Article

Weak Partial b-Metric Spaces and Nadler's Theorem

1 Govt. Degree College for Women Malakwal, Malakwal, Mandi Bahuaddin 50400, Pakistan; tanzeelakanwal16@gmail.com
2 Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan; hafiziqbal30@yahoo.com
3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE) and KMUTTFixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
4 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
5 Department of Mathematics, Usak University, Usak 64000, Turkey; ekremsavas@yahoo.com
* Correspondence: poom.kum@kmutt.ac.th

Received: 4 March 2019; Accepted: 1 April 2019; Published: 5 April 2019

Abstract

The purpose of this paper is to define the notions of weak partial b-metric spaces and weak partial Hausdorff b-metric spaces along with the topology of weak partial b-metric space. Moreover, we present a generalization of Nadler's theorem by using weak partial Hausdorff b-metric spaces in the context of a weak partial b-metric space. We present a non-trivial example which show the validity of our result and an application to nonlinear Volterra integral inclusion for the applicability purpose.

Keywords: multivalued mappings; Hausdorff metric space; Nadler's theorem

MSC: 55M20; 47H10

1. Introduction

The famous Banach contraction principle has been generalized in many directions, whether by generalizing the contractive condition or by extending the domain of the function. Bakhtin [1] and Czerwik [2] introduced b-metric spaces generalizing the ordinary metric space and considering the problem of convergence of measurable functions with respect to measure; Czerwik [2] proved the variant of Banach contraction in b-metric spaces. Later on, many authors proved fixed point results for both single and multivalued mapping in the context of b-metric spaces (see also [2-13]).

Matthews [14] established the notion of a partial metric space and proved an analogue of Banach's principle in such spaces. The concept of partial Hausdorff metric was given by Aydi et al. [6] and they established a fixed point theorem for multivalued mappings in partial metric spaces. Excluding the idea of small self-distance, Heckmann [15] generalized the partial metric space to weak partial metric spaces (see more [16-22]).

Shukla [23] introduced the concept of the partial b-metric and proved some fixed point results. Beg [7] presented the idea of the almost partial Hausdorff metric and extended Nadler's theorem (Nadler [19]) to weak partial metric spaces.

The aim of this paper is to introduce the notion of the weak partial b-metric space, the \mathcal{H}^{+}-type partial Hausdorff b-metric and prove Nadler's theorem to weak partial b-metric spaces. An example and application to Volterra type integral inclusion to support our result will be given.

2. Preliminaries

Consistent with Beg [7], notion of weak partial metric and related concepts are as follows:
Definition 1. [7] Let M be a nonempty set. A function $\varrho: M \times M \rightarrow \mathbb{R}^{+}$is called weak partial metric if for all $s, t, z \in M$, following assertions hold:
(WP1) $\varrho(s, s)=\varrho(s, t)$ iff $s=t$;
(WP2) $\varrho(s, s) \leq \varrho(s, t)$;
(WP3) $\varrho(s, t)=\varrho(t, s)$;
(WP4) $\varrho(s, t) \leq \varrho(s, z)+\varrho(z, t)$.
The pair (M, ϱ) is called weak partial metric space.
We refer [7] to readers for detail work in weak partial metric space.
Let $C B^{\varrho}(M)$ be the family of nonempty, closed and bounded subsets of a weak partial metric space (M, ϱ). Define

$$
\varrho(x, U)=\inf \{\varrho(x, u), u \in U\}, \delta_{\varrho}(U, V)=\sup \{\varrho(u, V): u \in U\}
$$

and

$$
\delta_{\varrho}(V, U)=\sup \{\varrho(v, U): v \in V\}
$$

where $U, V \in C B^{\varrho}(M)$ and $s \in M$. Also

$$
\varrho(x, U)=0 \Rightarrow \varrho^{s}(x, U)=0
$$

where $\varrho^{s}(x, U)=\inf \left\{\varrho^{s}(x, u), u \in U\right\}$.
Remark 1. [7] If $\phi \neq U \subseteq M$, then

$$
u \in \bar{U} \text { if and only if } \varrho(u, U)=\varrho(u, u)
$$

Definition 2. [7] Let (M, ϱ) be a weak partial metric space. For $U, V \in C B^{\varrho}(M)$, define

$$
\mathcal{H}_{\varrho}^{+}(U, V)=\frac{1}{2}\left\{\delta_{\varrho}(U, V)+\delta_{\varrho}(V, U)\right\}
$$

The mapping $\mathcal{H}_{\varrho}^{+}: C B^{\varrho}(M) \times C B^{\varrho}(M) \rightarrow[0, \infty)$, is called $\mathcal{H}_{\varrho}^{+}$-type Hausdorff metric induced by ϱ.
Proposition 1. [7] Let (M, ϱ) be a weak partial metric space. For any $U, V, Y \in C B^{\varrho}(M)$, we have:
(wh1) $\mathcal{H}_{\rho}^{+}(U, U) \leq \mathcal{H}_{\rho}^{+}(U, V)$;
(wh2) $\mathcal{H}_{\varrho}^{+}(U, V)=\mathcal{H}_{\varrho}^{+}(V, U)$;
(wh3) $\mathcal{H}_{\varrho}^{+}(U, V) \leq \mathcal{H}_{\varrho}^{+}(U, Y)+\mathcal{H}_{\varrho}^{+}(Y, V)$.
Definition 3. [7] Let (M, ϱ) be a weak partial metric space. A multivalued mapping $\mathcal{T}: M \rightarrow C B^{\varrho}(M)$ is called $\mathcal{H}_{\varrho}^{+}$-contraction if
$\left(1^{o}\right) \exists k \in(0,1)$ such that

$$
\mathcal{H}_{\varrho}^{+}(\mathcal{T} s \backslash\{s\}, \mathcal{T} t \backslash\{t\}) \leq k \varrho(s, t) \text { for every } s, t \in M
$$

(2 2°) for every $s \in M, \operatorname{tin} \mathcal{T}$ s and $\epsilon>0$, there exists z in $\mathcal{T} t$ such that

$$
\varrho(t, z) \leq \mathcal{H}_{\varrho}^{+}(\mathcal{T} s, \mathcal{T} t)+\epsilon
$$

Beg [7] gave the following variant of Nadler's fixed point theorem.
Theorem 1. [7] Every $\mathcal{H}_{\varrho}^{+}$-type multivalued contraction on a complete weak partial metric space (M, ϱ) has a fixed point.

