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Abstract: We consider a noisy leaky integrate-and-fire (NLIF) neuron model. The resulting nonlinear
time-dependent partial differential equation (PDE) is a Fokker-Planck Equation (FPE) which describes
the evolution of the probability density. The finite element method (FEM) has been proposed to
solve the governing PDE. In the realistic neural network, the irregular space is always determined.
Thus, FEM can be used to tackle those situations whereas other numerical schemes are restricted to
the problems with only a finite regular space. The stability of the proposed scheme is also discussed.
A comparison with the existing Weighted Essentially Non-Oscillatory (WENO) finite difference
approximation is also provided. The numerical results reveal that FEM may be a better scheme for
the solution of such types of model problems. The numerical scheme also reduces computational
time in comparison with time required by other schemes.

Keywords: neuronal variability; Fokker-Planck-Kolmogorov equations; Galerkin finite element method

1. Introduction

The large-scale neural network models in computational neuroscience have become familiar.
The classical description of these (excitatory-inhibitory) neural network models is based on the
deterministic/stochastic system. One of the most common models is known as the noisy leaky
integrate-and-fire (NLIF) neuron model in which the behavior of the whole population of neurons is
encoded in a stochastic differential equation (SDE) for the time evolution of membrane potential of a
single neuron representative of the network. The dynamics of a single neuron is given by ([1–6])

τm
dV
dt

= −V(t) + I(t), (1)

where V(t) represents the membrane potential of a single neuron and τm is the time relaxation of the
membrane potential in the absence of any communication. The communication of a single neuron with
the network is modeled by the synaptic input current, I(t). The form of I(t) is a stochastic process,
given by ([7])

I(t) = JE

NE

∑
n=1

∑
m

δ(t− tn
Em

)− JI

NI

∑
n=1

∑
m

δ(t− tn
Im
).

Here, each spike is treated as a delta function, and if a spike occurs at time t = t0, it is denoted
by δ(t− t0). The terms tn

Em
and tn

Im
in above equation represent the time of mth-spike receiving from

nth-presynaptic neuron for excitatory and inhibitory neurons, respectively. Moreover, the terms NE
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and NI are the total number of presynaptic neurons, where JE and JI are the strength of the synapses
for excitatory and inhibitory neurons, respectively. Since the above form of synaptic input current is the
discrete Poisson process, it becomes very difficult for further investigation. In addition, the researchers
have used the diffusion approximation in which the synaptic input current I(t) is approximated by a
continuous in time Ornstein-Uhlenbeck-type stochastic process as given by

I(t)dt ≈ µcdt + σcdBt .

Initially, it is assumed that every neuron generates spikes according to a stationary Poisson
process with constant probability of generating a spike per unit time r, and it is also assumed that all
these processes are independent between neurons, because of these assumptions, the mean value of
the current, indicated by µc, is given by br = (NE JE − NI JI)r and its variance, σ2

c = (NE J2
E + NI J2

I )r.
Here, we have to depict the likelihood of firing per unit time of the Poissonian spike train r and it is thus
recognized as the firing rate, which should be computed as r = Iext + N(t), where N(t) is the mean
firing rate of the network. On the other side, Bt is the standard Brownian motion in above equation.

The next important factor in the modeling is that the neurons generate a spike only when its
membrane potential V(t) arrives at a certain voltage, known as threshold VF, and instantly reset
toward a resetting potential VR < VF and sends a signal over the network.

Comprising the continuous form of I(t) in SDE model (1), we obtain

τmdV = (−V + µc)dt + σcdBt, V ≤ VF, t ≥ 0,

where τm = 1. We suppose that the voltage of a neuron arrives at threshold level at
time t−o , i.e., V(t−o ) = VF and after that the voltage arrives suddenly at resting potential,
i.e., V(t+o ) = VR, VR < VF. Furthermore, one can write the associated FPE with source term by using
Ito’s rule [8], for the evolution of probability density function p(v, t) ≥ 0 of finding neurons at a voltage
v ∈ (−∞, VF], with time (t ≥ 0)

∂

∂t
p(v, t) +

∂

∂v
[h(v, N)p(v, t)]− a(N(t))

