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Abstract: We give some Liouville type theorems of Lp harmonic (resp. subharmonic, superharmonic)
functions on a complete noncompact Finsler manifold. Using the geometric relationship between
a Finsler metric and its reverse metric, we remove some restrictions on the reversibility. These
improve the recent literature (Zhang and Xia, 2014).
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1. Introduction

As is well known, Liouville theorems play an important role in analyzing the underlying
manifolds. The classical Liouville theorem states that any nonnegative (or bounded) harmonic
function on Rn must be constant. Up to now, there are many generalizations studied on complete
Riemannian manifolds. Yau [1,2] proved that any positive (or bounded) harmonic function on
a complete Riemannian manifold with nonnegative Ricci curvature must be constant and there are
no nonnegative Lp subharmonic functions on such a Riemannian manifold for p ∈ (1, ∞). Yau’s
results were then generalized by Sturm and Schoen, etc. See [3–5] and references therein. For general
symmetric diffusion operators, Li [6] extended various Liouville theorems as above.

Recently, Zhang-Xia [7], Yin-He [8] and Yin-Zhang [9] extended the above Liouville theorems in
the Finsler setting. Notice that, in [7,8], the Finsler manifolds discussed must have finite reversibility. In
this paper, we show that this restriction can be removed. Specifically, we obtain the following results.

Theorem 1. Let (M, F, dµ) be an n-dimensional forward complete noncompact Finsler manifold. If a positive
function u ∈W2,2

loc (M) ∩ C1,α(M) ∩ C∞(Mu) on M satisfies ∆ log u ≥ 0 on Mu and

lim sup
r→∞

r2

V1(r)
= ∞,

where Mu = {x ∈ M|du(x) 6= 0}, then u is a constant. In particular, if u ∈ L1(M) and ∆ log u ≥ 0 on Mu,
then u is a constant.

Theorem 2. Let (M, F, dµ) be an n-dimensional complete noncompact Finsler manifold. Assume that∫ ∞

1

r
Vp(r)

dr = ∞.
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1. If p ∈ (−∞, 1) and u ∈ W2,2
loc (M) ∩ C1,α(M) ∩ C∞(Mu) is a nonnegative superharmonic function on

M, then u is a constant.
2. If p ∈ (1, ∞) and u ∈ W2,2

loc (M) ∩ C1,α(M) ∩ C∞(Mu) is a nonnegative subharmonic function on M,
then u is a constant.

Here, Vp(r), p ∈ R is defined in (2) below, and some important concepts such as Finsler metric,
Finsler Laplacian and harmonic (resp. subharmonic, superharmonic) functions will be given in
Section 2, respectively.

Remark 1. If the Finsler manifold is compact, then, by the divergence theorem, we can prove all harmonic
(resp. subharmonic, superharmonic) functions are constant. Theorem 1 can be regarded as a generalization of
Theorem 1 in [2] when p = 1. If (M, F, dµ) is a Riemannian metric measure space, then Theorem 2 is exactly
Theorem 1 in [5] or Theorem 13.1 in [10].

Remark 2. In comparison with [7], the condition on the reversibility is deleted in theorems above. There are
many Finsler manifolds with infinity reversibility. Consider the Randers metric in B3(1)

F(x, y) =
√
(y1)2 + (y2)2 + (y3)2 + |x|y1, |x| < 1,

where | · | denotes the standard Euclid norm. Then the reversibility

λF(x) =
1 + |x|
1− |x| → +∞, if x → ∂B3(1).

The geometric quantities between F and its reverse metric
←−
F have many important relationships.

For example,

1. F(−d f ) =
←−
F (d f ),

←−∇ f = −∇(− f ),
←−
∆ f = −∆(− f ).

2. A forward (backward) distance function w.r.t. F is a backward (forward) distance function w.r.t.
←−
F ,

and vice versa.
3. A forward (backward) geodesic ball w.r.t. F is a backward (forward) geodesic ball w.r.t.

←−
F , and vice versa.

4. If f is a superharmonic (subharmonic) function w.r.t. ∆, then − f is a subharmonic (superharmonic)
function w.r.t.

←−
∆ , and vice versa.

To give a more elaborate improvement, we use these relations and thus avoid employing the reversibility.
The remainder of the approaches adopted are similar to Zhang-Xia’s paper [7]. See also in [2,5,10] for the
Riemannian case.