3. Weak Partial b-Metric Space

We now define weak partial b-metric space and related concepts:
Definition 4. Let $M \neq \phi$ and $s \geq 1$, a function $\varrho_{b}: M \times M \rightarrow \mathbb{R}^{+}$is called weak partial b-metric on M if for all $s, t, z \in M$, following conditions are satisfied:
(WPB1) $\varrho_{b}(s, s)=\varrho_{b}(s, t) \Leftrightarrow s=t ;$
(WPB2) $\varrho_{b}(s, s) \leq \varrho_{b}(s, t)$;
(WPB3) $\varrho_{b}(s, t)=\varrho_{b}(t, s)$;
(WPB4) $\varrho_{b}(s, t) \leq s\left[\varrho_{b}(s, z)+\varrho_{b}(z, t)\right]$.
The pair $\left(M, \varrho_{b}\right)$ is a weak partial b-metric space.
Example 1. (i) $\left(\mathbb{R}^{+}, \varrho_{b}\right)$, where $\varrho_{b}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is defined as

$$
\varrho_{b}(s, t)=|s-t|^{2}+1 \text { for all } s, t \in \mathbb{R}^{+}
$$

(ii) $\left(\mathbb{R}^{+}, \varrho_{b}\right)$, where $\varrho_{b}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is defined as

$$
\varrho_{b}(s, t)=\frac{1}{2}|s-t|^{2}+\max \{s, t\} \text { for all } s, t \in \mathbb{R}^{+}
$$

Definition 5. A sequence $\left\{s_{n}\right\}$ in $\left(M, \varrho_{b}\right)$ is said to converges a point $s \in X$, if and only if

$$
\varrho_{b}(s, s)=\lim _{n \rightarrow \infty} \varrho_{b}\left(s, s_{n}\right)
$$

Remark 2. If ϱ_{b} is a weak partial b-metric on M, the function $\varrho_{b}{ }^{s}: M \times M \rightarrow \mathbb{R}^{+}$given by $\varrho_{b}{ }^{s}(s, t)=$ $\varrho_{b}(s, t)-\frac{1}{2}\left[\varrho_{b}(s, s)+\varrho_{b}(t, t)\right]$, defines a b-metric on M. Further, a sequence $\left\{s_{n}\right\}$ in $\left(M, \varrho_{b}{ }^{s}\right)$ converges to a point $s \in M$, iff

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \varrho_{b}\left(s_{n}, s_{m}\right)=\lim _{n \rightarrow \infty} \varrho_{b}\left(s_{n}, s\right)=\varrho_{b}(s, s) \tag{1}
\end{equation*}
$$

Definition 6. Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space. Then
(1) A Cauchy sequence in metric space $\left(M, \varrho_{b}^{s}\right)$ is Cauchy in M.
(2) If the metric space $\left(M, \varrho_{b}^{s}\right)$ is complete, so is weak partial b-metric space $\left(M, \varrho_{b}\right)$.

Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space and $C B^{\varrho_{b}}(M)$ be class of all nonempty, closed and bounded subsets of $\left(M, \varrho_{b}\right)$. For $U, V \in C B^{\varrho_{b}}(M)$ and $s \in M$, define

$$
\varrho_{b}(s, U)=\inf \left\{\varrho_{b}(s, u), u \in U\right\}, \quad \delta_{\varrho_{b}}(U, V)=\sup \left\{\varrho_{b}(u, V): u \in U\right\}
$$

and

$$
\delta_{\varrho_{b}}(V, U)=\sup \left\{\varrho_{b}(v, U): v \in V\right\}
$$

Now $\varrho_{b}(s, U)=0 \Rightarrow \varrho_{b}{ }^{s}(s, U)=0$, where $\varrho_{b}{ }^{s}(s, U)=\inf \left\{\varrho_{b}{ }^{s}(s, u), u \in U\right\}$.
Remark 3. Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space and U a nonempty subset of M, then

$$
u \in \bar{U} \Leftrightarrow \varrho_{b}(u, U)=\varrho_{b}(u, u)
$$

Proposition 2. Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space. For any $U, V, Y \in C B^{\varrho_{b}}(M)$, we have the following:
(i) $\delta_{\varrho_{b}}(U, U)=\sup \left\{\varrho_{b}(u, u): u \in U\right\}$;
(ii) $\delta_{\varrho_{b}}(U, U) \leq \delta_{\varrho_{b}}(U, V)$;
(iii) $\delta_{\varrho_{b}}(U, V)=0 \Rightarrow U \subseteq V$;
(iv) $\delta_{\varrho_{b}}(U, V) \leq s\left[\delta_{\varrho_{b}}(U, Y)+\delta_{\varrho_{b}}(Y, V)\right]$.

