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Abstract: The B-spline function representation is commonly used for data approximation and
trajectory definition, but filter-based methods for nonlinear weighted least squares (NWLS)
approximation are restricted to a bounded definition range. We present an algorithm termed nonlinear
recursive B-spline approximation (NRBA) for an iterative NWLS approximation of an unbounded set
of data points by a B-spline function. NRBA is based on a marginalized particle filter (MPF), in which
a Kalman filter (KF) solves the linear subproblem optimally while a particle filter (PF) deals with
nonlinear approximation goals. NRBA can adjust the bounded definition range of the approximating
B-spline function during run-time such that, regardless of the initially chosen definition range, all data
points can be processed. In numerical experiments, NRBA achieves approximation results close
to those of the Levenberg–Marquardt algorithm. An NWLS approximation problem is a nonlinear
optimization problem. The direct trajectory optimization approach also leads to a nonlinear problem.
The computational effort of most solution methods grows exponentially with the trajectory length.
We demonstrate how NRBA can be applied for a multiobjective trajectory optimization for a battery
electric vehicle in order to determine an energy-efficient velocity trajectory. With NRBA, the effort
increases only linearly with the processed data points and the trajectory length.

Keywords: nonlinear; recursive; iterative; B-spline; approximation; marginalized particle filter;
Rao-Blackwellized particle filter; multiobjective; trajectory; optimization

1. Introduction

B-spline functions, curves, and surfaces are widely used for approximation [1–3] and for defining
the trajectories of vehicles [4,5], robots [6,7] and industrial machines [8]. Furthermore, they are common
in computer graphics [9,10] and signal processing for filter design and signal representation [11–15].

We address the approximation of a set of data points by a B-spline function in the nonlinear
weighted least squares (NWLS) sense as well as the nonlinear optimization of a B-spline trajectory.
In both cases, a Bayesian filter determines the coefficients of the B-spline function.

1.1. Nonlinear Weighted Least Squares Data Approximation

In NWLS approximation problems, the solution depends on the function coefficients in a nonlinear
fashion. Based on the results of numerical experiments, Reference [16] reported that a B-spline
function was beneficial in solving NWLS problems because of its piecewise polynomial character and
smoothness.

In offline applications, a bounded number of data points needs to be processed and all data points
are known at the same time. Therefore, the problem can be solved using a batch method. Batch methods
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for NWLS problems include the Gauss–Newton algorithm and the Levenberg-Marquardt (LM)
algorithm. None of these algorithms is an exact method [16]. The LM algorithm solves in each
iteration a linearized NWLS problem [17]. A method for separable NWLS problems, in which some
parameters affect the solution linearly, is derived in References [18,19].

In contrast, in online applications such as signal processing, data points become available
consecutively and their number is often unbounded. Sliding window algorithms keep the required
memory constant by processing only a subset consisting of the latest data points [20]. A sliding window
implementation of the LM algorithm for online applications is proposed in [21].

Recursive methods only store an already existing solution and update it with each additional
data point. Therefore, they are suitable for online applications and usually require less memory and
computational effort than batch algorithms that have been adapted for online applications.

NWLS approximation problems are nonlinear optimization problems. Therefore, recursive algorithms
for NWLS problems can be based on nonlinear Bayesian filters.

1.2. Trajectory Optimization

Many driver assistance systems calculate a desired vehicle movement, also denoted trajectory,
by solving a multiobjective optimization problem with respect to target criteria such as comfort,
safety, energy consumption, and travel time. The trajectory optimization methods can be divided into
Dynamic Programming (DP), direct methods (DM), and indirect methods (IM).

DP is based on Bellmann’s principle of optimality and determines globally optimal solutions.
Its computational effort grows linearly with the temporal length of the trajectory and exponentially
with the dimensions of the optimization problem. An adaptive cruise control based on DP is proposed
in Reference [22]. DP-based algorithms for energy-efficient automated vehicle longitudinal control exist
for vehicles with an internal combustion engine [23], hybrid electric vehicles [24], and plug-in hybrid
electric vehicles [25]. In vehicles with a conventional powertrain, one dimension of the optimization
problem refers to the selected gear. In case of a vehicle with a hybrid powertrain, there is at least
one additional dimension for the operating mode, i.e., how power flows between the combustion
engine, electric motor, and wheels. These degrees of freedom come along with various constraints,
and frequently, the optimization problem needs to be simplified such that it can be solved in real-time.

DM lead to an optimization problem, in which the optimization variables are the parameters of a
functional trajectory representation. The problem is usually nonlinear and solved using sequential
quadratic programming methods or interior point methods. An example for a DM is the model
predictive control, which solves the trajectory optimization problem on a receding horizon. DM are
locally optimal, and their computational effort grows polynomially with the dimensions but mostly
exponentially with the temporal trajectory length. Therefore, the optimization horizon is usually
restricted to a few seconds.

IM are based on variational calculus and require solving a nonlinear equation system. They offer
a polynomial complexity increase with the number of dimensions and the time horizon.

In practice, mainly the two first approaches are used and combined for solving difficult, farsighted
trajectory optimization problems because of their complementary properties. Then DP provides a
rough long-term reference trajectory for a DM that computes feasible trajectories within a short
horizon [26,27].

1.3. Bayesian Filters

The Bayesian approach to a state estimation for dynamic systems calculates the probability density
function (pdf) of the unknown system state. The required information stems partly from a system
model and partly from previous measurements. The state estimation is performed by a recursive filter
that alternates between a time update that predicts the state via the system model and a measurement
update that corrects the estimate with the current measurement.
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The Kalman filter (KF) computes an optimal state estimate for systems with linear system and
measurement equations and Gaussian system and measurement noises [28]. Use cases include path
planning applications [29]. However, in many scenarios, the linear Gaussian assumptions do not apply
and suboptimal approximate nonlinear Bayesian filters such as the extended Kalman filter (EKF),
unscented Kalman filter (UKF), or particle filter (PF) are required [30].

The EKF applies a local first order Taylor approximation to the nonlinear system and measurement
functions via Jacobians in order to keep the linear state and measurement equations. The system and
measurement noises are both approximated with Gaussian pdfs [28]. Although the EKF is not suitable
for systems with a strong nonlinearity or non-Gaussian noise, it is still often successfully used for a
nonlinear state estimation [31]. For example, an NWLS approximation via a modified EKF is presented
in Reference [32].

An alternative to the approximation of the nonlinear state and measurement functions is the
approximation of the pdfs. This can be done by propagating a few state samples called sigma points
through the nonlinear functions. A filter that follows this approach is referred to as a sigma point
Kalman filter. One of the most well-known representatives is the UKF. It uses 2 · J + 1 deterministically
chosen sigma points, whereby J denotes the dimensions of the system state. The pdfs are approximated
as Gaussians of which the means and variances are determined from the propagated sigma points [28].

Compared to the EKF, the UKF offers at least a second-order accuracy [33] and is a derivative-free
filter [28], meaning that it does not require the evaluation of Jacobians, which is often computationally
expensive in the EKF [31]. Several publications report nonlinear problems in which the UKF
performs better than the EKF, e.g., for a trajectory estimation [33,34]. However, if the pdf cannot
be well-approximated by a Gaussian because the pdf is multimodal or has a strong skew, the UKF will
also not perform well. Under such conditions, sequential Monte Carlo methods like the PF outperform
Gaussian filters like EKF and UKF [30].

The PF approximates the pdf by a large set of randomly chosen state samples called particles.
The state estimate is a weighted average of the particles. With increasing number of particles, the pdf
approximation by the particles becomes equivalent to the functional pdf representation and the
estimate converges against the optimal estimate [30]. For nonlinear and non-Gaussian systems, the PF
allows the determination of various statistical moments, whereas EKF and UKF are limited to the
approximation of the first two moments [31]. However, the number of particles that is needed for a
sufficient approximation of the pdf increases exponentially with the state dimension [35]. The PF has
been applied to the optimization [36] and prediction [37] of trajectories successfully as well.

Many use cases involve a mixed linear/nonlinear system. Typically, there are few nonlinear state
dimensions and comparatively many linear Gaussian state dimensions. The marginalized particle filter
(MPF) is beneficial for such problems as it combines KF and PF. The PF is only applied to the nonlinear
states because the linear part of the state vector is marginalized out and optimally filtered with the KF.
This approach is known as Rao–Blackwellization and can be described as an optimal Gaussian mixture
approximation. Therefore, the MPF is also called a Rao–Blackwellized particle filter or mixture Kalman
filter. Marginalizing out linear states from the PF strongly reduces the computational effort because
less particles suffice and often enables real-time applications. Simultaneously, the estimation accuracy
usually increases [31,38].