The contents of the paper are arranged as follows. In Section 2, some fundamental concepts which
are necessary for the present paper are given, and some lemmas are contained. In Section 3, we prove
the main theorems and give some corollaries.

2. Preliminaries

Let M be an n−dimensional smooth manifold and π : TM→ M be the natural projection from
the tangent bundle TM. Let (x, y) be a point of TM with x ∈ M, y ∈ Tx M, and let (xi, yi) be the local
coordinates on TM with y = yi∂/∂xi. A Finsler metric on M is a function F : TM→ [0,+∞) satisfying
the following properties:

(i) Regularity: F(x, y) is smooth in TM \ 0;
(ii) Positive homogeneity: F(x, λy) = λF(x, y) for λ > 0;
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(iii) Strong convexity: The fundamental quadratic form

g := gij(x, y)dxi ⊗ dxj, gij :=
1
2
[F2]yiyj

is positive definite.
Let X = Xi ∂

∂xi be a vector field. Then, the covariant derivative of X by v ∈ Tx M with reference
vector w ∈ Tx M\0 is defined by

Dw
v X(x) :=

{
vj ∂Xi

∂xj (x) + Γi
jk(w)vjXk(x)

}
∂

∂xi ,

where Γi
jk denote the coefficients of the Chern connection.

For a smooth function u, the gradient vector of u is

∇u := `−1(du),

where ` : TM→ T∗M is Legendre transformation defined as

`(y) :=

{
gy(y, ·), y ∈ TM\0,
0, y = 0.

Let V = Vi ∂
∂xi be a smooth vector field on M. The divergence of V with respect to an arbitrary

smooth volume form dµ is defined by

divV :=
n

∑
i=1

(
∂Vi

∂xi + Vi ∂Φ
∂xi

)
,

where dµ = eΦdx. Then, the Finsler Laplacian of u can be defined by

∆u := div(∇u).

Since ∆u is undefined at x where du(x) = 0, the definition can be viewed in distributional sense.
That is, for u ∈W1,2(M), ∫

M
ϕ∆udµ = −

∫
M

dϕ(∇u)dµ, ∀ϕ ∈ C∞
0 (M). (1)

We note here that since the gradient operator ∇ is not linear operator in general, the Finsler
Laplacian is quite a bit different from the Riemannian Laplacian. Given a vector field V such that
V 6= 0 on Mu, where Mu := {x ∈ M|du(x) 6= 0}, the weighted gradient vector and the weighted Laplacian
on the weighted Riemannian manifold (M, gV) are defined by

∇Vu :=

{
gij(V) ∂u

∂xj
∂

∂xi , on Mu,
0, on M\Mu,

∆Vu = div(∇Vu).

It follows that ∇∇uu = ∇u, ∆∇uu = ∆u.
Let u be a positive harmonic function on M, ∆u = 0. It was proved that u ∈ W2,2

loc (M) ∩
C1,α(M) ∩ C∞(Mu) (see [11]). We say that u ∈ W2,2

loc (M) ∩ C1,α(M) ∩ C∞(Mu) is a subharmonic
(resp. superharmonic) function on M if ∆u ≥ 0 (resp. ∆u ≤ 0). In a weak sense, u is a subharmonic
(resp. superharmonic) function in M if, for any positive function ϕ ∈ C∞

0 (M), it holds∫
M

ϕ∆udµ ≥ (resp. ≤)0.
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Let (M, F) be a Finsler n-manifold. Fix a point x0 ∈ M. We denote a forward (resp. backward)
geodesic ball of radius r with center at x0 by B+

x0
(r)(resp.B−x0

(r)).

Lemma 1. Let (M, F) be a Finsler n-manifold and x0 ∈ M. Then, there exists a function defined by

ϕ(x) =


1, x ∈ B+

x0
(R);

0, x ∈ M\B+
x0
(2R)

such that
F∗(−dϕ) ≤ C

R
,

where C is a positive constant.

Proof. Let ω(t) be a smooth function on the real line with 0 ≤ ω(t) ≤ 1 and ω′(t) ≤ 0 such that

ω(t) =

{
1, 0 ≤ t ≤ 1,
0, t ≥ 2.

Clearly, |ω′(t)| ≤ C, where C is some positive constant. Define

ϕ(x) = ω

(
r(x)

R

)
,

where r(x) = dF(x0, x) is the distance function form x0. Then,

F∗(−dϕ) = F∗
(
−ω′

R
dr
)
=
|ω′|

R
F∗(dr)

=
|ω′|

R
≤ C

R
a.e. on M.