Proof. (i) If $U \in C B^{\varrho_{b}}(M)$, then for all $u \in U$, we have $\varrho_{b}(u, U)=\varrho_{b}(u, u)$ as $\bar{U}=U$. This implies that $\delta_{\varrho_{b}}(U, U)=\sup \left\{\varrho_{b}(u, U): u \in U\right\}=\sup \left\{\varrho_{b}(u, u): u \in U\right\}$.
(ii) Let $u \in U$. Since $\varrho_{b}(u, u) \leq \varrho_{b}(u, w)$ for all $w \in U$, therefore we have $\varrho_{b}(u, u) \leq \inf \left\{\varrho_{b}(u, v)\right.$ $: v \in V\}=\varrho_{b}(u, V) \leq \sup \left\{\varrho_{b}(u, V): u \in U\right\}=\delta_{\varrho_{b}}(U, V)$.
(iii) If $\delta_{\varrho_{b}}(U, V)=0$, then $\varrho_{b}(u, V)=0$ for all $u \in U$. From (i) and (ii), it follows that $\varrho_{b}(u, u) \leq \delta_{\varrho_{b}}(U, V)=0$ for all $u \in U$. Hence $\varrho_{b}(u, V)=\varrho_{b}(u, u)$ for all $u \in U$. By Remark 3, we have $u \in \bar{V}=V$, so $U \subseteq V$.
(iv) Let $u \in U, v \in V$ and $t \in Y$. By (WPB4), we have $\varrho_{b}(u, v) \leq s\left[\varrho_{b}(u, t)+\varrho_{b}(t, v)\right]$. Since $v \in V$ is arbitrary, therefore $\varrho_{b}(u, V) \leq s\left[\varrho_{b}(u, t)+\varrho_{b}(t, V)\right]$ and $\varrho_{b}(u, V) \leq s\left[\varrho_{b}(u, t)+\sup _{t \in Y} \varrho_{b}(t, V)\right]$, so that $\varrho_{b}(u, V) \leq s\left[\varrho_{b}(u, t)+\delta_{\varrho_{b}}(Y, V)\right]$. Since $t \in Y$ is arbitrary, therefore $\varrho_{b}(u, V) \leq s$ $\left[\varrho_{b}(u, Y)+\delta_{\varrho_{b}}(Y, V)\right]$. Since $u \in U$ is arbitrary, we have $\delta_{\varrho_{b}}(U, V) \leq s\left[\delta_{\varrho_{b}}(U, Y)+\delta_{\varrho_{b}}(Y, V)\right]$.

Definition 7. Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space. For $U, V \in C B^{\varrho_{b}}(M)$, the mapping $\mathcal{H}_{\varrho_{b}}^{+}$: $C B^{\varrho_{b}}(M) \times$ CB $^{\varrho_{b}}(M) \rightarrow[0, \infty)$ define by

$$
\mathcal{H}_{\varrho_{b}}^{+}(U, V)=\frac{1}{2}\left\{\delta_{\varrho_{b}}(U, V)+\delta_{\varrho_{b}}(V, U)\right\}
$$

is called $\mathcal{H}_{\varrho_{b}}^{+}$-type Hausdorff metric induced by ϱ_{b}.
Proposition 3. Let $\left(M, \varrho_{b}\right)$ be a weak partial b-metric space. For any $U, V, Y \in C B^{\rho_{b}}(M)$, we have:
(whb1) $\mathcal{H}_{\rho_{b}}^{+}(U, U) \leq \mathcal{H}_{\rho_{b}}^{+}(U, V)$;
(whb2) $\mathcal{H}_{\rho_{b}}^{+}(U, V)=\mathcal{H}_{\rho_{b}}^{+}(V, U)$;
(whb3) $\mathcal{H}_{\varrho_{b}}^{+}(U, V) \leq s\left[\mathcal{H}_{\varrho_{b}}^{+}(U, Y)+\mathcal{H}_{\varrho_{b}}^{+}(Y, V)\right]$.
Proof. From (ii) of Proposition 2, we have

$$
\mathcal{H}_{\varrho_{b}}^{+}(U, U)=\delta_{\varrho_{b}}(U, U) \leq \delta_{\varrho_{b}}(U, V) \leq \mathcal{H}_{\varrho_{b}}^{+}(U, V)
$$

Also (whb2) obviously holds by definition. Now for (whb3), from (iv) of Proposition 2, we have

$$
\begin{aligned}
\mathcal{H}_{\varrho_{b}}^{+}(U, V) & =\frac{1}{2}\left\{\delta_{\varrho_{b}}(U, V)+\delta_{\varrho_{b}}(V, U)\right\} \\
& \leq \frac{1}{2}\left\{s\left[\delta_{\varrho_{b}}(U, Y)+\delta_{\varrho_{b}}(Y, V)\right]+s\left[\delta_{\varrho_{b}}(V, Y)+\delta_{\varrho_{b}}(Y, U)\right]\right\} \\
& =s\left[\frac{1}{2}\left\{\delta_{\varrho_{b}}(U, Y)+\delta_{\varrho_{b}}(Y, U)\right\}+\frac{1}{2}\left\{\delta_{\varrho_{b}}(Y, V)+\delta_{\varrho_{b}}(V, Y)\right\}\right] \\
& =s\left[\mathcal{H}_{\varrho_{b}}^{+}(U, Y)+\mathcal{H}_{\varrho_{b}}^{+}(Y, V)\right] .
\end{aligned}
$$

Following lemma is essential:

Lemma 1. Let $\left(M, \varrho_{b}\right)$ be weak partial b-metric space with $s \geq 1$ and $\mathcal{T}: M \rightarrow C B^{\varrho_{b}}(M)$ be a multivalued mapping. If $\left\{u_{n}\right\}$ is a sequence in M such that $u_{n} \in \mathcal{T} u_{n-1}$ and

$$
\varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \lambda \varrho_{b}\left(u_{n-1}, u_{n}\right)
$$

for each where $\lambda \in(0,1)$, then $\left\{u_{n}\right\}$ is Cauchy.
Proof. Let $u_{0} \in M$ and $u_{n} \in \mathcal{T} u_{n-1}$ for all $n \in \mathbb{N}$. We divide the proof into two cases:
Case I. Let $\lambda \in\left[0, \frac{1}{s}\right)(s>1)$. By the hypotheses, we have

$$
\varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \lambda \varrho_{b}\left(u_{n-1}, u_{n}\right) \leq \lambda^{2} \varrho_{b}\left(u_{n-2}, u_{n-1}\right) \leq \cdots \leq \lambda^{n} \varrho_{b}\left(u_{0}, u_{1}\right)
$$