∂2

∂v2 p(v, t) = N(t) δ(v−VR), (2)

where h(v, N) = −v + µc, a(N(t)) = σ2
c
2 , and N(t) is the mean firing rate of the network which is

computed as the flux of neuron at the firing voltage. The source term of the Equation (2) comes from
the fact that when the neurons generate spikes and send the signals over the network, their voltage
immediately reset to the reset potential VR. At the relaxation time, no neuron have the firing voltage,
for this reason, the initial and boundary conditions are given by

p(v, 0) = p0(v) ≥ 0, p(VF, t) = 0, p(−∞, t) = 0. (3)

We can easily verify the conservation of the total number of neurons in above equation. For this
purpose, we need to describe the mean firing rate for the network. Since the mean firing rate is the
flux of neurons at VF, the value of N(t) is given by N(t) = −a(N(t)) ∂p(VF ,t)

∂v . Integrating (3) across the
voltage domain and using the above boundary conditions, we obtain the required condition.

Equation (2) represents the evolution of probability density function and therefore

VF∫
−∞

p(v, t)dv =

VF∫
−∞

p0(v)dv = 1. (4)

If we translate the new voltage variable by considering v = v + bIext then we have h(v, N) =

−v + µc = −v + br = −v − bIext + br = −v − bIext + b(Iext + N(t)) = −v + bN, and diffusion
coefficient is of the form a(N) = a0 + a1N, a0 > 0, a1 ≥ 0.
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In [8], the authors provide theoretical and numerical analysis using finite difference approximation.
For the references of mathematical aspects of nonlinear NLIF models, we refer [9–13]. We are concern
about finding the value of the unknown p(v, t) using alternative approach. The problem (2)–(4)
cannot be solved analytically, because of its complexity arising from nonlinearity and having a source
term [14–16]. Therefore, numerical methods are generally used, for example, finite difference method
(FDM) is used to find the approximate solution of the governing equation [8]. However, FDM has
some disadvantages, for instance, the singularity in the delta source term, as in the above mentioned
equation, makes the solution divergent. In order to use the FDM appropriately, the governing equation
must be modified, due to the fact that the procedure becomes complicated.

Hence, in the present work, we propose a formulation based on finite element approximation
to find the solution of governing equation. FEM is one of the powerful numerical methods for the
solutions of problems that describe the real-life situations. Moreover, the characteristics of FEM tackle
the singularity problem in an effective manner [17–27]. The applicability of FEM regarding this model
problem is demonstrated in the final section.

Description of the present paper is as follows: We consider the NLIF model described by
Equations (2) and (3). In Section 2, we develop the numerical approximation based on the finite
element approach. The analysis for the stability is provided in Section 3. We report some numerical
examples from [8] and discuss the solution behavior graphically in Section 4. In the last section,
we conclude the work done in this research article.

Preliminaries

Here, we state some basic definitions and auxiliary results, which will be used throughout
the manuscript. As we are studying a nonlinear version of the FPE, we start with the notion of
weak solution.

Definition 1. We say that a pair of non-negative functions (p, N) with p ∈ L∞(R+; L1
+(−∞, VF)), N ∈

L1
loc,+(R

+) is a weak solution of (2) and (3) if for any test function φ(v, t) ∈ C∞((−∞, VF)× (0, T)) such

that
∂2φ

∂v2 , v
∂φ

∂v
∈ L∞((−∞, VF)× (0, T)), we have

T∫
0

VF∫
−∞

p(v, t)
[
−∂φ

∂t
− ∂φ

∂v
h(v, N)− a

∂2φ

∂v2

]
dvdt

=

T∫
0

N(t) [φ(VR, t)− φ(VF, t)] dt

+

VF∫
−∞

p0(v)φ(0, v)dv−
VF∫
−∞

p(v, T)φ(T, v)dv.

Here, the space Lp(Ω), 1 ≤ p < ∞, refers to the space of functions such that f p is integrable
in Ω, while L∞ corresponds to the space of bounded functions in Ω. The set of infinitely differentiable
functions in Ω is denoted by C∞(Ω) used as test functions in the notion of weak solution. The blow-up
of solution and a priori estimates are given in [8]. We here just state the results.

Theorem 1. (Blow-up) Assume that the drift and diffusion coefficients satisfy

h(v, N) + v ≥ bN and a(N) ≥ am > 0, (5)

for all −∞ < v ≤ VF and all N ≥ 0, and let us consider the average-excitatory network where b > 0.
Choose µ > max

(
VF
am

, b
1

)
. If the initial data is concentrated enough around v = VF, in the sense that



Mathematics 2019, 7, 363 4 of 15

VF∫
−∞

eµv p0(v)dv

is close enough to eµVF , then there are no global-in-time weak solutions to (2)–(4).