Notice that ϕ ∈ C∞
0 (B+

x0
(2R)\({x0} ∪ cut(x0))) and it is differentiable almost everywhere on

B+
x0
(2R) with bounded differential. Since a subharmonic (resp. superharmonic) function u belongs to

W2,2
loc (M)∩C1,α(M)∩C∞(Mu), and ∆u = 0 a.e. on M\Mu (Lemma 3.5 in [12]), we find the Formula (1)

still holds for this ϕ.

3. Proof of the Main Theorems

For any nonnegative function u, set

Vp(r) =


∫

B+
x0 (r)

updµ, p ≥ 1;

∫
B−x0 (r)

updµ, p < 1.
(2)

Note that Vp(r) = voldµ(B−x0
(r)) := V(r) if p = 0.

Proof of Theorem 1. Set v =
√

u. Then, in Mu = Mv, one obtains

0 ≤ 1
2

∆ log u = ∆ log v = div
(
∇v
v

)
=

∆v
v
− F(∇v)2

v2 ,

which gives
v∆v ≥ F(∇v)2 ≥ 0.
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Let ϕ be the function defined in Lemma 1. Then, it is differentiable almost everywhere on
(B+

x0
(2R)) with a bounded differential. Note that ∆v = 0 a.e. on M\Mv from Lemma 3.5 in [12]. Thus,

by the divergence theorem, we have∫
B+

x0 (2R)∩Mv
ϕ2v∆vdµ =

∫
B+

x0 (2R)
ϕ2v∆vdµ = −

∫
B+

x0 (2R)
d(ϕ2v)(∇v)dµ

=−
∫

B+
x0 (2R)

ϕ2F(∇v)2dµ− 2
∫

B+
x0 (2R)

ϕvdϕ(∇v)dµ

≤−
∫

B+
x0 (2R)

ϕ2F(∇v)2dµ + 2
∫

B+
x0 (2R)

ϕvF∗(−dϕ)F(∇v)dµ.

Therefore,∫
B+

x0 (2R)
ϕ2F(∇v)2dµ ≤ 2

∫
B+

x0 (2R)
ϕvF∗(−dϕ)F(∇v)dµ

≤ 2

(∫
B+

x0 (2R)
ϕ2F(∇v)2dµ

) 1
2
(∫

B+
x0 (2R)

v2F∗(−dϕ)2dµ

) 1
2

,

which implies that ∫
B+

x0 (2R)
ϕ2F(∇v)2dµ ≤ 4

∫
B+

x0 (2R)
v2F∗(−dϕ)2dµ.

By using Lemma 1 and the definition of ϕ, we deduce

∫
B+

x0 (R)
ϕ2F(∇v)2dµ ≤ 4C2

R2

∫
B+

x0 (2R)
v2dµ =

16C2

(2R)2

∫
B+

x0 (2R)
udµ = 16C2 V1(2R)

(2R)2 .

Letting R → ∞, it follows from lim supr→∞
r2

V1(r)
= ∞ that F(∇v) = 0 everywhere. Since M is

connected, v is a constant on M and so is u.

Proof of Theorem 2. Without loss of generality, we might as well assume u > 0. Otherwise, we can
replace it by ũ = u + ε > 0 for some positive number ε. We first prove (2) in Theorem 2. Let x0 be
a fixed point in M and r0 be a number with 0 < r0 < R. Define

ψ(x) =


1, x ∈ B̄+

x0
(r0);

0, x ∈ M\B+
x0
(R),

with ψ(x) ∈ C∞
0 (B+

x0
(R)\({x0} ∪ cut(x0))) satisfying

F∗(−dψ) ≤ C
R
≤ C

r0
:= Ĉ. (3)



Mathematics 2019, 7, 351 6 of 9

Using the divergence theorem and similar arguments above, we have

(p− 1)
∫

B+
x0 (R)∩Mu

up−1ψ2∆udµ

=(p− 1)
∫

B+
x0 (R)

up−1ψ2∆udµ
(4)

=− (p− 1)
∫

B+
x0 (R)

d(up−1ψ2)(∇u)dµ

=− (p− 1)2
∫

B+
x0 (R)

up−2ψ2F(∇u)2dµ− 2(p− 1)
∫

B+
x0 (R)

up−1ψdψ(∇u)dµ.