Thus, for $n>m$, we have

$$
\begin{aligned}
\varrho_{b}\left(u_{m}, u_{n}\right) \leq & s\left[\varrho_{b}\left(u_{m}, u_{m+1}\right)+\varrho_{b}\left(u_{m+1}, u_{n}\right)\right] \\
\leq & s \varrho_{b}\left(u_{m}, u_{m+1}\right)+s^{2}\left[\varrho_{b}\left(u_{m+1}, u_{m+2}\right)+\varrho_{b}\left(u_{m+2}, u_{n}\right)\right] \\
\leq & s \varrho_{b}\left(u_{m}, u_{m+1}\right)+s^{2} \varrho_{b}\left(u_{m+1}, \varrho_{u m+2}\right)+s^{3}\left[\varrho_{b}\left(u_{m+2}, u_{m+3}\right)+\varrho_{b}\left(u_{m+3}, u_{n}\right)\right] \\
\leq & s \varrho_{b}\left(u_{m}, u_{m+1}\right)+s^{2} \varrho_{b}\left(u_{m+1}, u_{m+2}\right)+s^{3} \varrho_{b}\left(u_{m+2}, u_{m+3}\right) \\
& +\cdots+s^{n-m-1} \varrho_{b}\left(u_{n-2}, u_{n-1}\right)+s^{n-m-1} \varrho_{b}\left(u_{n-1}, u_{n}\right) \\
\leq & s \lambda^{m} \varrho_{b}\left(u_{0}, u_{1}\right)+s^{2} \lambda^{m+1} \varrho_{b}\left(u_{0}, u_{1}\right)+s^{3} \lambda^{m+2} \varrho_{b}\left(u_{0}, u_{1}\right) \\
& +\cdots+s^{n-m-1} \lambda^{n-2} \varrho_{b}\left(u_{0}, u_{1}\right)+s^{n-m-1} \lambda^{n-1} \varrho_{b}\left(u_{0}, u_{1}\right) \\
\leq & s \lambda^{m}\left(1+(s \lambda)+(s \lambda)^{2}+\cdots+(s \lambda)^{n-m-2}+\frac{(s \lambda)^{n-m-1}}{s}\right) \varrho_{b}\left(u_{0}, u_{1}\right) \\
\leq & s \lambda^{m}\left(\frac{1}{1-s \lambda}+\frac{(s \lambda)^{n-m-1}}{s}\right) \varrho_{b}\left(u_{0}, u_{1}\right) \\
= & \left(\frac{s \lambda^{m}}{1-s \lambda}+(s \lambda)^{n-1}\right) \varrho_{b}\left(u_{0}, u_{1}\right) \rightarrow 0(n, m \rightarrow \infty) .
\end{aligned}
$$

Using (1) and the definition of ϱ_{b}^{s}, we get that $\varrho_{b}^{s}\left(u_{m}, u_{n}\right) \leq \varrho_{b}\left(u_{m}, u_{n}\right)$ tends to 0 as m, n tends to $+\infty$ which implies that $\left\{u_{n}\right\}$ is Cauchy in b-metric space $\left(M, \varrho_{b}^{s}\right)$. Since $\left(M, \varrho_{b}\right)$ is complete, therefore $\left(M, \varrho_{b}^{S}\right)$ is a complete b-metric space. Consequently, the sequence $\left\{u_{n}\right\}$ converges to a point (say) $u^{*} \in M$ w.r.t b-metric ϱ_{b}^{s}, that is, $\lim _{n \rightarrow+\infty} \varrho_{b}^{s}\left(u_{n}, u^{*}\right)=0$. Again, from (1) we get

$$
\varrho_{b}\left(u^{*}, u^{*}\right)=\lim _{n \rightarrow+\infty} \varrho_{b}\left(u_{n}, u^{*}\right)=\lim _{n \rightarrow+\infty} \varrho_{b}\left(u_{n}, u_{n}\right)=0
$$

Thus $\left\{u_{n}\right\}$ is a Cauchy sequence in $\left(M, \varrho_{b}\right)$.
Case II. Let $\lambda \in\left[\frac{1}{s}, 1\right)(s>1)$. In this case, we have $\lambda^{n} \rightarrow 0$ as $n \rightarrow \infty$, then there is $k \in \mathbb{N}$ such that $\lambda^{k}<\frac{1}{s}$. Thus, by Case-I, we have that

$$
\left\{u_{k}, u_{k+1}, u_{k+2}, \ldots, u_{k+n}, \ldots\right\}
$$

is a Cauchy sequence. Since

$$
\left\{u_{n}\right\}_{n=0}^{\infty}=\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\} \cup\left\{u_{k}, u_{k+1}, u_{k+2}, \ldots, u_{k+n}, \ldots\right\}
$$

we obtain that $u_{n} \in \mathcal{T}^{n} u_{0}, n=1,2, \ldots$ is a Cauchy sequence in M.
Definition 8. Let $\left(M, \varrho_{b}\right)$ be a complete weak partial b-metric space. A multivalued mapping $\mathcal{T}: M \rightarrow$ $C B^{\varrho_{b}}(M)$ is called $\mathcal{H}_{\varrho_{b}}^{+}$-contraction if
(1') for every $s, t \in M, \exists k \in(0,1)$ such that

$$
\mathcal{H}_{\varrho_{b}}^{+}(T s \backslash\{s\}, T t \backslash\{t\}) \leq k \varrho_{b}(s, t)
$$

(2') for every $s \in X, t$ in T s and $\epsilon>0, \exists z$ in $\mathcal{T} t$ such that

$$
\varrho_{b}(t, z) \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} s, \mathcal{T} t)+\epsilon
$$

4. Fixed Point Result

Our main result is the following:
Theorem 2. Every $\mathcal{H}_{\varrho_{b}}^{+}$-type multivalued contraction on a complete weak partial b-metric space $\left(M, \varrho_{b}\right)$ has a fixed point.