In the recent past, several publications have proposed approaches for localization [39,40]
and trajectory tracking [38,41] that are based on the MPF because of its advantages for mixed
linear/nonlinear systems. Automotive use cases include a road target tracking application, of which
the multimodality requires using a PF or MPF [42]. The MPF is chosen as it allows a reduction in the
number of particles for less computational effort. Similarly, Reference [35] presents a MPF application
for lane tracking, in which the achieved particle reduction compared to a pure PF enables the execution
of the algorithm in real-time in an embedded system.
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1.4. Contribution

By definition, a B-spline function with a bounded number of coefficients has a bounded definition
range. Usually, approximation algorithms require a bounded number of coefficients which restricts
the approximation of data points with a B-spline function to a bounded interval that needs to be
determined in advance.

In online applications, the required B-spline function definition range might not be precisely known
or vary. This can result in the issuse of unprocessable data points outside the selected definition range.

In Reference [43], we presented the recursive B-spline approximation (RBA) algorithm,
which iteratively approximates an unbounded set of data points in the linear weighted least squares
(WLS) sense with a B-spline function using a KF. A novel shift operation enables an adaptation of the
definition range during run-time such that the latest data point can always be approximated.

However, recursive NWLS B-spline approximation methods are still restricted to a constant
approximation interval. We contribute to closing this research gap by proposing and investigating
an algorithm termed nonlinear recursive B-spline approximation (NRBA) for the case of NWLS
approximation problems.

NRBA comprises an MPF that addresses nonlinear target criteria with its PF while it determines
the optimal solution for linear target criteria with a KF [44]. The target criteria that refer to the value of
the B-spline function or its derivatives directly are linear criteria. Hereby, the benefit of using MPF is
that it can deal with strong nonlinearities, that its computational effort can be adapted by changing
the number of particles in order to meet computation time constraints, and that it accepts the known
measurement matrix for linear target critera as an input, whereas other nonlinear filters estimate the
relationship between measurements and function coefficients.

In automotive applications, the exponential growth of the computational effort with an increasing
time horizon limits the application of DM to short time horizons. Hence, the research gap regarding
trajectory optimization consists of available DM with a lower complexity. Compared to conventional
and hybrid vehicles, the powertrain of a battery electric vehicle (BEV) often only has a constant gear
ratio which enables savings in computational effort.

Since the NWLS approximation problem that NRBA solves is an unconstrained nonlinear
optimization problem, NRBA can be applied for multiobjective trajectory optimization. Our contribution
regarding trajectory optimization is an iterative local direct optimization method for B-spline trajectories
of which the computational effort only grows linearly with the time horizon instead of exponentially.
Due to the iterative nature of NRBA, the optimization can be paused, and if computation time is
available, the temporal length of the trajectory can be extended by calculating additional coefficients.

1.5. Structure of the Data Set

Analogous to Reference [43], we consider the data point sequence {(st, yt)}t=1,2,...,n. The index
t indicates the time step at which the data point (st, yt) becomes available. st denotes the value of
the independent variable s at t. The vector yt = (yt,1, yt,2, . . . , yt,v, . . . , yt,Vt)

> summarizes Vt scalar
measurements y. The superscript > indicates transposed quantities. Vt ∈ N can vary with t, but we
suppose that Vt � n ∀t. The vector y comprises all measurements and is given by

y = (y1,1, . . . , y1,V1︸ ︷︷ ︸
=:y>1

, . . . , y>t , . . . , yn,1, . . . , yn,Vn︸ ︷︷ ︸
=:y>n

)> (1)

1.6. Outline

Section 2.1 states the used B-spline function definition. In Section 2.2, we specify the MPF and
the chosen state-space model. Section 2.3 proposes the NRBA algorithm for an NWLS approximation.
The numerical experiments in Section 3 investigate the capabilities of NRBA compared to the LM
algorithm as well as the influences of the NRBA parameters on the result and convergence before
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we demonstrate how NRBA can be applied for a multiobjective trajectory optimization in Section 4.
In Section 5, we recapitulate the features of NRBA and conclude.

2. Methods

2.1. B-Spline Function Representation

The value of a B-spline function results from the weighted sum of J polynomial basis functions
called B-splines. All B-splines possess the same degree d. The B-splines are defined by d, and the knot
vector κ =

(
κ1, κ2, . . . , κJ+d+1

)
. We suppose that the values of the knots κ grow strictly monotonously

(κk < κk+1, k = 1, 2, . . . , J + d). µ with d + 1 ≤ µ ≤ J is the spline interval index and [κµ, κµ+1) is the
corresponding spline interval of the B-spline function.

In the jth B-spline bj(s), j = 1, 2, . . . , J is positive for s ∈ (κj, κj+d+1) and diminishes everywhere
else. This feature is referred to as local support and causes the B-spline function to be piecewise defined
for each spline interval. For s ∈ [κµ, κµ+1), only the B-splines bj(s), j = µ− d, . . . , µ can be positive.

Their values for a specific s are comprised in the B-spline vector bµ,d(s) =

(bµ−d(s), bµ−d+1(s), . . . , bµ(s)) ∈ R1×(d+1) which is calculated according to Equation (2):

bµ,d(s) = Bµ,1(s)︸ ︷︷ ︸
∈R1×2

Bµ,2(s)︸ ︷︷ ︸
∈R2×3

. . . Bµ,δ(s)︸ ︷︷ ︸
∈Rδ×(δ+1)

. . . Bµ,d(s)︸ ︷︷ ︸
∈Rd×(d+1)

(2)

The B-spline matrix Bµ,δ(s) ∈ Rδ×(δ+1) with δ ∈ N and δ ≤ d reads

Bµ,δ(s) =



κµ+1−s
κµ+1−κµ+1−δ

s−κµ+1−δ

κµ+1−κµ+1−δ
0 . . . 0

0
κµ+2−s

κµ+2−κµ+2−δ

s−κµ+2−δ

κµ+2−κµ+2−δ
. . . 0

...
...

. . . . . .
...

0 0 . . .
κµ+δ−s

κµ+δ−κµ

s−κµ

κµ+δ−κµ

 . (3)

D = [κd+1, κJ+1) is the definition range of the B-spline function f : D → R , s 7→ f (s). For s ∈
[κµ, κµ+1), f is defined by

f (s) = bµ,d(s)xµ,d (4)

with coefficient vector
xµ,d =

(
xµ−d, xµ−d+1, . . . , xµ

)>
. (5)

f has d− 1 continuous derivatives. For r ∈ N0, the rth derivative ∂r

∂sr f (s) of f reads

∂r

∂sr f (s) =
∂r

∂sr bµ,d(s)xµ,d (6)

with B-spline vector

∂r

∂sr bµ,d(s) =

{
d!

(d−r)! Bµ,1(s). . .Bµ,d−r(s)B′µ,d−r+1. . .B′µ,d, if r ≤ d
01×(d+1), otherwise.

(7)

01×(d+1) is a 1× (d + 1) zero matrix. The matrix B′µ,δ ∈ Rδ×(δ+1) results from computing the derivative
with respect to s for each element of Bµ,δ(s) [43,45]:

B′µ,δ =


−1

κµ+1−κµ+1−δ

1
κµ+1−κµ+1−δ

. . . 0
...

. . . . . .
...

0 . . . −1
κµ+δ−κµ

1
κµ+δ−κµ

 (8)
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2.2. Marginalized Particle Filter

The marginalized particle filter (MPF) is an iterative algorithm for estimating the unknown state
vector xt of a system at time step t ∈ N.

In the MPF, xt is subdivided into xt =
((

xL
t
)> ,

(
xN

t
)>)> , whereby the KF optimally estimates the

linear state vector xL
t and a PF estimates the nonlinear state vector xN

t . Exploiting linear substructures
allows for better estimates and a reduction of the computational effort. Therefore, the MPF is beneficial
for mixed linear/nonlinear state-space models [46]. Due to Equations (4) and (6), linear substructures
will occur in approximation problems as long as there are target criteria that refer to the value of the
B-spline function or its derivatives directly.