Set v = u
p
2 . Then, (4) becomes

(p− 1)
∫

B+
x0 (R)

up−1ψ2∆udµ

=− 4(1− 1
p
)2
∫

B+
x0 (R)

ψ2F(∇v)2dµ− 4(1− 1
p
)
∫

B+
x0 (R)

vψdψ(∇v)dµ.

From the conditions in Theorem 2 and (3), it follows that

(1− 1
p
)2
∫

B+
x0 (R)

ψ2F(∇v)2dµ

≤− (1− 1
p
)
∫

B+
x0 (R)\B̄+

x0 (r0)
vψdψ(∇v)dµ

≤
(∫

B+
x0 (R)\B̄+

x0 (r0)
v2F∗(−dψ)2dµ

) 1
2
(
(1− 1

p
)2
∫

B+
x0 (R)\B̄+

x0 (r0)
ψ2F(∇v)2dµ

) 1
2

(5)

≤Ĉ

(∫
B+

x0 (R)\B̄+
x0 (r0)

updµ

) 1
2
(
(1− 1

p
)2
∫

B+
x0 (R)\B̄+

x0 (r0)
ψ2F(∇v)2dµ

) 1
2

=Ĉ(Vp(R)−Vp(r0))
1
2

(
(1− 1

p
)2
∫

B+
x0 (R)\B̄+

x0 (r0)
ψ2F(∇v)2dµ

) 1
2

.

Let

G(r) = (1− 1
p
)2
∫

B+
x0 (r)

F(∇v)2dµ.

Then, by similar arguments as in [7], we can also reach

1
G(r0)

− 1
G(R)

≥ 1
Ĉ2

(R− r0)
2

Vp(R)−Vp(r0)
.

For fixed r0, taking Rk = 2kr0, k ∈ N+, we have

1
G(r0)

≥ 1
G(Rn)

+
1

Ĉ2

n

∑
k=1

(Rk − Rk−1)
2

Vp(Rk)−Vp(Rk−1)
≥ 1

4Ĉ2

n

∑
k=1

(Rk)
2

Vp(Rk)

=
1

8Ĉ2

n

∑
k=1

2R2
k

Vp(Rk)
=

1
8Ĉ2

n

∑
k=1

2k+1r0

Vp(2kr0)
× 2kr0

≥ 1
8Ĉ2

n

∑
k=1

∫ 2k+1r0

2kr0

r
Vp(r)

dr.
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Letting n→ ∞, we have
1

G(r0)
≥ 1

8Ĉ2

∫ ∞

2r0

r
Vp(r)

dr = ∞,

which means that ∫
B+

x0 (r0)
F(∇v)2dµ = 0.

Therefore, by arbitrariness of r0, we conclude that v must be constant on M and so is u.
Now, we are to prove (1) according to the cases 0 < p < 1, p < 0 and p = 0, respectively.

Case I: 0 < p < 1.
Let x0 and r0 be as above. Define

ψ(x) =


1, x ∈ B̄−x0

(r0);

0, x ∈ M\B−x0
(R),

with ψ(x) ∈ C∞
0 (B−x0

(R)\({x0} ∪ cut(x0))) satisfying

F∗(dψ) ≤ C
R
≤ C

r0
:= Ĉ.

By similar arguments, we also obtain (5) for the backward geodesic ball. The remainder of the
proof is the same as above.

Case II: p < 0.
Set v = −u

p
2 . Then,

F(∇v) = − p
2

u
p
2−1F(∇u).

Let ψ be a function as in Case I. We can also obtain

0 ≤(p− 1)
∫

B−x0 (R)
up−1ψ2∆udµ

=− (p− 1)2
∫

B−x0 (R)
up−2ψ2F(∇u)2dµ− 2(p− 1)

∫
B−x0 (R)

up−1ψdψ(∇u)dµ.

=− 4(1− 1
p
)2
∫

B−x0 (R)
ψ2F(∇v)2dµ− 4(1− 1

p
)
∫

B−x0 (R)
vψdψ(∇v)dµ.

Therefore, we have

(1− 1
p
)2
∫

B−x0 (R)
ψ2F(∇v)2dµ

≤− (1− 1
p
)
∫

B−x0 (R)\B̄−x0 (r0)
vψdψ(∇v)dµ

≤
(∫

B−x0 (R)\B̄−x0 (r0)
v2F∗(dψ)2dµ

) 1
2
(
(1− 1

p
)2
∫

B−x0 (R)\B̄−x0 (r0)
ψ2F(∇v)2dµ

) 1
2

=Ĉ(Vp(R)−Vp(r0))
1
2

(
(1− 1

p
)2
∫

B−x0 (R)\B̄−x0 (r0)
ψ2F(∇v)2dµ

) 1
2

.