Proof. Let $u_{0} \in M$ be arbitrary. If $u_{0} \in \mathcal{T} u_{0}$ then u_{0} is the fixed point. Therefore, we assume that $u_{0} \notin \mathcal{T} u_{0}$. Let $u_{1} \in \mathcal{T} u_{0}$ and $u_{0} \neq u_{1}$ such that $u_{1} \notin \mathcal{T} u_{1}$. From (2'), we have $u_{2} \in \mathcal{T} u_{1}$ such that $u_{2} \neq u_{1}$ and

$$
\varrho_{b}\left(u_{1}, u_{2}\right) \leq \mathcal{H}_{\varrho_{b b}}^{+}\left(\mathcal{T} u_{0}, \mathcal{T} u_{1}\right)+\epsilon
$$

Continuing this process we get $u_{n+1} \in \mathcal{T} u_{n}$ such that $u_{n+1} \neq u_{n}$ and

$$
\begin{equation*}
\varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)+\epsilon \tag{2}
\end{equation*}
$$

Choosing $\epsilon=\left(\frac{1}{\sqrt{k}}-1\right) \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)$ in (2), we have

$$
\varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)+\left(\frac{1}{\sqrt{k}}-1\right) \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)=\frac{1}{\sqrt{k}} \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)
$$

Thus

$$
\sqrt{k} \varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1}, \mathcal{T} u_{n}\right)=\mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n-1} \backslash\left\{u_{n-1}\right\}, \mathcal{T} u_{n} \backslash\left\{u_{n}\right\}\right)
$$

From (1^{\prime}), we get

$$
\sqrt{k} \varrho_{b}\left(u_{n}, u_{n+1}\right) \leq k \varrho_{b}\left(u_{n-1}, u_{n}\right)=(\sqrt{k})^{2} \varrho_{b}\left(u_{n-1}, u_{n}\right)
$$

Thus for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\varrho_{b}\left(u_{n}, u_{n+1}\right) \leq \sqrt{k} \varrho_{b}\left(u_{n-1}, u_{n}\right) \tag{3}
\end{equation*}
$$

Taking $\sqrt{k}=\lambda$, we obtained by Lemma 1 that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since $\left(M, \varrho_{b}\right)$ is complete. Therefore, there exists $u^{*} \in M$ such that $\lim _{n \rightarrow+\infty} u_{n}=u^{*}$. To show that $u^{*} \in \mathcal{T}$. On contrary suppose that $u^{*} \notin \mathcal{T} u^{*}$. Since

$$
\begin{aligned}
\frac{1}{2}\left[\delta_{\varrho_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\delta_{\varrho_{b}}\left(\mathcal{T} u^{*}, \mathcal{T} u_{n}\right)\right] & =\mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right) \\
& =\mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{n} \backslash\left\{u_{n}\right\}, \mathcal{T} u^{*} \backslash\left\{u^{*}\right\}\right) \\
& \leq k \varrho_{b}\left(u_{n}, u^{*}\right)
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow+\infty} \inf \left[\delta_{Q_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\delta_{\varrho_{b}}\left(\mathcal{T} u^{*}, \mathcal{T} u_{n}\right)\right]=0
$$

Since

$$
\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u^{*}, \mathcal{T} u_{n}\right) \leq \lim _{n \rightarrow+\infty} \inf \left[\delta_{\varrho_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\delta_{e_{b}}\left(\mathcal{T} u^{*}, \mathcal{T} u_{n}\right)\right]
$$

we have

$$
\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u^{*}, \mathcal{T} u_{n}\right)=0
$$

This implies that

$$
\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)=0 .
$$

Since

$$
\varrho_{b}\left(u^{*}, \mathcal{T} u^{*}\right) \leq \delta_{\varrho_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\varrho_{b}\left(u_{n+1}, u^{*}\right),
$$

therefore

$$
\begin{aligned}
\varrho_{b}\left(u^{*}, \mathcal{T} u^{*}\right) & \leq \lim _{n \rightarrow+\infty} \inf \left[\delta_{e_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\varrho_{b}\left(u_{n+1}, u^{*}\right)\right] \\
& =\lim _{n \rightarrow+\infty} \inf \delta_{e_{b}}\left(\mathcal{T} u_{n}, \mathcal{T} u^{*}\right)+\lim _{n \rightarrow+\infty} \varrho_{b}\left(u_{n+1}, u^{*}\right) .
\end{aligned}
$$

This implies $\varrho_{b}\left(u^{*}, \mathcal{T} u^{*}\right)=0$, therefore from (1), we obtain

$$
\varrho_{b}\left(u^{*}, u^{*}\right)=\varrho_{b}\left(u^{*}, \mathcal{T} u^{*}\right),
$$

which implies $u^{*} \in \overline{\mathcal{T} u^{*}}=\mathcal{T} u^{*}$, as $\mathcal{T} u^{*}$ is closed.
Example 2. Consider a set $M=\left\{0, \frac{1}{2}, 1\right\}$ and $\varrho_{b}: M \times M \rightarrow \mathbb{R}^{+}$a weak partial b-metric given by

$$
\varrho_{b}(u, v)=\frac{1}{2}|u-v|^{2}+\frac{1}{2} \max \{u, v\} \text { for all } u, v \in M .
$$

Since $\varrho_{b}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{4} \neq 0$ and $\varrho_{b}(1,1)=\frac{1}{2} \neq 0$. Also

$$
\begin{aligned}
u \in \overline{\{0\}} & \Leftrightarrow \varrho_{b}(u,\{0\})=\varrho_{b}(u, u) \\
& \Leftrightarrow \frac{1}{2} u^{2}+\frac{1}{2} u=\frac{1}{2} u \Leftrightarrow u=0 \\
& \Leftrightarrow u \in\{0\} .
\end{aligned}
$$

Also

$$
\begin{aligned}
u \in \overline{\{0,1\}} & \Leftrightarrow \varrho_{b}(u,\{0,1\})=\varrho_{b}(u, u) \\
& \Leftrightarrow \min \left\{\frac{1}{2} u^{2}+\frac{1}{2} u, \frac{1}{2}|u-1|^{2}+\frac{1}{2} \max \{u, 1\}\right\}=\frac{1}{2} u \\
& \Leftrightarrow u \in\{0,1\}
\end{aligned}
$$

and

$$
\begin{aligned}
u \in \overline{\left\{0, \frac{1}{2}\right\}} & \Leftrightarrow \varrho_{b}\left(u,\left\{0, \frac{1}{2}\right\}\right)=\varrho_{b}(u, u) \\
& \Leftrightarrow \min \left\{\frac{1}{2} u^{2}+\frac{1}{2} u, \frac{1}{2}\left|u-\frac{1}{2}\right|^{2}+\frac{1}{2} \max \left\{u, \frac{1}{2}\right\}\right\}=\frac{1}{2} u \\
& \Leftrightarrow u \in\left\{0, \frac{1}{2}\right\} .
\end{aligned}
$$