MPF algorithms for several state-space models can be found in Reference [46] along with a
MATLAB example that can be downloaded from [47]. An equivalent but new formulation of the MPF
that allows for reused, efficient, and well-studied implementations of standard filtering components is
stated in Reference [44].

For an NWLS approximation, we apply the following state-space model derived from
Reference [44]:

xN
t+1 = AN

t xN
t + ωN

t + uN
t (nonlinear state equation) (9)

xL
t+1 = AL

t xL
t + ωL

t + uL
t (linear state equation) (10)

yt = CxL
t + c

(
xN

t

)
+ υt (measurement equation) (11)

The superscripts L and N indicate that the corresponding quantity refers to linear or nonlinear state
variables, respectively. At denotes the state transition matrix, ut is the known input vector, yt is the
vector of measurements, Ct is the measurement matrix, and c is the nonlinear measurement function
that depends on xN

t .
ωL

t denotes the process noise of the linear state vector with a covariance matrix QL
t , ωN

t is the
process noise of the nonlinear state vector with a covariance matrix QN

t , and υt is the measurement
noise with a covariance matrix Rt.

The model of the conditionally linear subsystem in the KF has the state vector
(

ξ>,
(

xL)>)>,

whereby ξ describes the linear dynamics of xN :(
ξt+1
xL

t+1

)
=

(
0 AN

t
0 AL

t

)(
ξt
xL

t

)
+

(
uN

t
uL

t

)
+

(
ωN

t
ωL

t

)

yt =
(

0 Ct

)(ξt
xL

t

)
+ c

(
xL

t

)
+ υt

(12)

The covariance matrix of process noise is

(
QN

t 0
0 QL

t

)
, and 0 denotes a zero matrix with a suitable size.

A PF with the model

xN
t+1 = ω̄N

t

yt = ῡt
(13)

deals with the remaining nonlinear effects. The noise depends on the estimates indicated by ˆ from the
conditionally linear model:

ω̄N
t ∼ N

(
ξ̂t,P

ξ,−
t

)
ῡt ∼ N

(
c
(

xN
t

)
+ Ct

(
xN

t

)
x̂L,−, St

) (14)
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with
St = CtP L,−

t C>t +Rt (15)

where the superscript − refers to a priori quantities that are computed in the time update which is
based on the state of Equations (9) and (10). In contrast, + denotes a posteriori quantities that are
calculated in the following measurement update based on the measurement of Equation (11).

PL,−
t and Pξ,−

t are the covariance matrices of the estimation errors that belong to x̂L
t and ξ̂t,

respectively.
The PF uses multiple state estimates called particles simultaneously. The superscript p with

p = 1, . . . , P is the particle index and P is the particle count. In general, a KF is used for each particle.
In the chosen state-space model, however, AL

t , AN
t , QL

t , and QN
t are independent of xL

t and xN
t .

This implies that P L,−
t and P ξ,−

t are identical for all KFs which reduces the computational effort
substantially [44,46].

Algorithm 1 states the equations for one MPF iteration and was derived from References [44,46].
For an implementation in MATLAB, we adapted the example from Reference [47]. Note that, in
Algorithm 1, the measurement update of the previous time step t− 1 occurs before the time update for
the current time step t, similar to the algorithm in Reference [48].

Algorithm 1: The marginalized particle filter derived from References [44,46]

Input: AL
t ,AN

t ,Ct−1, c,P L,−
t−1,QL

t ,QN
t ,Rt−1, uL

t , uN
t , x̂L,−,p

t−1 , x̂N,−,p
t−1 , yt−1

/* 1a) PF measurement update */
1 For p = 1, . . . , P, compute the particle importance weights qp

t using the likelihood

qp
t = N (ŷp, St), ŷp = Ct−1P L,−

t−1 x̂L,−,p
t−1 + c

(
x̂N,−,p

t−1

)
, St−1 = Ct−1P L,−

t−1C
>
t−1 +Rt−1 and

compute the normalized weights q̃p
t =

qp
t

∑P
p′=1 q(p′)

t

.

/* 1b KF measurement update */

2 x̂L,+,p
t−1 ← x̂L,−,p

t−1 +P L,−
t−1C

>
t−1S−1

t−1
(
yt−1 − ŷp)

3 P L,+
t−1 ← P L,−

t−1 −P L,−
t−1C

>
t−1S−1

t−1Ct−1P L,−
t−1

/* 1c Resampling */

4 Resample P particles with replacement, probability
(

x̂L,+,(p′)
t−1 = x̂L,+,p

t−1

)
= q̃p

t .

5 x̂+t−1 ←mean of x̂L,+,p
t−1 , p = 1, . . . , P

/* 2a KF time update */

6 x̂L,−,p
t ← AL

t x̂L,+,p
t−1 + uL

t

7 ξ̂
p
t ← AN

t x̂L,+,p
t−1 + uN

t

8 P L,−
t ← AL

t P L,+
t−1

(
AL

t

)>
+QL

t

9 P ξ,−
t ← AN

t P L,+
t−1

(
AN

t

)>
+QN

t

10 P ξL,−
t ← AN

t P L,+
t−1

(
AL

t

)>
11 P Lξ,−

t ←
(
P ξL,−

t

)>
/* 2b PF time update */

12 For p = 1, . . . , P, predict new particles, x̂N,−,p
t ∼ N

(
ξ̂

p
t ,P ξ,−

t

)
.

/* 2c Mixing step, update KF */

13 x̂L,−,p
t ← x̂L,−,p

t +P Lξ,−
t

(
P ξ,−

t

)−1 (
x̂N,−,p

t − ξ̂
p
t

)
14 P L,−

t ← P L,−
t −P Lξ,−

t

(
P ξ,−

t

)−1
P ξL,−

t

Output: P L,−
t , x̂+t−1, x̂L,−,p

t , x̂N,−,p
t
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In line 4 of Algorithm 1, linear particles are resampled according to their corresponding
normalized importance weights. After resampling, particles with a low measurement error occur more
frequently in the set of particles. Subsequently, all particles x̂L,+,p

t−1 are aggregated in line 5 to a single
estimate x̂+t−1 by calculating their mean.

After both KF and PF have been time updated, the KF is adjusted based on the PF estimates in a
mixing step with the cross-covariances of the estimation errors, P ξL,−

t and P Lξ,−
t .

In the new formulation from Reference [44], resampling occurs after the measurement update
of both PF and KF. Therefore, the quantities computed for the measurement update of the PF can be
reused for the KF measurement update. In particular, each particle is only evaluated once in line 1 of
each MPF iteration instead of twice as with the previous formulation in Reference [46].

2.3. Nonlinear Recursive B-Spline Approximation

The Nonlinear recursive B-spline approximation (NRBA) iteratively adapts a B-spline function
f (s) with degree d to the data set from Section 1.5. Algorithm 2 states the instructions for one iteration
of NRBA, which is based on the MPF.

In each iteration t, NRBA modifies f in I ∈ N consecutive spline intervals. Each linear particle
x̂L,p

t = (x̂L
t1

, x̂L
t2

, . . . , x̂L
tJ
)> and each nonlinear particle x̂N,p

t = (x̂N
t1

, x̂N
t2

, . . . , x̂N
tJ
)> contains estimates

for J = d + I function coefficients of f . κt = (κt1 , κt2 , . . . , κtK ) denotes the knot vector comprising
K = J + d + 1 knots. The resulting definition rangeDt of f is given byDt = [κtd+1 , κtJ+1). NRBA checks
if st is in the definition range of the previous time step, Dt−1. If not, Dt−1 needs to be shifted such that
st ∈ Dt. A shift can be conducted in the MPF time update. The result of the time update is the a priori
estimate x̂−t . In the following measurement update, we need st again to compute the measurement
matrix Ct, and then, to take into account yt. The result of the measurement update is the a posteriori
estimate x̂+t .

