integral inequalities for differentiable functions defined on
[0, ∞) involving the fractional conformable integral operator are introduced.

Theorem 1. Let g and h be two differentiable functions on [0, ∞) such that g′, h′ ∈ L∞([0, ∞)), then the
following inequality holds for all τ > 0, α, β > 0:

| ταβ

αβΓ(β + 1)
βIαgh(τ)− βIαg(τ) βIαh(τ) |

≤‖ g′ ‖∞‖ h′ ‖∞

[ ταβ

αβΓ(β + 1)
βIατ2 − ( βIατ)2

]
. (6)

Proof. Let:

H(u, v) = (g(u)− g(v))(h(u)− h(v)); u, v ∈ (0, τ). (7)

Multiplying (7) by 1
Γ(β)

(
τα−uα

α

)β−1
uα−1 and then integrating with respect to u over (0, τ), we have:

1
Γ(β)

∫ τ

0

(τα − uα

α

)β−1
uα−1H(u, v)du

= βIαgh(τ)− g(v) βIαh(τ)− h(v) βIαg(τ) + g(v)h(v)
ταβ

αβΓ(β + 1)
. (8)

Again, multiplying (8) by 1
Γ(β)

(
τα−vα

α

)β−1
vα−1 and then integrating with respect to v over (0, τ),

we have:

1
Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1H(u, v)dudv

=2
( ταβ

αβΓ(β + 1)
βIαgh(τ)− βIαg(τ) βIαh(τ)

)
. (9)

Furthermore, on the other hand, we get:

H(u, v) =
∫ v

u

∫ v

u
g′(x)h′(τ)dxdτ. (10)

As g′, h′ ∈ L∞([0, ∞)), therefore we have:

| H(u, v) |≤|
∫ v

u
g′(x)dx ||

∫ v

u
h′(τ)dτ |≤‖ g′ ‖∞‖ h′ ‖∞ (u− v)2. (11)
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Thus, we can write:

1
Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 | H(u, v) | dudv

≤‖ g′ ‖∞‖ h′ ‖∞

Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1

× vα−1(u2 − 2uv + v2)dudv. (12)

From (12), we estimate the following inequality:

1
Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 | H(u, v) | dudv

≤2 ‖ g′ ‖∞‖ h′ ‖∞

[ ταβ

αβΓ(β + 1)
βIατ2 − ( βIατ)2

]
. (13)

Hence, (9) and (13) give the desired results (6).

Theorem 2. Let g and h be two differentiable functions on [0, ∞) 3 g′, h′ ∈ L∞([0, ∞)), then the subsequent
inequality holds for all τ > 0, α, β, µ > 0;

| ταβ

αβΓ(β + 1)
βIαgh(τ) +

ταµ

αµΓ(µ + 1)
µIαgh(τ)

− βIαg(τ) µIαh(τ)− µIαg(τ) βIαh(τ)|

≤ ‖ g′ ‖∞‖ h′ ‖∞

[ ταβ

αβΓ(β + 1)
µIατ2 − 2( βIατ)( µIατ) +

ταµ

αµΓ(µ + 1)
βIατ2

]
. (14)

Proof. Multiplying (8) by 1
Γ(µ)

(
τα−vα

α

)µ−1
vα−1 and then integrating with respect to v over (0, τ),

we have:

1
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1H(u, v)dudv

=
( ταβ

αβΓ(β + 1)
µIαgh(τ) +

ταµ

αµΓ(µ + 1)
βIαgh(τ)

− βIαg(τ) µIαh(τ)− µIαg(τ) βIαh(τ)
)

. (15)

From Relation (11), we have:

1
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1 | H(u, v) | dudv

≤ ‖ g′ ‖∞‖ h′ ‖∞

Γ(β)Γ(µ)

×
∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1(u2 − 2uv + v2)dudv. (16)

From (15) and (16), we get the required result (14).

Remark 2. If we choose β = µ in Theorem 2, then we get Theorem 1.