Hence, $\{0\},\{0,1\}$ and $\left\{0, \frac{1}{2}\right\}$ are closed w.r.t weak partial b-metric ϱ_{b}.
Define $\mathcal{T}: X \rightarrow C B^{e_{b}}(M)$ by

$$
\mathcal{T}(0)=\{0\}, \mathcal{T}\left(\frac{1}{2}\right)=\left\{0, \frac{1}{2}\right\} \text { and } \mathcal{T}(1)=\{0,1\} .
$$

To show that for all $u, v \in M$, the contractive condition (1^{\prime}) holds for all $k \in(0,1)$, we consider the following cases:

For $u=v=0$, we have

$$
\mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T}(0) \backslash\{0\}, \mathcal{T}(0) \backslash\{0\})=\mathcal{H}_{\varrho_{b}}^{+}(\{0\} \backslash\{0\},\{0\} \backslash\{0\})=\mathcal{H}_{\varrho_{b}}^{+}(\varnothing, \varnothing)=0
$$

so (1^{\prime}) satisfied.
For $u=0, v=\frac{1}{2}$, we have

$$
\mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T}(0) \backslash\{0\}, \mathcal{T}\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}\right)=\mathcal{H}_{\varrho_{b}}^{+}\left(\{0\} \backslash\{0\},\left\{0, \frac{1}{2}\right\} \backslash\left\{\frac{1}{2}\right\}\right)=\mathcal{H}_{\varrho_{b}}^{+}(\varnothing,\{0\})=0
$$

so $\left(1^{\prime}\right)$ satisfied.
For $u=v=\frac{1}{2}$, we have

$$
\begin{aligned}
& \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T}\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}, \mathcal{T}\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}\right)=\mathcal{H}_{\varrho_{b}}^{+}\left(\left\{0, \frac{1}{2}\right\} \backslash\left\{\frac{1}{2}\right\},\left\{0, \frac{1}{2}\right\} \backslash\left\{\frac{1}{2}\right\}\right) \\
& =\mathcal{H}_{\varrho_{b}}^{+}(\{0\},\{0\})=\varrho_{b}(0,0)=0
\end{aligned}
$$

so $\left(1^{\prime}\right)$ satisfied.
For $u=0, v=1$, we have

$$
\mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T}(0) \backslash\{1\}, \mathcal{T}(1) \backslash\{1\})=\mathcal{H}_{\varrho_{b}}^{+}(\{0\} \backslash\{0\},\{0,1\} \backslash\{0\})=\mathcal{H}_{\varrho_{b}}^{+}(\varnothing,\{0\})=0
$$

so (1^{\prime}) satisfied.
For $u=\frac{1}{2}, v=1$, we have

$$
\begin{aligned}
& \mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T}\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}, \mathcal{T}(1) \backslash\{1\}\right)=\mathcal{H}_{\varrho_{b}}^{+}\left(\left\{0, \frac{1}{2}\right\} \backslash\{0\},\{0,1\} \backslash\{1\}\right)=\mathcal{H}_{\varrho_{b}}^{+}(\{0\},\{0\}) \\
& =\varrho_{b}(0,0)=0
\end{aligned}
$$

so $\left(1^{\prime}\right)$ satisfied.
For $u=v=1$, we have

$$
\mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T}(1) \backslash\{1\}, \mathcal{T}(1) \backslash\{1\})=\mathcal{H}_{\varrho_{b}}^{+}(\{0,1\} \backslash\{1\},\{0,1\} \backslash\{1\})=\mathcal{H}_{\varrho_{b}}^{+}(\{0\},\{0\})=\varrho_{b}(0,0)=0
$$

so $\left(1^{\prime}\right)$ satisfied.
Further, we show that for every $u \in M, v \in \mathcal{T} u$ and $\epsilon>0, \exists w \in \mathcal{T} v$ such that

$$
\varrho_{b}(v, w) \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} u, \mathcal{T} v)+\epsilon
$$

So,
(a) If $u=0, v \in \mathcal{T}(0)=\{0\}, \epsilon>0, \exists w \in \mathcal{T} v=\{0\}$

$$
0=\varrho_{b}(v, w) \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} v, \mathcal{T} u)+\epsilon
$$

(b) If $u=\frac{1}{2}, v \in \mathcal{T} u=\mathcal{T}\left(\frac{1}{2}\right)=\left\{0, \frac{1}{2}\right\}$, for $v=0, \epsilon>0, \exists w \in \mathcal{T} v=\{0\}$ such that

$$
0=\varrho_{b}(v, w)<\frac{3}{16}+\epsilon \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} v, \mathcal{T} u)+\epsilon
$$

and for $v=\frac{1}{2}, \epsilon>0, \exists w \in T v=\left\{0, \frac{1}{2}\right\}$ such that

$$
\frac{1}{4}=\varrho_{b}(v, w)<\frac{1}{4}+\epsilon \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} v, \mathcal{T} u)+\epsilon
$$

(c) If $u=1, v \in \mathcal{T} u=\mathcal{T}(1)=\{0,1\}$, for $v=0, \epsilon>0, \exists w \in T v=\{0\}$ such that

$$
0=\varrho_{b}(v, w)<\frac{3}{4}+\epsilon \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} v, \mathcal{T} u)+\epsilon
$$

and for $v=1, \epsilon>0, \exists w \in \mathcal{T} v=\{0,1\}$ such that

$$
\frac{1}{2}=\varrho_{b}(v, w)<\frac{1}{2}+\epsilon \leq \mathcal{H}_{\varrho_{b}}^{+}(\mathcal{T} v, \mathcal{T} u)+\epsilon
$$

Thus condition (2^{\prime}) is satisfied.
Hence Theorem 2 can be applied and we conclude that $u \in\left\{0, \frac{1}{2}, 1\right\}$ is fixed points of \mathcal{T}.