Lemma 1 (A priori estimates). Assume h(v, N) = −v + bN, a(N) = a0 + a1N on the drift and diffusion
coefficients and that (p, N) is a global-in-time solution of (2)–(4) in the sense of Definition 1 fast decaying at
−∞, then the following a priori estimates hold for all T > 0:

1. If b ≥ VF −VR, then

VF∫
−∞

(VF − v)p(v, t)dv ≤ max

VF,
VF∫
−∞

(VF − v)p0(v) dv

 ,

(b−VF + VR)

T∫
0

N(t)dt ≤ VFT +

VF∫
−∞

(VF − v)p0(v)dv.

2. If b < VF −VR, then

VF∫
−∞

(VF − v)p(v, t) dv ≥ min

VF,
VF∫
−∞

(VF − v)p0(v) dv

 .

Moreover, if in addition a is constant, then

T∫
0

N(t)dt ≤ (1 + T) C(VF, VR, a, p0).

In a latest work [8], it was demonstrated that the problem (2)–(4) can produce a finite time blow-up
solution for excitatory networks b > 0 when the initial data is concentrated near sufficient to the
threshold voltage. This result was obtained by giving no information about the behavior at the blow-up
time. In a recent work [12], we state the theorem gives a characterization of this blow-up time when it
occurs for b > 0.

Theorem 2. Let p0(v) be a non-negative C1((−∞, VF)
⋂

L1(−∞, VF) function such that p0(VF) = 0 and

∂p0

∂v
= 0.

There exist a classical solution of (2)–(4) in the time interval [0, T∗) with T∗ > 0. The maximal existence
time T∗ > 0 can be characterized as

T∗ = sup{t > 0 : N(t) < ∞}.

Moreover, when b ≤ 0 we have that T∗ = ∞, while for b > 0 there exist classical solutions which blow up
at a finite time T∗ and consequently have diverging mean firing rate as t ↑ T∗.

We now state the main result on steady states from [8].
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Theorem 3. Let h(v, N) = bN − v, a(N) = a0 + a1N with a0, a1 > 0.

1. Under either the conditions b > 0 and 2a0b + 2a1VR < (VF −VR)
2VR, or the condition b < VF −VR,

then there exists at least one steady state solution to (2)–(4).
2. If both 2a0b + 2a1VR < (VF −VR)

2VR and b > VF −VR hold, then there are at least two steady states to
solution to (2)–(4).

3. There is no steady state to (2)–(4) under the high connectivity condition’

b > max(2(VF −VR), 2VF I(0)). (6)

2. Finite Element Approximation

We construct the numerical approximation of the problem given in (2) and (3) in two ways:
First we use FEM for space discretization that provides a system of ordinary differential equations,
which is then solved by Euler’s backward difference for time. Spatial discretization involves the
construction of a weak formulation of problem over a given domain Ω = [v0, vn] with specified
boundary conditions at v = v0 and v = vn. Weak formulation of the problem (2) and (3) is obtained by
multiplying the equation with some test function w(v) and integrating over Ω,

∫
Ω

w(v)
{∂p

∂t
+

∂

∂v
(
h(v, N)p

)
+ a(N(t))

∂2 p
∂v2

}
dv = N(t)

∫
Ω

w(v) δ(v−VR) dv. (7)

In the present study, the mean firing rate N(t) is approximated by using backward FDM.
Performing the integration by parts in above equation, we get the following equation:∫

Ω

{
w

∂p
∂t
−
(

h(v, N) p
∂w
∂v

)
+ a(N(t))

∂p
∂v

∂w
∂v

}
dv = N(t)

∫
Ω

w(v) δ(v−VR) dv. (8)

This resulting integral (8) is called weak formulation because it allows approximate function with
less continuity (or differentiability) than the strong form given in Equation (2). Once we obtained the
weak formulation, next step is to discretize the weak form for the easy representation and to capture the
local effects more precisely. Weak form discretization consists of dividing the entire domain into set of
elements, then developing the finite element model by seeking the approximation of a solution over a
typical element. This discretization is tackled by taking n non-overlapping elements say Di = [vi, vi+1]

for i = 1, 2, . . . , n with step size h given by :∫ vi+1

vi

{
w

∂p
∂t
−
(

h(v, N) p
∂w
∂v

)
+ a(N(t))