Figure 1 depicts the allocation of available data points and computed estimates x̂ to KF iterations
in RBA versus MPF iterations in NRBA. The arrows indicate the needed information for computing
the estimates. The KF is initialized with x̂+0 and conducts in each iteration a time update first and
then a measurement update. Therefore, we need n iterations for n data points. In contrast, the MPF
performs the measurement update first and is initialized with x̂−0 . Therefore, we have to save yt and
provide st, st+1, and yt for iteration t + 1. Hence, we need one iteration more than with the KF in order
to take into account all data points. By definition, we use (s1, y1) for computing x̂+0 and sn for x̂−n+1 as
indicated by the dashed arrows.

t

Time step

Data points

1

(s1, y1)

2

(s2, y2)

3

(s3, y3)

n

(sn, yn)

Estimates x̂−0 x̂−1 x̂−2 x̂−3 x̂−n x̂−n+1x̂+0 x̂+1 x̂+2 x̂+3 x̂+n

KF Init. Iter. 1 Iter. 2 Iter. 3 Iter. n

MPF Init. Iter. 1 Iter. 2 Iter. 3 Iter. n + 1

Figure 1. The allocation of the available data points and computed estimates x̂ to KF iterations in
RBA versus MPF iterations in NRBA: The arrows indicate the needed information for computing
the estimates. By definition, we use (s1, y1) for computing x̂+0 and sn for x̂−n+1 as indicated by the
dashed arrows.

2.3.1. Initialization

Each linear particle x̂L,−,p
0 is initialized with x̂L,−,p

0 = x̄Init1J×1, and each nonlinear particle x̂N,−,p
0

is initialized with x̂N,−,p
0 = x̄Init1J×1 + chol

(
p̄I J×J

)
· rndJ×1. Hereby, 1J×1 is a J × 1 matrix of ones and

x̄Init indicates an initial value equal to the scalar measurement y1,v referring to f . chol(·) computes the
Cholesky factorization, and rndJ×1 is a J× 1 vector of random values drawn from the standard normal
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distribution. The covariance matrix of a priori estimation error of linear states, P L,−, is initialized with
P L,−

0 = p̄I J×J . I J×J denotes a J × J identity matrix.

Algorithm 2: Nonlinear recursive B-spline approximation

Input: κt−1, x̂L,−,p
t−1 , x̂N,−,p

t−1 , x̂+t−2,P L,−
t−1,Rt−1, st, st−1, yt, yt−1, κ̄t, p̄, q̄L, q̄N , c

1 J ← length
(

x̂L,+,p
t−1

)
2 K ← length (κt−1)

3 d← K− J − 1
4 I ← J − d
/* Quantities for MPF measurement update */

5 Compute µ such that st−1 ∈ [κt−1µ , κt−1µ+1)

6 Vt−1 ← length(yt−1)

7 Ct−1 ∈ RVt−1×J from (16)
/* Quantities for MPF time update */

8 σ← 0
9 if st ≥ κt−1J+1 then

10 if st ≥ κt−1K then
11 σ← d + 1
12 else
13 Compute σ such that st ∈ [κt−1d+I+1+σ

, κt−1d+I+2+σ
)

14 end
15 else if st < κt−1d+1 then
16 if st < κt−11 then
17 σ← −(d + 1)
18 else
19 Compute σ such that st ∈ [κt−1d+1+σ

, κt−1d+2+σ
)

20 end
21 end
22 if σ ≥ 0 then
23 x̄ ← last element of x̂+t−2
24 κt, uL

t , uN
t from (17), (20) and (26)

25 else
26 x̄ ← first element of x̂+t−2
27 κt, uL

t , uN
t from (17), (29) and (30)

28 end
29 Compute µ such that st ∈ [κtµ , κtµ+1)

30 AL
t , QL

t , AN
t and QN

t from (18), (23), (25) and (27)

31

[
P L,−

t , x̂+t−1, x̂L,−,p
t , x̂N,−,p

t

]
←

Algorithm 1
(
AL

t ,AN
t ,Ct−1, c,P L,−

t−1,QL
t ,QN

t ,Rt−1, uL
t , uN

t , x̂L,−,p
t−1 , x̂N,−,p

t−1 , yt−1

)
Output: κt, x̂+t−1, x̂L,−,p

t , x̂N,−,p
t ,P L,−

t

The large scalar value p̄ causes x̂t to quickly change such that f adapts to the data. Provided that
the values in QL

t are small, the values in P L,−
t decrease as t grows because of line 8 of Algorithm 1.

Small elements in P L,−
t correspond to certain estimates. Therefore, the particles x̂L,−,p

t and x̂N,−,p
t are

slower to be updated using measurements such that f converges. Analogous statements hold for P ξ,−
t

because of line 9 of Algorithm 1.
Hence, the process noises are defined as QL

t = q̄L I J×J and QN
t = q̄N I J×J with small positive

values q̄L and q̄N , respectively.
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2.3.2. Measurement Update

The measurement update from line 1 to line 4 of Algorithm 1 adapts f (s) based on (st−1, yt−1).
The vth dimension of yt−1 refers to either f itself or a derivative of f . Therefore, the vth row of

the Vt−1 × J measurement matrix Ct−1 reads

Ct−1v;1,...,J =

(
01×(µ−(d+1)),

∂r

∂sr bµ,d(st−1), 01×(J−µ)

)
, (16)

whereby st−1 ∈ [κµ, κµ+1) and r ∈ N0. Algorithm 2 computes Ct−1 in line 7 using Equation (16).

The value of the nonlinear measurement function c depends on the nonlinear particles x̂N,−,p
t−1 .

Furthermore, c can depend on additional quantities that vary with the application and are not stated
in Algorithm 1.

The diagonal Vt ×Vt covariance matrix of measurement noise Rt−1 enables a relative weighting
of the dimensions of yt−1 because the influence of the vth dimension of the measurement error

ep
t =

(
yt−1 − ŷp) on x̂L,−,p

t−1 and x̂N,−,p
t−1 decreases with a growing positive value Rt−1v;v .

2.3.3. Time Update with Shift Operation

Based on a comparison between κt−1 and st, NRBA decides if a shift operation of the B-spline
function definition range is required to achieve that st ∈ Dt.

The variable σ calculated from line 8 to line 21 of Algorithm 2 states the shift direction of Dt−1

and by how many positions components in κt−1, x̂L,−,p
t−1 and x̂N,−,p

t−1 need to be moved for that purpose.
σ > 0 indicates a right shift of Dt−1, σ < 0 indicates a left shift, and σ = 0 means that no shift is
conducted because st ∈ Dt−1.

Algorithm 2 expects that, for σ > 0, the |σ| additionally needed knots are the σ last entries of the
knot vector κ̄t = (κ̄t1 , κ̄t2 , . . . , κ̄tK ) and that they are the −σ first entries of κ̄t if σ < 0.

Case 1: Right shift of definition range (σ ≥ 0)

The updated knot vector reads

κt ← (κt−1σ+1 , κt−1σ+2 , . . . , κt−1K ,

κ̄tK−σ+1 , κ̄tK−σ+2 , . . . , κ̄tK )
(17)

and line 6 of Algorithm 1 updates x̂L,+,p
t−1 to x̂L,−,p

t using the state transition matrix

AL
t = At (18)

with

At ∈ RJ×J with Atg;h =

{
1, if h = g + σ

0, otherwise.
(19)

and the input signal vector
uL

t = ut (20)

with
ut =

(
01×(J−σ), x̄11×σ

)>
. (21)

Thereby all entries of x̂L,+,p
t−1 are moved to the left and the last σ entries of x̂L,−,p

t have an arbitrary initial
value x̄:

x̂L,−,p
t =

(
x̂L

t−1σ+1
, x̂L

t−1σ+2
, . . . , x̂L

t−1J−σ
, x̄11×σ

)>
(22)
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During a right shift of the definition range, we set x̄ to the last element of x̂+t−2, which is determined
during the preceding call of Algorithm 1 in line 5. This is based on the assumption that x̂+t−2 is a good
initial value in the magnitude of the data.

Additionally, line 8 of Algorithm 1 updates P L,+
t−1 to P L,−

t using Equation (18) and

QL
t ∈ RJ×J with QL

tg;h
=


p̄, if h = g ∧Q

q̄L, if h = g ∧ ¬Q

0, otherwise.

(23)

with

Q =

{
h ≥ J − σ + 1, if σ ≥ 0

h ≤ −σ, if σ < 0
(24)

The update operation moves the elements in P L,+
t−1 to the top left and replaces the zeros on the last σ

main diagonal elements of QL
t with p̄ in order to get large values on the last σ main diagonal elements

of P L,−
t and a fast adaption of the initial estimates x̄ to the data points.
In line 7 and line 9, Algorithm 1 computes the the quantities ξ̂

p
t and P ξ,−

t that are needed for the
PF time update. The calculations of the state transition matrix AN with

AN
t = At (25)

and the input signal vector uN with
uN

t = ut (26)

are analogous to those for the linear quantities. QN uses q̄N instead of q̄L:

QN
t ∈ RJ×J with QN

tg;h
=


p̄, if h = g ∧Q

q̄N , if h = g ∧ ¬Q

0, otherwise.

