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Abstract: We give some Liouville type theorems of LP harmonic (resp. subharmonic, superharmonic)
functions on a complete noncompact Finsler manifold. Using the geometric relationship between
a Finsler metric and its reverse metric, we remove some restrictions on the reversibility. These
improve the recent literature (Zhang and Xia, 2014).
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1. Introduction

As is well known, Liouville theorems play an important role in analyzing the underlying
manifolds. The classical Liouville theorem states that any nonnegative (or bounded) harmonic
function on R"” must be constant. Up to now, there are many generalizations studied on complete
Riemannian manifolds. Yau [1,2] proved that any positive (or bounded) harmonic function on
a complete Riemannian manifold with nonnegative Ricci curvature must be constant and there are
no nonnegative L? subharmonic functions on such a Riemannian manifold for p € (1,c0). Yau’s
results were then generalized by Sturm and Schoen, etc. See [3-5] and references therein. For general
symmetric diffusion operators, Li [6] extended various Liouville theorems as above.

Recently, Zhang-Xia [7], Yin-He [8] and Yin-Zhang [9] extended the above Liouville theorems in
the Finsler setting. Notice that, in [7,8], the Finsler manifolds discussed must have finite reversibility. In
this paper, we show that this restriction can be removed. Specifically, we obtain the following results.

Theorem 1. Let (M, F,du) be an n-dimensional forward complete noncompact Finsler manifold. If a positive
function u € W>*(M) N CY(M) N C®(M,) on M satisfies Alogu > 0 on M, and

loc
2

"
Iimsup —— =
r%oop Vl(?’)

where My, = {x € M|du(x) # 0}, then u is a constant. In particular, if u € L*(M) and Alogu > 0 on M,,
then u is a constant.

Theorem 2. Let (M, F,du) be an n-dimensional complete noncompact Finsler manifold. Assume that

® 7
/1 Vp(r)dr_oo.
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1. Ifpe(—oo,l)andu € leof(M) N CY (M) N C®(M,,) is a nonnegative superharmonic function on
M, then u is a constant.

2. Ifpe (l,00)andu € WIZOS(M) N CY (M) N C®(M,,) is a nonnegative subharmonic function on M,
then u is a constant.

Here, V) (r), p € Ris defined in (2) below, and some important concepts such as Finsler metric,
Finsler Laplacian and harmonic (resp. subharmonic, superharmonic) functions will be given in
Section 2, respectively.

Remark 1. If the Finsler manifold is compact, then, by the divergence theorem, we can prove all harmonic
(resp. subharmonic, superharmonic) functions are constant. Theorem 1 can be regarded as a generalization of
Theorem 1 in [2] when p = 1. If (M, F,dy) is a Riemannian metric measure space, then Theorem 2 is exactly
Theorem 1 in [5] or Theorem 13.1 in [10].

Remark 2. In comparison with [7], the condition on the reversibility is deleted in theorems above. There are
many Finsler manifolds with infinity reversibility. Consider the Randers metric in B3(1)

F(xy) = /()2 + ()2 + (P2 + aly!, [x] <1,
where | - | denotes the standard Euclid norm. Then the reversibility

1+ |x|

; 3
- — 400, if x — dB’(1).

Ap(x) =

The geometric quantities between F and its reverse metric F have many important relationships.
For example,

F(~df) = F(df), T f=-V(~f), B f = ~D(~f). -
2. A forward (backward) distance function w.r.t. F is a backward (forward) distance function w.rt. F,
and vice versa.
3. A forward (backward) geodesic ball w.r.t. F is a backward (forward) geodesic ball w.r.t. ?, and vice versa.
4. If f is a superharmonic (subharmonic) function w.r.t. A, then — f is a subharmonic (superharmonic)
function w.r.t. A, and vice versa.

To give a more elaborate improvement, we use these relations and thus avoid employing the reversibility.
The remainder of the approaches adopted are similar to Zhang-Xia’s paper [7]. See also in [2,5,10] for the
Riemannian case.

The contents of the paper are arranged as follows. In Section 2, some fundamental concepts which
are necessary for the present paper are given, and some lemmas are contained. In Section 3, we prove
the main theorems and give some corollaries.