∂p
∂v

∂w
∂v

}
dv = N(t)

∫ vi+1

vi

w(v) δ(v−VR) dv. (9)

The unknown function p(v, t) must be approximated in a manner so that continuity or
differentiability demands by weak formulation can be met. Since the weak formulation contains
the first order derivative of p, any function with non-zero first derivative would be a candidate for
approximation. Thus, semi discretization consists of finding

pi =
i+1

∑
j=i

p̂j(t)ψj(v), (10)

where p̂j are the nodal values and ψj are the basis functions given by

ψi(v) =
vi+1 − v

h
,

ψi+1(v) =
v− vi

h
. (11)
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There are many choices of weight function w(v) to be used. Particular choice for the weight
function w(v) in Galerkin approach is the same as the choice of basis function ψj(v). Thus, substituting
weight function w = ψl(x), l = i, i + 1 and approximation for the solution defined by Equation (10) in
weak formulation obtained in Equation (9) leads to the following equation:∫ vi+1

vi

[
ψl

(
i+1

∑
j=i

dp̂j

dt
ψj

)
− h(v, N)

dψl
dv

(
i+1

∑
j=i

p̂jψj

)
+a(N(t))

dψl
dv

(
i+1

∑
j=i

p̂j
ψj

dv

)]
dv

= N(t)

∫ vi+1

vi

δ(v−VR)ψl dv.

On simplification of the above, we get as follows

i+1

∑
j=i

[(∫ vi+1

vi

ψl ψj dv

)
dp̂j

dt
−
(∫ vi+1

vi

h(v, N)ψj
dψl
dv

dv

)
p̂j+a(N(t))

(∫ vi+1

vi

dψl
dv

dψj

dv
dv

)
p̂j

]

= N(t)

∫ vi+1

vi

δ(v−VR)ψl dv.

(12)

Solving Equation (12), we get the system of ordinary differential equations for p̂ = ( p̂0, p̂1)
T ,

which can be expressed in matrix notation given by

A p̂t(tk) +

(
B− C + D

)
p̂(tk) = f , (13)

where

A =

∫ vi+1

vi

ψl ψj dv =
h
6

[
2 1
1 2

]
,

B =

∫ vi+1

vi

v ψ′l ψj dv =
1

6h2

[
−a1 −a2

a1 a2

]
, where

{
a1 = 3vih2 + h3

a2 = 3 vih2 + 2h3

C = b N(tk−1)

∫ vi+1

vi

ψ′l ψj dv = b N(tk−1)

[
−1/2 −1/2
1/2 1/2

]
,

D =
a(N(tk−1))

h

∫ vi+1

vi

ψ′l ψ′j dv =
a(N(tk−1))

h

[
1 −1
−1 1

]
,

f = N(tk−1)

∫ vi+1

vi

δ(v−VR)ψl dv = N(tk−1)

[
δ(i)VR

δ(i+1)VR

]
.

By assembling the contribution from all elements, we get the following system for the global
nodal vector p = [p0, p1, . . . , pn]T on the entire domain

A pt(tk) +

(
B− C + D

)
p(tk) = f , (14)

where f is the column vector with all entries are zero except at reset potential VR. Ordinary differential
Equation (14) requires implicit and stable time-stepping method to avoid extremely small time-step.
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Firstly we discretize the time domain [0, T] into m subintervals with time step ∆t. We use the Euler’s
backward difference in time and get the following system from Equation (14):

M pk =
A
∆t

pk−1 + f , where M =
A
∆t

+ B− C + D, (15)

this algebraic system (15) can be solved for pj.

3. Stability Analysis of the Scheme

Fourier method is a very flexible tool for analyzing stability developed by von Neumann. In this
method, initial data is demonstrated in terms of finite Fourier series and we examine the growth of
individual Fourier component. After assembling the reduced system (13) and using b1 = b N(tk−1) and
b2 = a(N(tk−1)), we get the finite element difference-differential equation at the i−th node given by

α1 pk
i−1 + α2 pk

i + α3 pk
i+1 = β1 pk−1

i−1 + β2 pk−1
i + β3 pk−1

i+1 , (16)

where

α1 =
h
3
+

∆t
6 h2 (a1 − 3b1h2 − 6b2h),

α2 =
4h
6

+
∆t

6 h2 ((a2 − a1) + 12b2h),

α3 =
h
6
+

∆t
6 h2 (−a2 + 3b1h2 − 6b2h),

β1 = h/6, β2 = 2h/3, β3 = h/6.