(27)

Case 2: Left shift of definition range (σ < 0)

The updated knot vector is

κt ←
(
κ̄t1 , κ̄t2 , . . . , κ̄t−σ , κt−11 , κt−12 , . . . , κt−1K+σ

)
, (28)

the input signal vector for linear states uL reads

uL
t = ut (29)

and the input signal vector for nonlinear states uN is given by

uN
t = ut (30)

with
ut ←

(
x̄11×(−σ), 01×(J+σ)

)>
. (31)

Additionally, we set x̄ to the first component of x̂+t−2.
Note that since AL

t and AN
t are identical in the chosen state-space model, we can save

computational effort when calculating the covariances and cross-covariances from line 8 to line 11 in
Algorithm 1.
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2.3.4. Effect of the Shift Operation

The shift operation decouples the dimension of the state vector from the total number of estimated
coefficients. As a result, NRBA can determine an unknown and unbounded number of coefficients
while the effort per iteration only depends on the number of spline intervals in which the approximating
function can be adapted simultaneously.

However, the shift operation causes NRBA to partially forget the approximation result in order
to keep the dimensions of matrices and vectors constant. κt and x̂t only allow an evaluation of f (s)
for s ∈ [κtd+1 , κtd+I+1). The forgetting mechanism can be circumvened by copying old NRBA elements
before they are overwritten.

3. Numerical Experiments

We apply Algorithm 2 in numerical experiments. Thereby, we also investigate the effects of the
number of simultaneously adaptable spline intervals and the particle count on the NRBA solution.
An implementation in MATLAB is provided in [49]. The LM algorithm [50] with MATLAB standard
settings serves as a benchmark.

3.1. General Experimental Setup

The data set {(st, yt)}t=1,2,...,n is defined according to Section 1.5, whereby

st = 0.25 + 0.5 · (t− 1), (32)

yt,1 =

{
40, if 80 ≤ st < 120

30, otherwise
(33)

yt,2 = yt,3 = yt,4 = 0 ∀t (34)

n = 400. (35)

A B-spline function f (s) of degree d = 3 and with knot vector κ = (−30,−20, . . . , 230) approximates
the data. Thereby, we suppose that yt,1 refers to f , yt,2 to the first derivative of f , yt,3 to the second
derivative of f , and yt,4 to the value of the nonlinear measurement function c.

The nonlinear measurement function c is defined as a quadratic B-spline function with
κ = (−5, 0, . . . , 70) and x = (0, 0, 0, 0.25, 1.5, 5, 5, 0, 0, 6, 8, 8, 8)>. c depends on the value of the
approximating function f (s) and is displayed in Figure 2. The input variable f (s) of c is restricted to
the definition range [5, 60] of c.

10 20 30 40 50 60
0
2
4
6
8

f (s)

c ( f (s))

Figure 2. The nonlinear measurement function c ( f (s)) that depends on the value of the B-spline
function f (s) that approximates the data. c is itself a B-spline function.

The diagonal measurement covariance matrix Rt ∈ R4×4 with Rt1;1 = 1, Rt2;2 = 5 · 10−2,
Rt3;3 = 5 · 10−3 and Rt4;4 = 0.8 or 106, respectively, comprises the reciprocal weights of yt,1, yt,2,
yt,3 and yt,4. The reciprocal weight values for the first three dimensions of yt avoid that f oscillates
and cause that f smooths the jumps in the first dimension of the measurements. With Rt4;4 = 0.8,
we weight the nonlinear target criterion c ( f (s)) = 0 heavily, whereas with Rt4;4 = 106, it is almost
completely neglected.
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Depending on the applied algorithm, solutions for the former weighting case are denoted
with NRBAN or LMN, indicating the nonlinear approximation. Solutions for the latter case are
denoted with NRBAL or LML, indicating that we apply the corresponding algorithm to a quasi-linear
approximation problem.

We analyze solutions for two different numbers of spline intervals I. For I = 1, we initialize
κ with κ0 = (−30, 20, . . . , 40), which leads to an initial definition range [0, 10) of f . For I = 3,
we initialize κ with κ0 = (−30, 20, . . . , 60), and the resulting definition range is [0, 30). In both cases,
NRBA approximates the data by repeatedly shifting the function definition range to the right. Each
time, an additional knot value κ̄tK needs to be provided in the vector κ̄t. For I = 1, these values are
κ̄tK = 50, 60, . . . , 230, and for I = 3, they read κ̄tK = 70, 80, . . . , 230.

In order to display the NRBA results for the whole data set, we store all values that are moved out
of NRBA matrices and vectors elsewhere. The remaining NRBA parameters are q̄L = 0.005, q̄N = 0.25,
and p̄ = 30. The LM algorithm uses x̄Init = 30 as the initial value for each coefficient.

Due to the included PF, NRBA is a sampling-based, nondeterministic method and its results vary
between different approximation runs. Therefore, we apply a Monte Carlo analysis and perform 50
runs for each approximation setting. For each run, we calculate the normalized root mean square
error (NRMSE) between the B-spline function determined by NRBA, fNRBA, and the B-spline function
according to LM, fLM, as follows:

NRMSE =
1

maxt=1,...,n{ fLM(st)} −mint=1,...,n{ fLM(st)}
·

√
∑n

t=1 ( fNRBA(st)− fLM(st))
2

n
(36)

With the notation NRMSEmin, NRMSEmed, and NRMSEmax, we refer to the NRBA solution with
the minimum, median, or maximum NRMSE, respectively, in each set of 50 runs.

3.2. Effect of Weighting and Nonlinear Measurement Function

Figure 3 shows the approximating functions of each algorithm for both Rt4;4 = 0.8 and Rt4;4 = 106.
It displays for each weighting the NRBA solutions that achieve the median and the maximum NRMSE
compared to the LM solution with a same weighting. I is set to one for all NRBA approximations;
hence, the MPF state vector comprises four linear and four nonlinear components. Furthermore,
we choose P = 6561 = 94; therefore, the PF creates nine samples per nonlinear state dimension.

0 20 40 60 80 100 120 140 160 180 200

30

35

40

I = 1
s

yt,1/ f (s)

κ
(st, yt,1)

LMN

LML

NRBAL, NRMSEmed, I = 1, P = 94

NRBAL, NRMSEmax, I = 1, P = 94

NRBAN, NRMSEmed, I = 1, P = 94

NRBAN, NRMSEmax, I = 1, P = 94

Figure 3. Approximating the B-spline function f determined by NRBA with a number of spline
intervals I = 1 and particle count P = 6561 = 94 in comparison to the LM solution: NRBAL and LML

denote solutions of the algorithms for the quasi-linear problem whereas NRBAN and LMN refer to
solutions for the nonlinear problem. NRMSEmed and NRMSEmax denote the NRBA solution with the
median or maximum normalized root mean square error (NRMSE) compared to the LM solution with
the same weighting. Forty of the 400 data points (st, yt,1) and the knots κ = 0, 5, . . . , 200 are shown.
The arrow indicates the range in which NRBA can adapt f (s), while the data in the interval [190, 200)
is processed.
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The black dots depict the first component yt,1 of the data points (st, yt). For a better visualization
of the approximating functions, only two representative data dots per spline interval are displayed.
For f (s) = 30, the deviation between the value of c and its target value yt,4 = 0 has a local maximum
(c.f. Figure 2). In NRBAN and LMN, this deviation is penalized strongly; hence, these solutions avoid
f (s) = 30. In contrast, NRBAL and LML approximate data with yt,1 = 30 closely because the nonlinear
criterion is weighted only to a negligible extent.

Dashed vertical lines indicate knots, whereby the first and last knots are not shown. Data and
knot vector are symmetrical to the straight line defined by s = 100. Since the LM algorithm processes
all data simultaneously in each iteration, the solutions LML and LMN in Figure 3 reflect this symmetry.

In contrast, NRBA processes the data from left to right and can only adapt some coefficients at a
time. For I = 1, these are the four coefficients that influence the B-spline function in the spline interval
in which the current data point lies. The double-headed arrow in Figure 3 visualizes the range in
which NRBA can adapt f simultaneously while (sn, yn) is taken into account.