2. Preliminaries

Let M be an n—dimensional smooth manifold and 7t : TM — M be the natural projection from
the tangent bundle TM. Let (x,y) be a point of TM with x € M, y € T, M, and let (x, ') be the local
coordinates on TM with y = y'0/0x'. A Finsler metric on M is a function F : TM — [0, +c0) satisfying
the following properties:

(i) Regularity: F(x,y) is smooth in TM \ 0;
(i) Positive homogeneity: F(x,Ay) = AF(x,y) for A > 0;
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(iii) Strong convexity: The fundamental quadratic form

. . 1
g:=gij(xy)dx' @dy,  gji=[F,

is positive definite.

Let X = Xi£ be a vector field. Then, the covariant derivative of X by v € Ty M with reference

i

vector w € TyM\0 is defined by

50X
oxJ

9

Jxt

DYX(x) := { (x) + F;-k(w)vak(x)}

where F;-k denote the coefficients of the Chern connection.
For a smooth function u, the gradient vector of u is

Vu := 0" (du),

where ¢ : TM — T*M is Legendre transformation defined as

_ ) &), yeTM\O,
£(y) { 0 y=0.

LetV = Vi% be a smooth vector field on M. The divergence of V with respect to an arbitrary
smooth volume form dy is defined by

n
diVV:—Z(axi +V@

oV’ iaq>>
i=1 '

where du = e®dx. Then, the Finsler Laplacian of u can be defined by
Au = div(Vu).

Since Au is undefined at x where du(x) = 0, the definition can be viewed in distributional sense.
That is, for u € W12 (M),

/M pAudy = — /M do(Vu)du, Vo € CE(M). (1)

We note here that since the gradient operator V is not linear operator in general, the Finsler
Laplacian is quite a bit different from the Riemannian Laplacian. Given a vector field V such that
V # 0 on My, where M,, := {x € M|du(x) # 0}, the weighted gradient vector and the weighted Laplacian
on the weighted Riemannian manifold (M, gy) are defined by

j(yyouw 9 M,,
VViu .= { ‘g (V)5 ow O(I:n Z\Z\M AVu = div(VVu).
’ ur

It follows that VV¥u = Vu, AV'u = Au.

Let u be a positive harmonic function on M, Au = 0. It was proved that u € leof(M) N

Cl*(M) N C®(M,) (see [11]). We say that u € WZZUCZ(M) N CY (M) N C®(M,) is a subharmonic
(resp. superharmonic) function on M if Au > 0 (resp. Au < 0). In a weak sense, u is a subharmonic

(resp. superharmonic) function in M if, for any positive function ¢ € C3°(M), it holds

/M @Audy > (resp. <)0.
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Let (M, F) be a Finsler n-manifold. Fix a point xy € M. We denote a forward (resp. backward)
geodesic ball of radius r with center at xo by By (r)(resp.By, (7)).

Lemma 1. Let (M, F) be a Finsler n-manifold and xy € M. Then, there exists a function defined by
1, x € B (R)
(x) =
0, x € M\B(2R)

such that c
F(—dop) < =
( (P) — R’

where C is a positive constant.

Proof. Let w(t) be a smooth function on the real line with 0 < w(#) < 1 and «'(t) < 0 such that

1, 0<t<1,
w<t)_{ 0, t>2

Clearly, |w'(t)| < C, where C is some positive constant. Define

o) = ("R,

where r(x) = dp(xp, x) is the distance function form x(. Then,

. - W' W] L,
|w'| _ C
R SR ae.on M

O

Notice that ¢ € C§°(By (2R)\({x0} U cut(xg))) and it is differentiable almost everywhere on
By, (2R) with bounded differential. Since a subharmonic (resp. superharmonic) function u belongs to

WZ2(M) N CY¥(M) N C®(M,), and Au = 0 a.e. on M\M,, (Lemma 3.5 in [12]), we find the Formula (1)
still holds for this ¢.

3. Proof of the Main Theorems

For any nonnegative function u, set

Jopwdn p21;
Vp(r) = 2
fB;O(r) ubdy, p<1.
Note that V,,(r) = vol® (B (r)) := V(r) if p = 0.

X0

Proof of Theorem 1. Set v = \/u. Then, in M,;, = M,, one obtains
Vo Av F(Vv)?