Let us denote the error as ek−1
j at the (k− 1)th stage for nodal value j to satisfy Equation (16)

α1 ek
j−1 + α2 ek

j + α3 ek
j+1 = β1 ek−1

j−1 + β2 ek−1
j + β3 ek−1

j+1 . (17)

At each time level, error can be expanded as ek
j = A ξk eiβ jh. Thus, substituting the error in

Equation (17), we get as follows:

α1 (A ξk eiβ j−1h) +α2 (A ξk eiβ jh) + α3 (A ξk eiβ j+1h) = β1 (A ξk−1 eiβ j−1h) +

β2 (A ξk−1 eiβ jh) + β3 (A ξk−1 eiβ j+1h). (18)

Simplification of the above equation, we get the following

ξ (α1 + α2 exp(iβ h) + α3 exp(i2β h)) = β1 + β2 exp(iβ h) + β3 exp(i2β h) (19)

ξ =
β1 + β2 exp(iβ h) + β3 exp(i2β h)
α1 + α2 exp(iβ h) + α3 exp(i2β h)

.

Performing some algebraic manipulation, we get

ξ =
P

P + Q
,

where P =
h
3

cos(βh) + 2h
3 , and Q =

∆t
h
(2 b2)(1− cos(βh))− ∆t

3
(1 + 2 cos(βh).

Whenever Q ≥ 0, we get |ξ| ≤ 1, hence, the scheme is conditionally stable.
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4. Numerical Experiments

In this section, we present some numerical examples to demonstrate the behavior of the solutions
of the nonlinear NLIF model. The performance of the developed scheme is tested by comparing our
results with the existing scheme in the literature. Consider the system (2) and (3) with initial data
as follows

p(v, 0) =
1

σ0
√

2 π
e
−(v−v0)

2

2 σ2
0 , (20)

where change in mean v0 and variance σ2
0 describe different scenario of a solution. We notice that the

behavior of the solution depends upon the value of excitatory (b > 0) and inhibitory (b < 0) average
network. First we take constant diffusion coefficient a(N) = a0 and find the effect on solution with
change in value of b.

In Figure 1a, we find that after some time the solution p(v, t) goes to steady state by taking
excitatory case i.e., b = 0.5 > 0 small enough.

−4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v

p
(v

)

 

 
t=0
t=0.5
t=1
t=1.5

(a)

−4 −3 −2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

v

p
(v

)

 

 FEM
FD WENO

(b)
Figure 1. The approximate solution p(v, t) for initial data (20) with mean v0 = 0 and variance σ2

0 = 0.25.
The system is considered for the excitatory case i.e., by taking b = 0.5 > 0 with activity dependent noise
a(N(t)) = a0 = 1. Figure 1a depicts the numerical solution p(v, t) using FEM at different time level
using initial data (20); Figure 1b shows the comparison of the existing scheme and FEM for numerical
Solution p(v, t) at t = 1.5.

The approximate solution p(v, t) for v ∈ [−4, 2] at different time levels t > 0 is plotted in Figure 1
with a reset potential VR = 1. From Figure 1a, we see that height of impulse decreases as time increases
and after some time it reaches a steady state. In Figure 1b, we perform numerical approximation based
upon FEM and compare the results obtained in [8] at a final time t = 1.5.

The evolution of firing rate N(t) with the time t > 0, is plotted in Figure 2. We find that firing
rate has different range with change in b > 0 excitatory case as well as the inhibitory case b < 0.
In Figure 2a, we consider the case when the initial data is centered at v0 = 0 with b = 0.5. We observe
that the solution reaches a steady state. We also take the cases when the initial data is centered at
v0 = −1 and different values of b = 3, 1.5,−1.5, to find different phenomena based on these values
in Figure 2.