Theorem 3. Let g and h be two differentiable functions on [0, ∞) with h′(τ) 6= 0, τ ∈ [0, ∞). Let there exist
K > 0 such that g′(τ)

h′(τ) ≤ K, then the subsequent inequality holds for all τ > 0, α, β, µ > 0;
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| ταβ

αβΓ(β + 1)
βIαgh(τ) +

ταµ

αµΓ(µ + 1)
µIαgh(τ)

− βIαg(τ) µIαh(τ)− µIαg(τ) βIαh(τ) |

≤K
[ ταβ

αβΓ(β + 1)
µIαh2(τ)− 2( βIαh(τ))( µIαh(τ)) +

ταµ

αµΓ(µ + 1)
βIαh2(τ)

]
. (17)

Proof. Let g and h obey the conditions of Theorem 3. Then, from the generalization of Lagrange’s
mean value theorem, for every u, v ∈ [0, τ];h(u) 6= h(v), τ > 0, there exist a constant c between u and
v such that:

g(u)− g(v)
h(u)− h(v)

=
g′(c)
h′(c)

.

Thus, for every u, v ∈ [0, τ], we have:

| g(u)− g(v) |≤ K | h(u)− h(v) | .

It follows that:

| H(u, v) |≤ K
(

h(u)− h(v)
)2

.

Hence, we have:

1
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1 | H(u, v) | dudv

≤ K
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1

× vα−1(h2(u)− 2h(u)h(v) + h2(v))dudv. (18)

Hence, from (18), we get the required inequality.

Corollary 1. Let g and h be two differentiable functions on [0, ∞) with h′(τ) 6= 0, τ ∈ [0, ∞). Let there exist
K > 0 such that g′(τ)

h′(τ) ≤ K, then the following inequality holds for all τ > 0, α, β > 0:

| ταβ

αβΓ(β + 1)
βIαgh(τ)− βIαg(τ) βIαh(τ) |

≤K
[ ταβ

αβΓ(β + 1)
βIαh2(τ)− ( βIαh(τ))2

]
. (19)

Proof. Taking µ = β in Theorem 3, we get the desired corollary.

Remark 3. If we consider α = 1 in Theorems 1–3, then we get the results of Dahmani [27]. Similarly, if we
take α = β = 1, then we get the classical inequalities [15].

Now, we prove further generalization of Theorems 1 and 2.

Theorem 4. Let f be a positive function on [0, ∞) and g and h be two differentiable functions having the same
sense of variation on [0, ∞). If g′, h′ ∈ L∞([0, ∞)), then the following inequality holds for all τ > 0, α, β > 0:

0 ≤ βIα f (τ) βIα f gh(τ)− βIα f g(τ) βIα f h(τ)

≤ ‖ g′ ‖∞‖ h′ ‖∞

[
βIα f (τ) βIατ2 f (τ)− (βIατ f (τ))2

]
. (20)
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Proof. Define:

H(u, v) = (g(u)− g(v))(h(u)− h(v)); u, v ∈ (0, τ), τ > 0

=g(u)h(u)− g(u)h(v)− g(v)h(u) + g(v)h(u). (21)

Since g and h satisfy the conditions of Theorem 4, therefore we have:

H(u, v) ≥ 0. (22)

Multiplying both sides of (21) by 1
Γ(β)

∫ τ
0

(
τα−uα

α

)β−1
uα−1 f (u) and integrating the resultant identity

with respect to u from 0–τ, we have:

1
Γ(β)

∫ τ

0

(τα − uα

α

)β−1
uα−1 f (u)H(u, v)du

=βIα f gh(τ)− h(v) βIα f g(τ)− g(v) βIα f h(τ) + g(v)h(v)βIα f (τ) ≥ 0. (23)

Again, multiplying (23) by 1
Γ(β)

∫ τ
0

(
τα−vα

α

)β−1
vα−1 f (v) and integrating the resultant identity with

respect to v from 0–τ, we have:

1
2Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 f (u)h(v)H(u, v)dudv

= βIα f (τ) βIα f gh(τ)− βIα f g(τ) βIα f h(τ) ≥ 0. (24)