1
< —_ = = 1 —_— = —_—
0< 2A10gu Alogv le( - > 5 2

7

which gives
vAv > F(Vv)? > 0.
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Let ¢ be the function defined in Lemma 1. Then, it is differentiable almost everywhere on
(BY,(2R)) with a bounded differential. Note that Av = 0 a.e. on M\ M, from Lemma 3.5 in [12]. Thus,
by the divergence theorem, we have

ZAd:/ zAd:—/ (%) (Vo)d
¢ vAvdy B%qu)vvu (¢70)(Vo)dp

/B;O (2R)NM, B} (2R)

S 2F(Vo)2d —2/ dp(Vo)d
B%(ZR)GD (Vo)*du B%@R)q)v p(Vo)du

<_ 2r(Vo)2d 2/ F*(—de)E(Vo)du.
< B%(ZR)QD (Vo)*dp + B;O(zmqw (—de)F(Vo)du

Therefore,

*F(Vo)2du <2 F*(—dg)F(Vv)d
Ji g PRS2 [ goF (~dg)F(Ve)y

3 3
<2 / 2r(Vo)2d / 2P (_do)du |
< <B;0(2R)qv (Vo) u) <B;0(2R)U (—de)~du

which implies that

2F(Vo)2d <4/ 2P (—dg)2dy.
./B;O(zR)(P ( v) = .B;O(zR)v ( q)) #

By using Lemma 1 and the definition of ¢, we deduce

4C? 16C2 V1(2R)
2F(Vo)2d <—/ 24 :7/ d — 16C2 L=
Jrg TP = T [ P G g 2R

Letting R — oo, it follows from limsup,_, V;?r) = oo that F(Vv) = 0 everywhere. Since M is

connected, v is a constant on M and sois u. [

Proof of Theorem 2. Without loss of generality, we might as well assume u > 0. Otherwise, we can
replace it by #i = u + ¢ > 0 for some positive number e. We first prove (2) in Theorem 2. Let x( be
a fixed point in M and r¢ be a number with 0 < ry < R. Define

1, x e B (rn);
P(x) =
0, x e M\B§(R),

with ¢(x) € C§°(By, (R)\({x0} U cut(xo))) satisfying

:=C. ®)
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Using the divergence theorem and similar arguments above, we have
-1 / uP~Lp?Aud
(r-1) b, A

=(p—1 P=ly?Aud
(1) [, 7 Bl

4)
— _ _ p—12 d
(1) [, 209 (Tl
=—(p—1)>? P22 F(Vu)?du —2(p — 1 P=Lypdy(Vu)du.
(=17 [, 17 VPRV =200 1) [ (Vg
Setv = u”. Then, (4) becomes
—1 =1y’ Aud
(p )/B;O(R)u P Audy
1 2 2 2 1
=—4(1— - F(Vo)2du —4(1 — = dyp(Vo)du.
(1= Joy g PFTOPdn =4 =) [ opdy (Vo
From the conditions in Theorem 2 and (3), it follows that
1
1--)? *F(Vo)*d
(=27 [, oy WF(T0Pd
1
<-—(1--= vpdy(Vo)d
<—( p>/B%(R)\W> Yap(Vo)dy
1
2 1 2
< V2 F* (—dy)%d 1—-)2 2F(Vov)%d 5
‘</BX+O<R>\B;)<m> e ) <( 7 o T ®

1
2

3
. 1
<C Pd 1——)?2 2F(Vo)3d
- </l%x+o<R>\B+<ro)u y) <( P) /%(R)\Bro(rwlp (Voydn

*0

1 1 ?
~C(Vp(R) — Vplro))’ ((1 S A ¢2F<w>2dﬂ> .
Let
1
Gy == [ E(Vo)de

Then, by similar arguments as in [7], we can also reach

1 1 1 & Ry — Ryp_1)? 1 & (Ry)?
> +TZV(k kl) > Z(k)

k
1 2R? 1 & 2y

vV
)
Mx
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Letting n — co, we have

1 1 (> r
Z —=
G(ro) = 8C2 Jary V(r)

dr = oo,

which means that
/B;To(ro) F(Vv)2du = 0.
Therefore, by arbitrariness of rg, we conclude that v must be constant on M and so is u.
Now, we are to prove (1) according to the cases 0 < p < 1, p < 0 and p = 0, respectively.
Case: 0 < p <1

Let xg and ry be as above. Define

1, x & By (n);

p(x) =
0, x € M\Bj(R),

with ¢(x) € C5°(By, (R)\({x0} Ucut(xo))) satisfying

By similar arguments, we also obtain (5) for the backward geodesic ball. The remainder of the
proof is the same as above.