The errors for the approximate solution simulated in Figures 1, 3 and 4 are plotted in
Figures 5–7 respectively. Numerical values of these errors and CPU time (MATLAB and Statistics
Toolbox Release 2013a, The MathWorks, Inc., Natick, MA, United States) of the two methods are shown
in Tables 1 and 2.
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Figure 2. Firing rates N(t) for a0 = 1 with initial data given in Equation (20). Top left: b = 0.5 with:
v0 = 0 and σ2 = 0.25. Top-right: b = 3 with: v0 = −1 and σ2 = 0.5. The top-right case seems to
illustrate a blow-up phenomenon. Bottom left: b = −1.5 with: v0 = −1 and σ2 = 0.25. Bottom right:
b = 1.5 with: v0 = −1 and σ2 = 0.25.
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(b)
Figure 3. Left: The approximate solution p(v, t), Right: Firing rate N(t) for initial data given in
Equation (20) with mean v0 = 1.5 and variance σ2

0 = 0.005. The system is considered for the excitatory
case i.e., by taking b = 1.5 > 0 with activity dependent noise a(N(t)) = a0 = 1. (a): Comparison of the
existing scheme and FEM for the numerical Solution p(v, t); (b): Time evolution of the firing rate N(t).
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Table 1. Error table using FEM for the approximate solution p(v, t) graphically represented in Figure 1,
at a final time t = 1.5 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.010161 0.005158 0.004335 0.067127
40 0.003960 0.001973 0.001516 0.371851
80 0.001542 0.000773 0.000542 3.080583

160 0.000489 0.000247 0.000171 33.034109

Table 2. Error table using finite difference-WENO scheme for the approximate solution p(v, t)
graphically represented in Figure 1, at a final time t = 1.5 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.289460 0.325151 0.283239 1.037672
40 0.135309 0.151787 0.039987 6.045227
80 0.047782 0.051424 0.009268 46.438833

160 0.013548 0.012541 0.001921 361.179426

Errors of the numerical solution p(v, t) are calculated in different norms ‖·‖1, ‖·‖2, ‖·‖∞, norms
which are defined as follows

‖·‖1 = ∆v ∑
i
|(p∆v)i − (p∗)i|,

‖·‖2 =
√

∆v ∑
i
|(p∆v)i − (p∗)i|2,

‖·‖∞ = max |(p∆v)i − (p∗)i|,

where p∗ is the numerical solution at finest grid N∗. For the numerical experiments, we find the errors
with the finest grid being N∗ = 320. Our test outcomes show that the error defined above is sure a
monotone decreasing function as N increases i.e., N = 20, 40, 80, 160.
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FEM at t=0.00255
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(b)
Figure 4. Left: The approximate solution p(v, t), Right: Firing rate N(t) for initial data given in
Equation (20) with mean v0 = 1.83 and variance σ2

0 = 0.003. The system is considered for the excitatory
case i.e., by taking b = 0.5 > 0 with activity dependent noise a(N(t)) = a0 = 1. (a): Comparison of
existing scheme and FEM for numerical Solution p(v, t); (b): Time evolution of the firing rate N(t).
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Figure 5. Error for the approximate solution p(v, t) plotted in Figure 1.
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Figure 6. Error for the approximate solution p(v, t) plotted in Figure 3a.
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Figure 7. Error for the approximate solution p(v, t) plotted in Figure 4a.

In Figure 3a, we performed numerical approximation based upon FEM and compared the results
obtained in [8] at a time t = 0.0408. The evolution of firing rate N(t) with the time t > 0, is plotted in
Figure 3b, which describes the blow-up situation when the initial data is concentrated around v0 = 1.5
with b = 1.5 > 0. Tables 3 and 4 gives the different error values at the final time t = 0.0408 for the
same data that is graphically represented in Figure 6.
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Table 3. Error table using FEM for the approximate solution p(v, t) graphically represented in Figure 3,
at a final time t = 0.0408 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.159578 0.182739 0.283239 0.039572
40 0.022391 0.023427 0.039987 0.109250
80 0.005192 0.005395 0.009268 0.751499

160 0.001122 0.001127 0.001921 8.015343

Table 4. Error table using WENO-FDM for the approximate solution p(v, t) graphically represented in
Figure 3, at a final time t = 0.0408 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.289460 0.325151 0.538803 0.431218
40 0.135309 0.151787 0.262857 1.588952
80 0.047782 0.051424 0.089970 10.601858

160 0.013548 0.012541 0.018749 83.066463

From Figure 4a, it is clear that when initial data is concentrated enough near the threshold point
VF, solution blows up at a finite time t = 0.0025, which is earlier than the phenomena described
in Figure 3b. This happens because initial data is concentrated enough near the threshold point
i.e., v0 = 1.83, with b = 0.5 > 0 small enough. For different error values and CPU time for the data
graphically represented in Figure 4, see Tables 5 and 6 .