5. Application

We now apply our main result to show the existence of solution of nonlinear integral inclusion of Volterra type. Suppose $l=(0,1)$, and $M=C[l, \mathbb{R})$, the space of all continuous functions $f: l \rightarrow \mathbb{R}$. Consider weak partial b-metric on M by

$$
\varrho_{b}(x, y)=\sup _{t \in l} e^{-\beta t}|x(t)-y(t)|^{p}+\alpha,
$$

$\forall x, y \in C(l, \mathbb{R}), p>1$ and $\alpha>0$. We have $\varrho_{b}^{s}(x, y)=\sup _{t \in l} e^{-\beta t}|x(t)-y(t)|^{p}$, so by Definition 6, $\left(C(l, \mathbb{R}), \varrho_{b}\right)$ is complete partial b-metric space. Denote by $P_{c l}(\mathbb{R})$ the class of all nonempty closed subsets of \mathbb{R}.

Theorem 3. Assume the integral equation inclusion of Volterra type

$$
\begin{equation*}
y(t) \in f(t)+\int_{0}^{t} K(t, s, y(s)) d s, \quad t \in l \tag{4}
\end{equation*}
$$

Suppose

(a) $K: l \times l \times \mathbb{R} \rightarrow P_{c l}(\mathbb{R})$ is such that $K_{y}(t, s):=K(t, s, y(s))$ is continuous for all $(t, s) \in l \times l$ and $y \in C(l, \mathbb{R}) ;$
(b) $f \in C(l, \mathbb{R})$;
(c) for each $t \in l$, there exist $y \in C(l, \mathbb{R})$, such that

$$
\mathcal{H}_{\varrho_{b}}^{+}(K(t, x, y(x)), K(t, x, h(x))) \leq \frac{1}{t^{p-1}}\left(\sup _{x \in l}|y(x)-h(x)|^{p}+\alpha\right)
$$

for all $t, x \in l$ and all $y, h \in C(l, \mathbb{R})$.
Then there is at least one solution of (4) in $C(l, \mathbb{R})$.
Proof. Define $\mathcal{T}: C(l, \mathbb{R}) \rightarrow P_{c l}(C(l, \mathbb{R}))$ by

$$
\mathcal{T} x(t)=\left\{y \in C(l, \mathbb{R}) \text { such that } y(t) \in f(t)+\int_{0}^{t} K(t, s, x(s)) d s, t \in l\right\}
$$

for each $x \in C(l, \mathbb{R})$. For each $K_{x}: l \times l \rightarrow P_{c l}(\mathbb{R})$ there exists $k_{x}: l \times l \rightarrow \mathbb{R}$ such that $k_{x}(t, s) \in K_{x}(t, s)$ for all $t, s \in l$. This implies that $f(t)+\int_{0}^{t} k_{x}(t, s) d s \in \mathcal{T} x$, and so $\mathcal{T} x \neq \varnothing$. It is easy to prove that $\mathcal{T} x$ is closed.

We show that \mathcal{T} is $\mathcal{H}_{\varrho_{b}}^{+}$-type multivalued contraction. Let $u_{1}, u_{2} \in C(l, \mathbb{R})$ and $y \in \mathcal{T} x$. Then \exists $k_{u_{1}}(t, s) \in K_{u_{1}}(t, s), t, s \in l$ such that $y(t)=f(t)+\int_{0}^{t} k_{x}(t, s) d s, t \in l$. Also by hypothesis (iii),

$$
\mathcal{H}_{e_{b}}^{+}\left(K\left(t, s, u_{1}(s)\right), K\left(t, s, u_{2}(s)\right)\right) \leq \frac{1}{t^{p-1}}\left(\sup _{s \in l}\left|u_{1}(s)-u_{2}(s)\right|^{p}+\alpha\right) \forall t, s \in l .
$$

Then there exist $g(t, s) \in K_{u_{1}}(t, s)$ such that

$$
\left|k_{u_{1}}(t, s)-g(t, s)\right|^{p}+\xi \leq \frac{1}{t^{p-1}}\left[\left|u_{1}(s)-u_{2}(s)\right|^{p}+\alpha\right]
$$

for all $t, s \in l$. Define a multivalued operator $Q(t, s)$ by

$$
Q(t, s)=K_{u_{2}}(t, s) \cap\left\{\eta \in \mathbb{R},\left|k_{u_{1}}-\eta\right|^{p}+\alpha \leq \frac{1}{t^{p-1}}\left|u_{1}(s)-u_{2}(s)\right|^{p}+\alpha\right\}
$$

for all $t, s \in l$. Since Q is continuous operator, there exists a continuous operator $k_{u_{2}}: l \times l \rightarrow \mathbb{R}$ such that $k_{u_{2}}(t, s) \in Q(t, s)$ for all $t, s \in l$ and

$$
h(t)=f(t)+\int_{0}^{t} k_{u_{2}}(t, s) d s \in f(t)+\int_{0}^{t} K\left(t, s, u_{2}(s)\right) d s
$$

Therefore, let $q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$.

$$
\begin{aligned}
\varrho_{b}\left(y(t), \mathcal{T} u_{2}(t)\right) & \leq \varrho_{b}(y(t), h(t)) \\
& =\sup _{t \in l} e^{-\beta t}|y(t)-h(t)|^{p}+\alpha \\
& =\sup _{t \in l} e^{-\beta t}\left|\int_{0}^{t}\left[k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right] d s\right|^{p}+\alpha \\
& \leq \sup _{t \in l} e^{-\beta t}\left[\left(\int_{0}^{t} d s\right)^{\frac{1}{q}}\left(\int_{0}^{t}\left|k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right|^{p} d s\right)^{\frac{1}{p}}\right]^{p}+\alpha \\
& \leq \sup _{t \in l} e^{-\beta t}(t)^{\frac{p}{q}}\left(\int_{0}^{t}\left|k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right|^{p} d s\right)+\alpha \\
& =\sup _{t \in l} e^{-\beta t}(t)^{p-1}\left(\int_{0}^{t} e^{\beta s} e^{-\beta s}\left|k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right|^{p} d s\right)+\alpha \\
& =\sup _{t \in l} e^{-\beta t}(t)^{p-1}\left(\int_{0}^{t} e^{\beta s} e^{-\beta s}\left|k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right|^{p} d s\right)+\alpha \\
& =e^{-\beta t}(t)^{p-1}\left(\int_{0}^{t}\left(e^{\beta s} \sup _{t \in l}\left\{e^{-\beta s}\left|k_{u_{1}}(t, s)-k_{u_{2}}(t, s)\right|^{p}+\alpha\right\}-\alpha\right) d s\right)+\alpha \\
& \leq e^{-\beta t}(t)^{p-1}\left(\int_{0}^{t}\left(e^{\beta s} \sup _{t \in l}\left\{\frac{1}{t p-1}\left|u_{1}(t)-u_{2}(t)\right|^{p}+\alpha\right\}-\alpha\right) d s\right)+\alpha \\
& =e^{-\beta t}(t)^{p-1} \frac{1}{t^{p-1}} \varrho_{b}\left(u_{1}(t), u_{2}(t)\right) \int_{0}^{t} e^{\beta s} d s-e^{-\beta t}(t)^{p-1} \int_{0}^{t} \alpha d s+\alpha \\
& =e^{-\beta t} \varrho_{b}\left(u_{1}(t), u_{2}(t)\right)\left(e^{\beta t}-1\right)-e^{-\beta t}(t)^{p-1} \alpha t+\alpha \\
& =\left(1-e^{-\beta t}\right) \varrho_{b}\left(u_{1}(t), u_{2}(t)\right)+\left(1-e^{-\beta t} t^{p}\right) \alpha \\
& \leq\left(1-e^{-\beta t}\right) \varrho_{b}\left(u_{1}(t), u_{2}(t)\right) \\
& =k \cdot \varrho_{b}\left(u_{1}(t), u_{2}(t)\right),
\end{aligned}
$$