CaseIl: p < 0.
Setv = —uk. Then,
F(Vv) = —gugle(Vu).

Let ¢ be a function as in Case I. We can also obtain

0<(p—1 P~y Aud
S(p=1) [ ey

_ 2 —2.,2 2 ' -1
=P [ RV =20 1) [ py(Tujd
_ _ 1 2 2 2 o o 1

=40 /BXO(R)I/J F(Vo)2du — 4(1 p)/xo o HA(TO)p

Therefore, we have

1 2 2
(=P [ VE(T0

1
<—(1-= opdp(Vo)d
( P)/on(R)\Exo(ro) pay(Voydn

1
1 2

< VAE* (dy)3d 1— )2 2F(Vo)3d

_</B;0(R>\B;O(ro> (@) V) <( P) /B;O(R)\B;o<ro>¢ (Vo) V)

_F _ 3 1o 2 2 ?
=C(Vy(R) = Vy(r0)) ((1 2 i e FECTO) dy)

1
2

Then, by the same argument as above, one obtains that u is constant.
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CaseIlL: p = 0.
For every k € R, set

o k, u>k
k= u, u<k.

In what follows, we will follow the arguments in [10] (p. 178) with some modifications. Let g
be a symmetric, convex, and bounded smooth function with |f'| < 1 and |s| < B < € + [s|, where
0 < e < lissuch thatu —e > 0. Define

_ u+k Bu—k)
Uy = 5 — 5 .

Then, for any positive integer k, it holds that i, > # - %ﬁk‘ > 0. Moreover, il is a superharmonic

function in a weak sense. Indeed, by definition, we have dily = %(1 — B')du, which yields Vi, =
3(1— B')Vu by Legendre transformation. As iy € H2_and thus Aty = 0 a.e. on M\ M,, for ¢ defined

in Case I, we have

2 Atird
/BXO(R)#) ligdp

2 gy W= = [ (1= Bdy(Tu)

= o N BT = [ BYE(T el

= /on(R) A= F)NVe)dn = /BXO< (1= B)phudy

<0.

The last step holds because (1 — g')y is differentiable almost everywhere on By (R) with bounded
differential, and u is superharmonic. Moreover, il is smooth on the open subset M,, and is also
superharmonic, in the classical sense, on M,. Notice that ¢ is differentiable almost everywhere on

By, (R) with bounded differential. Hence, by similar arguments, we can also obtain (4) for iy on By (R)
9
as in case L. Set vy = i} for any g € (0,1). Then we have (5) as follows:

1
1—2)2 °F(Vog)?d
(=2 [, g VR0

1

1
R 2 1 . 2
<C / v? 1—72/ 2F (Vo )%d
(Bm(R)\BxO(ro) ") <( 7 o g L )

_A _ 1 1o 2 2.\’
=C(V4(R) = Vy(r0)) ((1 q) /%(R)\on(m)w F(Voy) dV) :

On the other hand, note that @, < k, and thus

ild g/ Kidy = KTV (R),
/B,(O(R) KaH B (R) # (R)

which implies that

® r
——dr = .
/1 Vy(r)
Then by the same discussion in the proof of (2) and Case I of (1), we show that this iy is constant. Take
then a sequence B, (such that each B, satisfies the same properties as ) uniformly converging to the
absolute value function. Every 7y , is then constant. These constants are bounded (they are in (0, k)).

Thus, up to pass to a subsequence 7y , converges uniformly to u; and to a constant at the same time.
Hence, u; must be constant. k being arbitrary, u is also constant. [J
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Using Theorem 2, we can reach the following corollaries which extend Theorem 3 in [2] and
Corollary 1 in [13], respectively.

Corollary 1. Let (M, F,du) and u be as in Theorem 2.

1. Ifp € (—o0,1), then every nonnegative superharmonic function u € LF (M) is a constant. In particular,
if vol# (M) < oo, then every nonnegative superharmonic function on M is a constant.
2. Ifp € (1,00), then every nonnegative subharmonic function u € LP (M) is a constant.

Corollary 2. Let (M, F,du) and u be as in Theorem 2 and u be a nonnegative superharmonic function. If, for
a sequence 1y — +00,
V(ry) < Cr3,

then u is a constant, where C is a positive constant.
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