Table 5. Error table using FEM for the approximate solution p(v, t) graphically represented in Figure 4,
at a final time t = 0.00255 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.319312 0.568807 1.260046 0.024043
40 0.170528 0.221119 0.466656 0.031783
80 0.082213 0.119544 0.305763 0.079694

160 0.021068 0.030539 0.073327 0.536440

Table 6. Error table using WENO-FDM for the approximate solution p(v, t) graphically represented in
Figure 4, at a final time t = 0.00255 with the finest grid being N∗ = 320.

N ‖·‖1 ‖·‖2 ‖·‖∞ CPU Time (s)

20 0.372501 0.536629 1.056888 0.295874
40 0.173326 0.253474 0.501970 0.375890
80 0.073974 0.109328 0.221484 0.967150

160 0.024875 0.036970 0.075089 5.550542

In Figure 8, we treat the cases for a(N) = a0 + a1N(t), a0, a1 > 0 type activity dependence noise.
Figure 8a shows that by taking b = 0.5 and a(N(t)) = 0.5 + N(t)/8 solution goes to steady state.
This further indicates that solution goes to a steady state earlier than the solution behavior provided
in Figure 8b by taking a(N(t)) = 0.4 + N(t)/100. Figure 8c shows blow-up situation of a solution by
taking b > 1 and a(N(t)) = 0.5 + N(t)/8. From Figure 8d, we find that by reducing the noise factor
a(N(t)) = 0.4 + N(t)/100, solution goes to steady state.

The behavior of the solution by taking noise factor a(N(t)) = 1 + N(t)/100 for both the cases of
excitatory and inhibitory are represented in Figure 9. From Figure 10a, we find that solution blows up
in a finite time and right figure indicate the situation of steady state by reducing the noise factor.
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Figure 8. Firing rates N(t) for the initial data given in Equation (20) with v0 = 1.5 and σ2 = 0.005
and activity dependence noise a(N) = a0 + a1 N(t), a0, a1 > 0 . Top left: b = 0.5 and
a(N(t)) = 0.5 + N(t)/8. Top-right: b = 0.5 and a(N(t)) = 0.4 + N(t)/100. The bottom left case
seems to depict a blow-up phenomenon. Bottom left: b = 1.2 and a(N(t)) = 0.5 + N(t)/8. Bottom
right: b = 1.2 and a(N(t)) = 0.4 + N(t)/100.
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Figure 9. The approximate solution p(v, t) for initial data given in Equation (20) with mean v0 = 1.5
and variance σ2

0 = 0.005 and with activity dependent noise a(N(t)) = 1 + N(t)/100. Left: The system
is considered for the excitatory case i.e., by taking b = 0.5 > 0; Right: The system is considered for the
inhibitory case i.e., by taking b = −0.5 < 0.
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Figure 10. The approximate solution p(v, t) using FEM for the initial data given in Equation (20) with
v0 = 1.5 and σ2 = 0.005 and activity dependence noise a(N) = a0 + a1 N(t), a0, a1 > 0. Top left:
b = 1.2 and a(N(t)) = 0.5 + N(t)/8. Top-right: b = 1.2 and a(N(t)) = 0.4 + N(t)/100.

5. Conclusions

In this article, we proposed a finite element method to find the approximate solution of the
nonlinear NLIF model. The performance of the proposed method is validated by comparing with
an existence scheme in the literature. The approximate solutions determined by Galerkin finite
element method have same accuracy as achieved by high-order finite difference scheme (WENO-FDM).
The proposed scheme takes less computational time as compared to WENO-FDM. The reason behind
that the existing scheme contains many computational factors such as smoothness indicator functions
and non-negativity weights etc. Moreover, we also included the role of both excitatory and inhibitory
impulses in the model equation. The stability analysis of the proposed scheme is discussed which
shows that the scheme is conditionally stable. The behavior of the solution is plotted by taking some
test examples. The results reveal that the continuous Galerkin FEM is better than the WENO-FDM for
simulating dynamics of large-scale neuronal networks in the brain.
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