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Abstract: The purpose of this paper is to define the notions of weak partial b-metric spaces and weak
partial Hausdorff b-metric spaces along with the topology of weak partial b-metric space. Moreover,
we present a generalization of Nadler’s theorem by using weak partial Hausdorff b-metric spaces in
the context of a weak partial b-metric space. We present a non-trivial example which show the validity
of our result and an application to nonlinear Volterra integral inclusion for the applicability purpose.
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1. Introduction

The famous Banach contraction principle has been generalized in many directions, whether by
generalizing the contractive condition or by extending the domain of the function. Bakhtin [1] and
Czerwik [2] introduced b-metric spaces generalizing the ordinary metric space and considering the
problem of convergence of measurable functions with respect to measure; Czerwik [2] proved the
variant of Banach contraction in b-metric spaces. Later on, many authors proved fixed point results for
both single and multivalued mapping in the context of b-metric spaces (see also [2–13]).

Matthews [14] established the notion of a partial metric space and proved an analogue of Banach’s
principle in such spaces. The concept of partial Hausdorff metric was given by Aydi et al. [6] and they
established a fixed point theorem for multivalued mappings in partial metric spaces. Excluding the
idea of small self-distance, Heckmann [15] generalized the partial metric space to weak partial metric
spaces (see more [16–22]).

Shukla [23] introduced the concept of the partial b-metric and proved some fixed point results.
Beg [7] presented the idea of the almost partial Hausdorff metric and extended Nadler’s theorem
(Nadler [19]) to weak partial metric spaces.

The aim of this paper is to introduce the notion of the weak partial b-metric space, theH+-type
partial Hausdorff b-metric and prove Nadler’s theorem to weak partial b-metric spaces. An example
and application to Volterra type integral inclusion to support our result will be given.
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2. Preliminaries

Consistent with Beg [7], notion of weak partial metric and related concepts are as follows:

Definition 1. [7] Let M be a nonempty set. A function $ : M×M→ R+ is called weak partial metric if for
all s, t, z ∈ M, following assertions hold:

(WP1) $(s, s) = $(s, t) iff s = t;
(WP2) $(s, s) ≤ $(s, t);
(WP3) $(s, t) = $(t, s);
(WP4) $(s, t) ≤ $(s, z) + $(z, t).

The pair (M, $) is called weak partial metric space.

We refer [7] to readers for detail work in weak partial metric space.
Let CB$(M) be the family of nonempty, closed and bounded subsets of a weak partial metric

space (M, $). Define

$(x, U) = inf{$(x, u), u ∈ U}, δ$(U, V) = sup{$(u, V) : u ∈ U}

and
δ$(V, U) = sup{$(v, U) : v ∈ V},

where U, V ∈ CB$(M) and s ∈ M. Also

$(x, U) = 0⇒ $s(x, U) = 0,

where $s(x, U) = inf{$s(x, u), u ∈ U}.

Remark 1. [7] If φ 6= U ⊆ M, then

u ∈ U if and only if $(u, U) = $(u, u).

Definition 2. [7] Let (M, $) be a weak partial metric space. For U, V ∈ CB$(M), define

H+
$ (U, V) =

1
2
{δ$(U, V) + δ$(V, U)}.

The mappingH+
$ : CB$(M)× CB$(M)→ [0, ∞), is calledH+

$ -type Hausdorff metric induced by $.

Proposition 1. [7] Let (M, $) be a weak partial metric space. For any U, V, Y ∈ CB$(M), we have:

(wh1) H+
$ (U, U) ≤ H+

$ (U, V);
(wh2) H+

$ (U, V) = H+
$ (V, U);

(wh3) H+
$ (U, V) ≤ H+

$ (U, Y) +H+
$ (Y, V).

Definition 3. [7] Let (M, $) be a weak partial metric space. A multivalued mapping T : M → CB$(M) is
calledH+

$ -contraction if

(1o) ∃ k ∈ (0, 1) such that

H+
$ (T s\{s}, T t\{t}) ≤ k$(s, t) for every s, t ∈ M,

(2o) for every s ∈ M, t in T s and ε > 0, there exists z in T t such that

$(t, z) ≤ H+
$ (T s, T t) + ε.
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Beg [7] gave the following variant of Nadler’s fixed point theorem.

Theorem 1. [7] EveryH+
$ -type multivalued contraction on a complete weak partial metric space (M, $) has

a fixed point.

3. Weak Partial b-Metric Space

We now define weak partial b-metric space and related concepts:

Definition 4. Let M 6= φ and s ≥ 1, a function $b : M×M → R+ is called weak partial b-metric on M if
for all s, t, z ∈ M, following conditions are satisfied:

(WPB1) $b(s, s) = $b(s, t)⇔ s = t;
(WPB2) $b(s, s) ≤ $b(s, t);
(WPB3) $b(s, t) = $b(t, s);
(WPB4) $b(s, t) ≤ s[$b(s, z) + $b(z, t)].