Then, by the same argument as above, one obtains that u is constant.
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Case III: p = 0.
For every k ∈ R+, set

uk =

{
k, u ≥ k;
u, u < k.

In what follows, we will follow the arguments in [10] (p. 178) with some modifications. Let β

be a symmetric, convex, and bounded smooth function with |β′| < 1 and |s| < β < ε + |s|, where
0 < ε < 1 is such that u− ε > 0. Define

ũk =
u + k

2
− β(u− k)

2
.

Then, for any positive integer k, it holds that ũk >
u+k

2 −
ε+|u−k|

2 > 0. Moreover, ũk is a superharmonic
function in a weak sense. Indeed, by definition, we have dũk = 1

2 (1− β′)du, which yields ∇ũk =
1
2 (1− β′)∇u by Legendre transformation. As ũk ∈ H2

loc and thus ∆ũk = 0 a.e. on M\Mu, for ψ defined
in Case I, we have

2
∫

B−x0 (R)
ψ∆ũkdµ = −2

∫
B−x0 (R)

dψ(∇ũk)dµ = −
∫

B−x0 (R)
(1− β′)dψ(∇u)dµ

= −
∫

B−x0 (R)
d[(1− β′)ψ](∇u)dµ−

∫
B−x0 (R)

β′′ψF(∇u)2dµ

≤ −
∫

B−x0 (R)
d[(1− β′)ψ](∇u)dµ =

∫
B−x0 (R)

(1− β′)ψ∆udµ

≤ 0.

The last step holds because (1− β′)ψ is differentiable almost everywhere on B−x0
(R) with bounded

differential, and u is superharmonic. Moreover, ũk is smooth on the open subset Mu and is also
superharmonic, in the classical sense, on Mu. Notice that ψ is differentiable almost everywhere on
B−x0

(R) with bounded differential. Hence, by similar arguments, we can also obtain (4) for ũk on B−x0
(R)

as in case I. Set vk = ũ
q
2
k for any q ∈ (0, 1). Then we have (5) as follows:

(1− 1
q
)2
∫

B−x0 (R)
ψ2F(∇vk)

2dµ

≤Ĉ

(∫
B−x0 (R)\B̄−x0 (r0)

v2
k

) 1
2
(
(1− 1

q
)2
∫

B−x0 (R)\B̄−x0 (r0)
ψ2F(∇vk)

2dµ

) 1
2

=Ĉ(Vq(R)−Vq(r0))
1
2

(
(1− 1

q
)2
∫

B−x0 (R)\B̄−x0 (r0)
ψ2F(∇vk)

2dµ

) 1
2

.

On the other hand, note that ũk ≤ k, and thus∫
B−x0 (R)

ũq
kdµ ≤

∫
B−x0 (R)

kqdµ = kqV(R),

which implies that ∫ ∞

1

r
Vq(r)

dr = ∞.

Then by the same discussion in the proof of (2) and Case I of (1), we show that this ũk is constant. Take
then a sequence βn (such that each βn satisfies the same properties as β) uniformly converging to the
absolute value function. Every ũk,n is then constant. These constants are bounded (they are in (0, k)).
Thus, up to pass to a subsequence ũk,n converges uniformly to uk and to a constant at the same time.
Hence, uk must be constant. k being arbitrary, u is also constant.
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Using Theorem 2, we can reach the following corollaries which extend Theorem 3 in [2] and
Corollary 1 in [13], respectively.

Corollary 1. Let (M, F, dµ) and u be as in Theorem 2.

1. If p ∈ (−∞, 1), then every nonnegative superharmonic function u ∈ Lp(M) is a constant. In particular,
if voldµ(M) < ∞, then every nonnegative superharmonic function on M is a constant.

2. If p ∈ (1, ∞), then every nonnegative subharmonic function u ∈ Lp(M) is a constant.

Corollary 2. Let (M, F, dµ) and u be as in Theorem 2 and u be a nonnegative superharmonic function. If, for
a sequence rk → +∞,

V(rk) ≤ Cr2
k ,

then u is a constant, where C is a positive constant.
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