From (11), we have:

1
Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 f (u) f (v) | H(u, v) | dudv

≤‖ g′ ‖∞‖ h′ ‖∞

Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 f (u) f (v)(u2 − 2uv + v2)dudv. (25)

Consequently, it follows:

1
Γ2(β)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)β−1
vα−1 f (u) f (v) | H(u, v) | dudv

≤2 ‖ g′ ‖∞‖ h′ ‖∞

[
βIα f (τ) βIατ2 f (τ)− ( βIατ f (τ))2

]
. (26)

According to (24) and (26), we get the desired proof.

Remark 4. Taking H(τ) = 1 in Theorem 4, we get Theorem 1. Similarly, taking α = β = 1, we get
Inequality (2).

Theorem 5. Let the positive function on [0, ∞) be f and g, h be two differentiable functions with the same sense
of variation on [0, ∞). If g′, h′ ∈ L∞([0, ∞)), then the following inequality holds for all τ > 0, α, β, µ > 0:

0 ≤ βIα f (τ) µIα f gh(τ) + µIα f (τ) βIα f gh(τ)− βIα f g(τ) µIα f h(τ)− µIα f g(τ) βIα f h(τ)

≤ ‖ g′ ‖∞‖ h′ ‖∞

[
βIα f (τ) µIατ2 f (τ)− 2( βIατ f (τ))( µIατ f (τ)) + µIα f (τ) βIατ2 f (τ)

]
. (27)

Proof. Define:

H(u, v) = (g(u)− g(v))(h(u)− h(v)); u, v ∈ (0, τ), τ > 0. (28)
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Multiplying 1
Γ(β)

∫ τ
0

(
τα−uα

α

)β−1
uα−1 f (u) on both sides of (28) and integrating the resultant identity

with respect to u from 0–τ, we have:

1
Γ(β)

∫ τ

0

(τα − uα

α

)β−1
uα−1 f (u)H(u, v)du

=βIα f gh(τ)− g(v) βIα f g(τ)− g(v) βIα f h(τ) + g(v)h(v)βIα f (τ) ≥ 0. (29)

Again, multiplying (29) by 1
Γ(µ)

∫ τ
0

(
τα−vα

α

)µ−1
vα−1 f (v) and integrating the resultant identity with

respect to v from 0–τ, we have:

1
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1 f (u) f (v)H(u, v)dudv

= µIα f (τ) βIα f gh(τ) + βIα f (τ) µIα f gh(τ)− βIα f g(τ) µIα f h(τ)− µIα f g(τ) βIα f h(τ) ≥ 0. (30)

From Relations (10) and (11), we have:

1
Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1 f (u) f (v) | H(u, v) | dudv

≤‖ h′ ‖∞‖ h′ ‖∞

Γ(β)Γ(µ)

∫ τ

0

∫ τ

0

(τα − uα

α

)β−1
uα−1

(τα − vα

α

)µ−1
vα−1 f (u) f (v)(u2 − 2uv + v2)dudv

= ‖ g′ ‖∞‖ h′ ‖∞

[
βIα f (τ) µIατ2 f (τ) + µIα f (τ) βIατ2 f (τ)− 2( βIατ f (τ))( µIατ f (τ))

]
. (31)

Hence, from (30) and (31), we get the desired proof.

Remark 5. Taking µ = β, we get Theorem 4. Similarly, taking f (τ) = 1 in Theorem 5, we get Theorem 2.

3. Conclusions

Inequalities for a class of differentiable functions that are connected to Chebyshev’s functional by
employing the fractional conformable integral operator are introduced in this paper. The inequalities
achieved in this paper are more general than the existing classical inequalities cited herein.
This work will reduce to the inequalities for a class of differentiable functions, which include the
Riemann–Liouville fractional integral operator, by taking α = 1, which were presented earlier by [16,27].
Furthermore, one can get the classical results by taking α = β = 1, which were presented in [15].
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