The solutions NRBAL and NRBAN are both asymmetrical and mostly delayed with respect to
LML and LMN. However, with NRBAN, the asymmetry is less distinct. The reason for this is that,
in the nonlinear problem, the PF removes states with a high delay more quickly from the particle
set because they create a larger error. Additionally, the range of values in NRBAN is smaller than in
NRBAL so that a present lag is less obvious.

Furthermore, we see that, for the same weighting, NRMSEmed and NRMSEmax differ only slightly.
This suggests that, for the investigated settings, P = 6561 suffices for a convergence of NRBA solutions.

3.3. Effect of Interval Count

The number of spline intervals I determines the number of intervals in which NRBA can adapt
the approximating B-spline function simultaneously.

When we proposed the algorithm RBA for a linear-weighted least squares approximation in
Reference [43], we conducted numerical experiments similiar to the ones in this publication but
without any nonlinear approximation criterion. For I = 1, we observed a strong asymmetry and delay
with RBA, analogous to NRBAL in Figure 3. The filter delay diminished when I was increased to seven.
This is because the filter is then able to update more coefficient estimates with hinsight based on P L,+.

In this subsection, we investigate the effect of increasing I from one to three with NRBA. With
I = 3, NRBA can simultaneously adapt not only the coefficients that are relevant for the spline interval
in which the current data point lies but also the two coefficients that affect the two spline intervals to
the left. However, I also determines the dimension of the state space. With I = 3, there are six linear
and six nonlinear components. The PF samples the state space less densely unless the particle count is
increased exponentially with I.

First, we keep the sampling density per nonlinear state space dimension constant by choosing
P = 625 = 54 for I = 1 and P = 15,625 = 56 for I = 3.

Figure 4 displays the results for the quasi-linear approximation problem. With I = 3, the NRBA
solution is more symmetrical than with I = 1 for 70 ≤ s < 120 as it follows the increase of yt,1 more
closely. However, a comparison of NRMSEmed for I = 1 and I = 3 indicates that the increase of I does
not translate to a reduction of the delay for s ≥ 120. The ability to adapt more coefficient estimates
with hinsight can also lead not necessarily to beneficial effects. The examples are the too low course of
NRBA for I = 3 between s = 40 and s = 60 and the overcompensation of the delay between s = 60
and s = 75.

For I = 1, NRMSEmax differs more from NRMSEmed and shows larger oscillation amplitudes
between s = 130 and s = 170 than for I = 3. This suggests that P = 625 is not sufficient for a
convergence of NRBA for I = 1. Although we use only 625 particles for I = 1, the required increase
to P =15,625 for I = 3 is quite strong. This illustrates that keeping the sampling density constant
quickly becomes infeasible, especially if computation time constraints are present [44]. Figure 5 shows
the results for the nonlinear approximation problem and supports the previously drawn conclusions.
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Additionally, we see for s ≤ 20, that the conflicting target criteria in the nonlinear approximation
problem cause a larger period for stabilization.

0 20 40 60 80 100 120 140 160 180 200

30

35

40

I = 3 I = 1
s

yt,1/ f (s)

κ
(st, yt,1)

LML

NRBAL, NRMSEmed, I = 1, P = 54

NRBAL, NRMSEmax, I = 1, P = 54

NRBAL, NRMSEmed, I = 3, P = 56

NRBAL, NRMSEmax, I = 3, P = 56

Figure 4. Approximating B-spline function, f is determined by NRBA for various numbers of spline
intervals I and various particle counts P in comparison to the LM solution. NRBAL and LML denote
solutions of the corresponding algorithm for the quasi-linear approximation problem. NRMSEmed and
NRMSEmax denote the NRBA solution with the median or maximum normalized root mean square
error (NRMSE) compared to the LM solution with the same weighting. Forty of the 400 data points
(st, yt,1) and the knots κ = 0, 5, . . . , 200 are shown. The arrows indicate the range in which NRBA can
adapt f (s), while the data in the interval [190, 200) is processed.

0 20 40 60 80 100 120 140 160 180 200

30

35

40

I = 3 I = 1
s

yt,1/ f (s)

κ
(st, yt,1)

LMN

NRBAN, NRMSEmed, I = 1, P = 54

NRBAN, NRMSEmax, I = 1, P = 54

NRBAN, NRMSEmed, I = 3, P = 56

NRBAN, NRMSEmax, I = 3, P = 56

Figure 5. Approximating B-spline function, f is determined by NRBA for various numbers of spline
intervals I and various particle counts P in comparison to the LM solution. NRBAN and LMN denote
solutions of the corresponding algorithm for the nonlinear approximation problem. NRMSEmed and
NRMSEmax denote the NRBA solution with the median or maximum normalized root mean square
error (NRMSE) compared to the LM solution with the same weighting. Forty of the 400 data points
(st, yt,1) and the knots κ = 0, 5, . . . , 200 are shown. The arrows indicate the range in which NRBA can
adapt f (s), while the data in the interval [190, 200) is processed.

Second, we investigate the effect of an exclusive I increase from I = 1 to I = 3 while maintaining
the particle count of Section 3.2. Figure 3 then depicts the case for I = 1, and Figure 6 depicts the
results for I = 3. When we compare in both figures the NRMSEmax solution to the corresponding
NRMSEmed solution, we notice that they differ much more for I = 3. This indicates that more particles
are needed for convergence for I = 3. Especially, we notice that, with I = 3, these differences are much
larger for NRBAN than for NRBAL.

With the chosen setup, an increasing I yields no clear approximation improvement when we
compare corresponding NRMSEmed solutions in both figures. Figure 6 also shows that NRBAN

temporarily decreases below f (s) = 30, the position of the maximum of c (c.f. Figure 2). This illustrates
how the sequential data processing of filter-based methods can lead to solutions that differ from those
of a batch method.
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I = 3

s

yt,1/ f (s)

κ
(st, yt,1)

LMN

LML

NRBAL, NRMSEmed, I = 3, P = 94

NRBAL, NRMSEmax, I = 3, P = 94

NRBAN, NRMSEmed, I = 3, P = 94

NRBAN, NRMSEmax, I = 3, P = 94

Figure 6. Approximating B-spline function, f is determined by NRBA with the number of spline
intervals I = 3 and particle count P = 94 = 6561 in comparison to the LM solution. NRBAL and LML

denote solutions of the algorithms for the quasi-linear problem whereas NRBAN and LMN refer to
solutions for the nonlinear problem. NRMSEmed and NRMSEmax denote the NRBA solution with the
median or maximum normalized root mean square error (NRMSE) compared to the LM solution with
the same weighting. Forty of the 400 data points (st, yt,1) and the knots κ = 0, 5, . . . , 200 are shown.
The arrow indicates the range in which NRBA can adapt f (s), while the data in the interval [190, 200)
is processed.

3.4. Effect of Particle Count on Convergence

The computational effort of MPF increases linearly with the particle count P. For an example with
seven linear and two nonlinear state vector components, Reference [46] chooses P = 5000 and reports
that, up to this particle count, increasing P reduces the convergence time significantly and leads to
better estimates. Other examples in References [44,51] with four linear and two nonlinear state vector
components uses P = 2000. The MATLAB example in Reference [47] with three linear components and
one nonlinear component uses only P = 200.

Figure 7 depicts the effect of P on the convergence of NRBA. For each combination of quasi-linear
approximation problem L and nonlinear approximation problem N with I = 1 and I = 3, the figure
shows the courses of NRMSEmin, NRMSEmed, and NRMSEmax versus P. The investigated particle counts
are 256 = 44, 625 = 54, 729 = 36, 1296 = 64, 2401 = 74, 4096 = 46 = 84, 6561 = 94, and 15,625 = 56.

Between NRBAL and NRBAN, the NRMSE values are on different levels because the LM reference
in the NRMSE from Equation (36) differs between LML and LMN and the normalization factor in
Equation (36) does not fully compensate for this. For NRBAL with I = 1 and I = 3 and NRBAN with
I = 1, NRMSEmin and NRMSEmed decrease quickly and remain almost constant when P is further
increased from P = 4096 on. For NRBAN with I = 3, the courses of NRMSEmin and NRMSEmed

suggest using P = 6561. NRMSEmax are the observed worst case results. According to the NRMSEmax

courses, P = 6561 should be used for NRBAL, P = 15,625 for NRBAN with I = 1 and at least
P = 15,625 for NRBAN with I = 3.