The pair (M, $b) is a weak partial b-metric space.

Example 1. (i) (R+, $b), where $b : R+ ×R+ → R+ is defined as

$b(s, t) = |s− t|2 + 1 for all s, t ∈ R+.

(ii) (R+, $b), where $b : R+ ×R+ → R+ is defined as

$b(s, t) =
1
2
|s− t|2 + max {s, t} for all s, t ∈ R+.

Definition 5. A sequence {sn} in (M, $b) is said to converges a point s ∈ X, if and only if

$b(s, s) = lim
n→∞

$b(s, sn).

Remark 2. If $b is a weak partial b-metric on M, the function $b
s : M × M → R+ given by $b

s(s, t) =

$b(s, t)− 1
2 [$b(s, s) + $b(t, t)], defines a b-metric on M. Further, a sequence {sn} in (M, $b

s) converges to
a point s ∈ M, iff

lim
n,m→∞

$b(sn, sm) = lim
n→∞

$b(sn, s) = $b(s, s). (1)

Definition 6. Let (M, $b) be a weak partial b-metric space. Then

(1) A Cauchy sequence in metric space (M, $s
b) is Cauchy in M.

(2) If the metric space (M, $s
b) is complete, so is weak partial b-metric space (M, $b).

Let (M, $b) be a weak partial b-metric space and CB$b(M) be class of all nonempty, closed and
bounded subsets of (M, $b). For U, V ∈ CB$b(M) and s ∈ M, define

$b(s, U) = inf{$b(s, u), u ∈ U}, δ$b(U, V) = sup{$b(u, V) : u ∈ U}

and
δ$b(V, U) = sup{$b(v, U) : v ∈ V}.

Now $b(s, U) = 0⇒ $b
s(s, U) = 0, where $b

s(s, U) = inf{$b
s(s, u), u ∈ U}.

Remark 3. Let (M, $b) be a weak partial b-metric space and U a nonempty subset of M, then

u ∈ U ⇔ $b(u, U) = $b(u, u).
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Proposition 2. Let (M, $b) be a weak partial b-metric space. For any U, V, Y ∈ CB$b(M), we have
the following:

(i) δ$b(U, U) = sup{$b(u, u) : u ∈ U};
(ii) δ$b(U, U) ≤ δ$b(U, V);
(iii) δ$b(U, V) = 0⇒ U ⊆ V;
(iv) δ$b(U, V) ≤ s[δ$b(U, Y) + δ$b(Y, V)].

Proof. (i) If U ∈ CB$b(M), then for all u ∈ U, we have $b(u, U) = $b(u, u) as U = U. This implies
that δ$b(U, U) = sup{$b(u, U) : u ∈ U} = sup{$b(u, u) : u ∈ U}.

(ii) Let u ∈ U. Since $b(u, u) ≤ $b(u, w) for all w ∈ U, therefore we have $b(u, u) ≤ inf{$b(u, v)
: v ∈ V} = $b(u, V) ≤ sup{$b(u, V) : u ∈ U} = δ$b(U, V).

(iii) If δ$b(U, V) = 0, then $b(u, V) = 0 for all u ∈ U. From (i) and (ii), it follows that
$b(u, u) ≤ δ$b(U, V) = 0 for all u ∈ U. Hence $b(u, V) = $b(u, u) for all u ∈ U. By Remark
3, we have u ∈ V = V, so U ⊆ V.

(iv) Let u ∈ U, v ∈ V and t ∈ Y. By (WPB4), we have $b(u, v) ≤ s[$b(u, t) + $b(t, v)]. Since v ∈ V is
arbitrary, therefore $b(u, V) ≤ s[$b(u, t) + $b(t, V)] and $b(u, V) ≤ s[$b(u, t) + supt∈Y $b(t, V)],
so that $b(u, V) ≤ s[$b(u, t) + δ$b(Y, V)]. Since t ∈ Y is arbitrary, therefore $b(u, V) ≤ s
[$b(u, Y) + δ$b(Y, V)]. Since u ∈ U is arbitrary, we have δ$b(U, V) ≤ s[δ$b(U, Y) + δ$b(Y, V)].

Definition 7. Let (M, $b) be a weak partial b-metric space. For U, V ∈ CB$b(M), the mapping H+
$b

:
CB$b(M)× CB$b(M)→ [0, ∞) define by

H+
$b
(U, V) =

1
2
{δ$b(U, V) + δ$b(V, U)}

is calledH+
$b

-type Hausdorff metric induced by $b.