where $k=\left(1-e^{-\beta t}\right)<1$. Since $y(t)$ is arbitrary, we have

$$
\begin{equation*}
\delta_{\varrho_{b}}\left(\mathcal{T} u_{1}, \mathcal{T} u_{2}\right) \leq k \cdot \varrho_{b}\left(u_{1}, u_{2}\right) \tag{5}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\delta_{\varrho_{b}}\left(\mathcal{T} u_{2}, \mathcal{T} u_{1}\right) \leq k \cdot \varrho_{b}\left(u_{2}, u_{1}\right) \tag{6}
\end{equation*}
$$

From (5) and (6), we get

$$
\mathcal{H}_{\varrho_{b}}^{+}\left(\mathcal{T} u_{1}, \mathcal{T} u_{2}\right)=k \cdot \frac{\left.\delta_{\varrho_{b}}\left(\mathcal{T} u_{1}, \mathcal{T} u_{2}\right)+\delta_{\varrho_{b}}\left(\mathcal{T} u_{2}, \mathcal{T} u_{1}\right)\right)}{2} \leq k \cdot \varrho_{b}\left(u_{2}, u_{1}\right)
$$

Hence, \mathcal{T} is $\mathcal{H}_{\varrho_{b}}^{+}$-type multivalued contraction. Thus all the assertions of Theorem 2 are satisfied and hence (4) has a solution.

6. Conclusions

In this paper, we present the concept of weak partial b-metric spaces with their topology and weak partial Hausdorff b-metric spaces and generalized the famous Nadler's theorem in weak partial b-metric space by using weak partial Hausdorff b-metric spaces. We give an example to show the validity and an application to nonlinear Volterra integral inclusion for the usability of our result.

Author Contributions: Conceptualization, T.K. and A.H.; methodology, A.H.; software, A.H. and E.S.; validation, T.K., A.H. and E.S.; formal analysis, E.S.; investigation, A.H.; resources, A.H.; writing-original draft preparation, T.K., A.H. and E.S.; writing-review and editing, P.K.; visualization, P.K.; supervision, P.K.; project administration, P.K.; funding acquisition, E.S. and P.K.

Funding: This project was supported by Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation research Cluster (CLASSIC), Faculty of Science, KMUTT.
Acknowledgments: This project was completed during the visit of second author to Usak University, Turkey, sponsored by Turkish Academy of Sciences.
Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

References

1. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26-37.
2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
3. Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slov. 2014, 64, 941-960.
4. Aleksić, S.; Huang, H.; Mitrović, Z.D.; Radenović, S. Remarks on some fixed point results in b-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 147. [CrossRef]
5. Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17-30. [CrossRef]
6. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159, 3234-3242. [CrossRef]
7. Beg, I.; Pathak, H.K. A variant of Nadler's theorem on weak partial metric spaces with application to homotopy result. Vietnam J. Math. 2018, 46, 693-706. [CrossRef]
8. Boriceanu, M.; Bota, M.; Petrusel, A. Mutivalued fractals in b-metric spaces. Cen. Eur. J. Math. 2010, 8, 367-377. [CrossRef]
9. Bota, M.; Molnar, A.; Csaba, V. On Ekeland's variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21-28.
10. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Univ. Mod. 1998, 46, 263-276.
11. Phiangsungnoen, S.; Kumam, P. On stability of fixed point inclusion for multivalued type contraction mappings in dislocated b-metric spaces with application. Math. Methods Appl. Sci. 2018, 1-14. [CrossRef]
12. Batsari, U.V.; Kumam, P.; Sitthithakerngkiet, K. Some Globally Stable Fixed Points in b-Metric Spaces. Symmetry 2018, 10, 555.
13. Huang, H.; Došenović, T.; Radenović, S. Some fixed point results in b-metric spaces approach to the existence of a solution to nonlinear integral equations. J. Fixed Point Theory Appl. 2018, 20, 105. [CrossRef]
14. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183-197. [CrossRef]
15. Heckmann, R. Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 1999, 7, 71-83. [CrossRef]
16. Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric type spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [CrossRef]
17. Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18-27.
18. Khamski, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 73, 3123-3129. [CrossRef]
19. Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475-488. [CrossRef]
20. Patle, P.; Patel, D.; Aydi, H.; Radenović, S. \mathcal{H}^{+}-type multivalued contraction and its applications in symmetric and probabilistic spaces. Mathematics 2019, 7, 144. [CrossRef]
21. Paunović, L.; Kaushikb, P.; Kumar, S. Some applications with new admissibility contractions in b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 4162-4174. [CrossRef]
22. Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [CrossRef]
23. Shukla, S. Partial b-Metric Spaces and Fixed Point Theorems. Mediterr. J. Math. 2014, 11, 703-711. [CrossRef]