For NRBAN with I = 3, NRMSEmax remains comparatively large because, in some runs,
the approximating functions are below f (s) = 30 as shown in Figure 6. Only for P = 15,625,
such results are not observed anymore (c.f. Figure 5) and the NRMSEmax value is similar to that
for NRBAL. As stated, the heavy penalization of the nonlinear criterion causes the MPF to remove bad
particles quickly from the particle set, which reduces the filter lag. However, the MPF then relies more
on the state-space sampling on the suboptimal PF than on the optimal KF. In combination with too
few particles, this affects the results very negatively in the experiments.
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Figure 7. The convergence of NRBA: Normalized root mean square error (NRMSE) of NRBA versus
the particle count P. NRMSEmin, NRMSEmed, and NRMSEmax denote the nonlinear recursive B-spline
approximation (NRBA) solution with the minimum, median, or maximum NRMSE compared to the
LM solution in the Monte Carlo analysis. L and N denote the quasi-linear and nonlinear weighting and
I, the number of spline intervals.

3.5. Mean and Standard Deviation of NRBA Error

For insights into the statistical features of NRBA, we determine the mean and standard deviation
of the error vector e between the NRBA and LM solutions over all 50 Monte Carlo runs for each
approximation setting. Hereby, we consider the error vector of function values between NRBA and
LM, e f , as well as the error vector of coefficient values between NRBA and LM, ex. The mean ē with
ē = 1

E ∑E
i=1 ei is an indicator for a bias of NRBA estimates, whereas the sample standard deviation

σe with σe =
√

1
E−1 ∑E

i=1 (ei − ē)2 is a measure for bias stability. e is a single error vector component,
and E denotes the number of components in the error vector.

Table 1 displays the mean and standard deviation of e f , and Table 2 shows these statistic measures
for ex. Both tables enable the following statements:

Table 1. The mean and standard deviation of error vector of function values between NRBA and LM
over all 50 Monte Carlo runs with a quasi-linear approximation problem L, nonlinear approximation
problem N, and number of spline intervals I.

Mean of Error Vector Standard Deviation of Error Vector

Particle Count L, I = 1 L, I = 3 N, I = 1 N, I = 3 L, I = 1 L, I = 3 N, I = 1 N, I = 3

256 0.0041 −0.0088 −0.2268 −0.5820 0.8738 0.9143 0.6225 1.2525
625 0.0150 0.0072 −0.0979 −0.4386 0.7692 0.8224 0.4030 1.0902
729 −0.0064 −0.0176 −0.0930 −0.4350 0.8231 0.7988 0.3904 1.0975

1296 −0.0028 −0.0156 −0.0611 −0.2248 0.7294 0.7365 0.3361 0.6988
2401 0.0005 −0.0009 −0.0445 −0.1851 0.6480 0.6851 0.2965 0.6454
4096 0.0014 0.0050 −0.0296 −0.2189 0.6436 0.6538 0.2583 0.7106
6561 0.0011 −0.0069 −0.0334 −0.1340 0.5930 0.6084 0.2498 0.5673

15,625 0.0056 −0.0015 −0.0204 −0.0512 0.5502 0.5715 0.2216 0.3124

The mean of the error vector of the quasi-linear approximation problem is not clearly influenced
by the particle count. Furthermore, the varying signs of the means close to zero speak against a bias
for the quasi-linear approximation problem. In contrast, for the nonlinear approximation problem,
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the means are always negative and, therefore, biased. The negative sign is a problem-specific result
and means that the solution NRBAN is, in general, between LML and LMN. The bias itself, however,
seems to be a systematic effect of the interaction of KF and PF of which the system models are weighted
relative to each other according to the covariance matrix of process noise for linear states QL and the
covariance matrix of process noise for nonlinear states QN . Decreasing QN might help to reduce the
magnitude of this bias. Moreover, we note that the absolute values of the means become smaller as the
particle count is increased. As the NRBA results for nonlinear approximation problem rely heavily on
the PF, this relation is comprehensible.

Table 2. The mean and standard deviation of error vector of coefficient values between NRBA and LM
over all 50 Monte Carlo runs with a quasi-linear approximation problem L, a nonlinear approximation
problem N, and number of spline intervals I.

Mean of Error Vector Standard Deviation of Error Vector

Particle Count L, I = 1 L, I = 3 N, I = 1 N, I = 3 L, I = 1 L, I = 3 N, I = 1 N, I = 3

256 0.0041 −0.0098 −0.3036 −0.5902 1.2019 1.3057 1.2664 1.7251
625 0.0133 0.0044 −0.1640 −0.4562 1.0725 1.1953 0.8450 1.4869
729 −0.0040 −0.0055 −0.1507 −0.4742 1.1971 1.1239 0.8092 1.5128

1296 −0.0024 −0.0171 −0.1212 −0.2695 1.0045 1.0828 0.7122 1.1541
2401 0.0005 0.0001 −0.1099 −0.2271 0.9309 0.9916 0.6654 1.0487
4096 0.0019 0.0072 −0.0725 −0.2511 0.9334 0.9402 0.5621 1.0439
6561 0.0013 −0.0053 −0.0738 −0.1889 0.8614 0.9000 0.5201 0.9672

15,625 0.0054 −0.0008 −0.0506 −0.1064 0.8211 0.8329 0.4605 0.6524

The standard deviation, in general, decreases for all investigated settings as the particle count is
increased. With 15,625 particles, the standard deviations of the quasi-linear approximation problems
are two to three times larger than those of the nonlinear approximation problems. This also is a
problem-specific effect. For the nonlinear approximation problem, the range of the function values is
considerably smaller than that of the quasi-linear problem, which favors lower standard deviations.
For the nonlinear problem with the number of spline intervals equal to three, the relatively large
standard deviations reflect the often disadvantageous courses of the approximating functions again as
depicted in Figure 6.

4. Trajectory Optimization

This section demonstrates how NRBA can be applied for a multiobjective trajectory optimization.
The trajectory represents the planned vehicle velocity with respect to time τ measured from present
into the future and is a B-spline function as defined in Equation (4) with degree d = 3, knot vector
κ, and coefficient vector x. Due to its interpretation as a temporal velocity trajectory, we refer
to the B-spline function as vTJY(τ) instead of f (s). κ has equidistant and strictly monotonously
increasing entries

κ = (κ1, κ2, . . . , κK) = (−∆τκ · d, ∆τκ · (d + 1), . . . , ∆τκ · d + K− 1) (37)

where ∆τκ denotes the constant temporal distance of neighboring knots. Due to the choice of κ, vTJY(τ)

can be evaluated for τ ≥ 0. τ is discretized using a positive constant temporal distance of neighboring
data points ∆τIt:

τt = (t− 1) · ∆τIt, t = 1, 2, . . . , n (38)

Each component of the vector of measurements yt of the data set in Section 1.5 is interpreted as a target
value of an optimization goal. yt,1 is assumed to be a suggested time-discrete course of velocity with a
velocity set point vSet which comes from a preceding planning method:
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yt,1 = vSet,t (39)

The remaining components yt,2, yt,3, and yt,4 of yt are assumed zero as before. NRBA solves the
optimization problem

x̂ = arg min
x

n

∑
t=1

(
R−1

v · (vSet,t − vTJY(τt))
2 +R−1

a · aTJY(τt)
2 + R−1

j · jTJY(τt)
2 + R−1

P · P̂elec(τt)
2
)

(40)

Each summand of the optimization function refers to an optimization goal. Under the assumption
that vSet takes into account driving dynamics, the first summand can be interpreted as driving safety
and the optimized trajectory should remain close to the course of vSet. aTJY denotes the trajectory
acceleration and jTJY the trajectory jerk. These quantities are the first and second derivatives of vTJY

and can be derived according to Equation (6). The second and third summands demand a smooth
drive with a low acceleration and acceleration changes and, thus, refer to driving comfort. The last
summand penalizes the absolute values of the estimated electric traction power P̂elec, which is used as
a measure for driving efficiency.