Proposition 3. Let (M, $b) be a weak partial b-metric space. For any U, V, Y ∈ CB$b(M), we have:

(whb1) H+
$b
(U, U) ≤ H+

$b
(U, V);

(whb2) H+
$b
(U, V) = H+

$b
(V, U);

(whb3) H+
$b
(U, V) ≤ s[H+

$b
(U, Y) +H+

$b
(Y, V)].

Proof. From (ii) of Proposition 2, we have

H+
$b
(U, U) = δ$b(U, U) ≤ δ$b(U, V) ≤ H+

$b
(U, V).

Also (whb2) obviously holds by definition. Now for (whb3), from (iv) of Proposition 2, we have

H+
$b
(U, V) =

1
2
{δ$b(U, V) + δ$b(V, U)}

≤ 1
2
{s[δ$b(U, Y) + δ$b(Y, V)] + s[δ$b(V, Y) + δ$b(Y, U)]}

= s[
1
2
{δ$b(U, Y) + δ$b(Y, U)}+ 1

2
{δ$b(Y, V) + δ$b(V, Y)}]

= s[H+
$b
(U, Y) +H+

$b
(Y, V)].

Following lemma is essential:
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Lemma 1. Let (M, $b) be weak partial b-metric space with s ≥ 1 and T : M → CB$b(M) be a multivalued
mapping. If {un} is a sequence in M such that un ∈ T un−1 and

$b (un, un+1) ≤ λ$b (un−1, un)

for each where λ ∈ (0, 1), then {un} is Cauchy.

Proof. Let u0 ∈ M and un ∈ T un−1 for all n ∈

Following lemma is essential:103

Lemma 3.1. Let (M,%b) be weak partial b-metric space with s ≥ 1 and T : M → CB%b(M) be104

a multivalued mapping. If {un} is a sequence in M such that un ∈ T un−1 and105

%b (un, un+1) ≤ λ%b (un−1, un)

for each n ∈ N, where λ ∈ (0, 1), then {un} is Cauchy.106

Proof. Let u0 ∈M and un ∈ T un−1 for all n ∈ N. We divide the proof into two cases:107

Case-I: Let λ ∈ [0, 1s ) (s > 1) . By the hypotheses, we have108

%b (un, un+1) ≤ λ%b (un−1, un) ≤ λ2%b (un−2, un−1) ≤ · · · ≤ λn%b (u0, u1) .

Thus, for n > m, we have109

%b (um, un) ≤ s [%b (um, um+1) + %b (um+1, un)]

≤ s%b (um, um+1) + s2 [%b (um+1, um+2) + %b (um+2, un)]

≤ s%b (um, um+1) + s2%b (um+1, %um+2) + s3 [%b (um+2, um+3) + %b (um+3, un)]

≤ s%b (um, um+1) + s2%b (um+1, um+2) + s3%b (um+2, um+3)

+ · · ·+sn−m−1%b (un−2, un−1) + sn−m−1%b (un−1, un)

≤ sλm%b (u0, u1) + s2λm+1%b (u0, u1) + s3λm+2%b (u0, u1)

+ · · ·+sn−m−1λn−2%b (u0, u1) + sn−m−1λn−1%b (u0, u1)

≤ sλm

(
1 + (sλ) + (sλ)2 + · · ·+ (sλ)n−m−2 +

(sλ)n−m−1

s

)
%b (u0, u1)

≤ sλm

(
1

1− sλ +
(sλ)n−m−1

s

)
%b (u0, u1)

=

(
sλm

1− sλ + (sλ)n−1
)
%b (u0, u1)→ 0 (n,m→∞) .

Using (1) and the definition of %sb, we get that %sb(um, un) ≤ %b(um, un) tends to 0 as m,n tends
to+∞ which implies that {un} is Cauchy in b-metric space (M,%sb). Since (M,%b) is complete,
therefore (M,%sb) is a complete b-metric space. Consequently, the sequence {un} converges to a
point (say) u∗ ∈M w.r.t b-metric %sb, that is, lim

n→+∞
%sb(un, u

∗) = 0. Again, from (1) we get

%b(u
∗, u∗) = lim

n→+∞
%b(un, u

∗) = lim
n→+∞

%b(un, un) = 0.

Thus {un} is a Cauchy sequence in (M,%b).110

Case-II: Let λ ∈ [1s , 1) (s > 1) . In this case, we have λn → 0 as n → ∞, then there is k ∈ N111

such that λk < 1
s . Thus, by Case-I, we have that112

{uk, uk+1, uk+2, ..., uk+n, ...} ,

is a Cauchy sequence. Since113

{un}∞n=0 = {u0, u1,..., uk−1} ∪ {uk, uk+1, uk+2, ..., uk+n, ...} ,

we obtain that un ∈ T nu0, n = 1, 2, ... is a Cauchy sequence in M.114

6

. We divide the proof into two cases:
Case I. Let λ ∈ [0, 1

s ) (s > 1) . By the hypotheses, we have

$b (un, un+1) ≤ λ$b (un−1, un) ≤ λ2$b (un−2, un−1) ≤ · · · ≤ λn$b (u0, u1) .