Each optimization goal has a corresponding weight. R−1
v denotes the weight of velocity error

square, R−1
a denotes the weight of acceleration error square, R−1

j denotes the weight of jerk error

square, and R−1
P denotes the weight of power error square. The reciprocals of the weights follow the

interpretation of the filter algorithms and refer to the variances of the artificial measurements. Rv is the
variance of velocity measurement, Ra is the variance of acceleration measurement, Rj is the variance of
jerk measurement, and RP is the variance of power measurement.

Without the fourth goal, RBA would suffice for solving the problem because the first three goals
are all linear in the coefficients. However, the energy consumption minimization goal requires a
nonlinear method. In the following, we consider a BEV based on the Porsche Boxster (type 981),
which is described in References [52–54]. Like most BEVs, its powertrain has a fixed gear ratio,
which simplifies the optimization problem and allows us to apply NRBA.

In a BEV, the powertrain converts electric traction power Pelec provided by the battery into
mechanic traction power Pmech for vehicle propulsion. During recuperative braking, the power flow
is vice versa. We will neglect the additional power for auxillaries such as air conditioning because it
depends on environmental conditions and comfort requirements strongly. Pmech equals the product
of the traction force Ftrac and the vehicle velocity vvhcl, whereby Ftrac equals the sum of driving
resistances. The dominant driving resistances are air resistance. which increases quadratically with
vvhcl, the inertial force which is a linear function of the vehicle acceleration avhcl and the climbing force
which depends on the road slope angle α.

During this power conversion, losses occur in various components of the powertrain. In order to
provide sufficient Ftrac for a high acceleration or high velocity, the electric motor must generate a high
torque which requires a large electric current I. The internal ohmic resistance R of electric components
such as the battery causes an ohmic traction power loss Ploss,ohmic which is given by Ploss,ohmic = R · I2.
Furthermore, friction losses in the gearbox increase with rotation speed and transmitted torque [55].

Pelec can be computed in the vehicle from voltage and current sensor data. However, due to a lack
of sensors, Ftrac and Pmech cannot be calculated, and therefore, power losses cannot be determined in
the vehicle during its operation. As power losses increase with the absolute value of Pelec, we use Pelec
as a measure for power losses and create a mathematical model of Pelec that outputs the estimated
electric traction power P̂elec based on the inputs vvhcl, avhcl, and α. The mathematical model can adapt
its parameters during vehicle operation because both model outputs and model inputs are known
quantities during vehicle operation. The adaption is neccessary for accurate estimates because vehicle
parameters such as mass or air drag coefficient can change and the driving resistances also depend
on these parameters. The mathematical model serves as nonlinear measurement function for NRBA,
whereby we assume that vTJY = vvhcl and aTJY = avhcl. By penalizing the absolute value of P̂elec in
Equation (40), we encourage NRBA to determine energy-efficient velocity trajectories.
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The first diagram of Figure 8 displays the velocity v versus the time τ according to the velocity set
points vSet of the reference as well as three trajectories optimized by NRBA. The NRBA trajectories
are denoted NRBA1, NRBA2, and NRBA3 and differ in the choice of RP. We use RP = 104 for NRBA1,
RP = 500 for NRBA2, and RP = 100 for NRBA3. The remaining parameter values are Rv = 5, Ra = 10,
Rj = 1, I = 1, q̄L = 0.005, q̄N = 0.5, p̄ = 15, P = 1000, ∆τκ = 2, and ∆τIt = 0.25.
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Figure 8. First diagram: Velocity v versus time τ according to the velocity set points vSet of the
reference and three trajectories NRBA1, NRBA2, and NRBA3 optimized by NRBA that differ in the
variance of power measurement. Second diagram: Estimated electric traction power P̂elec according to
mathematical model. Third diagram: Traction power loss Ploss. Fourth diagram: Traction energy E.
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The second diagram shows the estimated electric traction power P̂elec according to the
mathematical model. The traction power loss Ploss and traction energy E depicted in the third
and fourth diagram originate from a detailed vehicle model. The detailed vehicle model includes
parameters for all relevant power losses. These parameters were derived from component tests on
test benches. The detailed model requires Ftrac as an input and, therefore, assumptions concerning
the driving resistance parameters. For simplicity, we assume a slope-free road in this example.
An implementation of this example in MATLAB is also provided in Reference [49].

The trajectory NRBA1 follows the reference closely apart from some short and large changes of
vSet between τ = 250 and τ = 300. Staying close to the reference requires several positive and negative
peaks in P̂elec, which are almost not penalized because of the high variance of power measurement RP.
As RP is decreased, the trajectories exhibit lower velocities and absolute values of acceleration in order
to avoid large absolute values of P̂elec. Between τ = 250 and τ = 300 decreasing, RP has almost no
effect because P̂elec is close to zero because the velocity is low.

The last three diagrams show that P̂elec is a suitable measure for the goal of a lower energy
consumption. A comparison of the peaks in P̂elec and Ploss at τ = 310 illustrates that Ploss increases
with |P̂elec|more than linearly.

Note that there are some situations in which the trajectories exceed vSet. Depending on the
exact application, interpreting vSet as an upper velocity limit might be more suitable. By penalizing
positive deviations (vSet,t − vTJY(τt)) more strongly than negative ones in each NRBA iteration using a
sign-dependent Rv value, exceeding vSet can be avoided.

5. Conclusions

We presented a filter-based algorithm denoted nonlinear recursive B-spline approximation (NRBA)
that determines a B-spline function such that it approximates an unbounded number of data points
in the nonlinear weighted least squares sense. NRBA uses a marginalized particle filter (MPF),
also denoted a Rao–Blackwellized particle filter, for solving the approximation problem iteratively.
In the MPF, a particle filter (PF) takes into account the approximation criteria that relate to the function
coefficients in a nonlinear fashion whereas a Kalman filter (KF) solves any linear subproblem optimally.
Thus, the particle count in the PF can be reduced.

As the value of the B-spline function and its derivatives depend linearly on the coefficient values,
linear approximation criteria will occur in most approximation applications. The MPF accepts the
exactly known values of the B-spline function basis functions as an input and does not need to estimate
them like many other nonlinear filters do. Therefore, the MPF enables a reduction in the computational
effort and an achievement of better results compared to purely nonlinear filters [46].

NRBA can shift estimated coefficients in the MPF state vector which allows an adaptation of
the bounded B-spline function definition range during run-time such that, regardless of the initially
selected definition range, all data points can be processed. Additionally the shift operation enables a
decrease in the dimension of the state vector for less computational effort.

In numerical experiments, we compared NRBA to the Levenberg-Marquardt (LM) algorithm
and investigated the effects of NRBA parameters on the approximation result using a Monte Carlo
simulation. Provided that the NRBA parameters are chosen appropriately, the NRBA solution is
close to the LM solution apart from some filter-typical delay. For a strong weighting of the nonlinear
approximation criteria, the result relies more on the state-space sampling of the PF than on the KF.
In combination with too few particles, the approximating function tends to oscillate.

NRBA use cases are nonlinear weighted least squares (NWLS) problems in which a linearization of
nonlinear criteria is not desired or promising, for example, because of strong nonlinearities. For linear
weighted least squares problems, the recursive B-spline approximation (RBA) algorithm proposed in
Reference [43] should be used instead of NRBA. RBA is based on the KF, which computes an optimal
solution [38]. In contrast, the PF in NRBA causes NRBA to, at best, reach the same approximation
quality provided that the particle count is large enough, which requires more computational effort.
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Furthermore, with NRBA, the approximation depends more heavily on the parameterization of
the underlying filter algorithm than with RBA. An increase of the number of coefficients that NRBA
can adapt simultaneously is not as unambiguously beneficial as with RBA and usually needs to be
combined with an exponential increase of the particle count in the PF for an improvement of the
approximation.

As demonstrated, NRBA is suitable for an unconstrained multiobjective trajectory optimization.
Thereby, a major advantage of NRBA is a linear increase of the computational effort with the number
of processed data points as opposed to an exponential increase with most other direct trajectory
optimization methods. NRBA can also be applied during the processing of discrete signals in a time
domain. Then NRBA can provide a sparse, continuous, and smoothed representation of the signals
themselves or of their derivatives.

The chosen MPF formulation allows an easy replacement of the standard KF and PF. For example,
Reference [56] presents a PF, in which the particles are determined with a particle swarm optimization,
and reports that less particles are needed compared with the standard PF. An improvement of the
MPF is proposed by Reference [57]. Investigating these algorithms in combination with NRBA can be
the subject of further research.
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