Thus, for n > m, we have

$b (um, un) ≤ s [$b (um, um+1) + $b (um+1, un)]

≤ s$b (um, um+1) + s2 [$b (um+1, um+2) + $b (um+2, un)]

≤ s$b (um, um+1) + s2$b (um+1, $um+2) + s3 [$b (um+2, um+3) + $b (um+3, un)]

≤ s$b (um, um+1) + s2$b (um+1, um+2) + s3$b (um+2, um+3)

+ · · ·+sn−m−1$b (un−2, un−1) + sn−m−1$b (un−1, un)

≤ sλm$b (u0, u1) + s2λm+1$b (u0, u1) + s3λm+2$b (u0, u1)

+ · · ·+sn−m−1λn−2$b (u0, u1) + sn−m−1λn−1$b (u0, u1)

≤ sλm

(
1 + (sλ) + (sλ)2 + · · ·+ (sλ)n−m−2 +

(sλ)n−m−1

s

)
$b (u0, u1)

≤ sλm

(
1

1− sλ
+

(sλ)n−m−1

s

)
$b (u0, u1)

=

(
sλm

1− sλ
+ (sλ)n−1

)
$b (u0, u1)→ 0 (n, m→ ∞) .

Using (1) and the definition of $s
b, we get that $s

b(um, un) ≤ $b(um, un) tends to 0 as m, n tends to + ∞
which implies that {un} is Cauchy in b-metric space (M, $s

b). Since (M, $b) is complete, therefore
(M, $s

b) is a complete b-metric space. Consequently, the sequence {un} converges to a point (say)
u∗ ∈ M w.r.t b-metric $s

b, that is, lim
n→+∞

$s
b(un, u∗) = 0. Again, from (1) we get

$b(u∗, u∗) = lim
n→+∞

$b(un, u∗) = lim
n→+∞

$b(un, un) = 0.

Thus {un} is a Cauchy sequence in (M, $b).

Case II. Let λ ∈ [ 1
s , 1) (s > 1) . In this case, we have λn → 0 as n → ∞, then there is k ∈

Following lemma is essential:103

Lemma 3.1. Let (M,%b) be weak partial b-metric space with s ≥ 1 and T : M → CB%b(M) be104

a multivalued mapping. If {un} is a sequence in M such that un ∈ T un−1 and105

%b (un, un+1) ≤ λ%b (un−1, un)

for each n ∈ N, where λ ∈ (0, 1), then {un} is Cauchy.106

Proof. Let u0 ∈M and un ∈ T un−1 for all n ∈ N. We divide the proof into two cases:107

Case-I: Let λ ∈ [0, 1s ) (s > 1) . By the hypotheses, we have108

%b (un, un+1) ≤ λ%b (un−1, un) ≤ λ2%b (un−2, un−1) ≤ · · · ≤ λn%b (u0, u1) .

Thus, for n > m, we have109

%b (um, un) ≤ s [%b (um, um+1) + %b (um+1, un)]

≤ s%b (um, um+1) + s2 [%b (um+1, um+2) + %b (um+2, un)]

≤ s%b (um, um+1) + s2%b (um+1, %um+2) + s3 [%b (um+2, um+3) + %b (um+3, un)]

≤ s%b (um, um+1) + s2%b (um+1, um+2) + s3%b (um+2, um+3)

+ · · ·+sn−m−1%b (un−2, un−1) + sn−m−1%b (un−1, un)

≤ sλm%b (u0, u1) + s2λm+1%b (u0, u1) + s3λm+2%b (u0, u1)

+ · · ·+sn−m−1λn−2%b (u0, u1) + sn−m−1λn−1%b (u0, u1)

≤ sλm

(
1 + (sλ) + (sλ)2 + · · ·+ (sλ)n−m−2 +

(sλ)n−m−1

s

)
%b (u0, u1)

≤ sλm

(
1

1− sλ +
(sλ)n−m−1

s

)
%b (u0, u1)

=

(
sλm

1− sλ + (sλ)n−1
)
%b (u0, u1)→ 0 (n,m→∞) .

Using (1) and the definition of %sb, we get that %sb(um, un) ≤ %b(um, un) tends to 0 as m,n tends
to+∞ which implies that {un} is Cauchy in b-metric space (M,%sb). Since (M,%b) is complete,
therefore (M,%sb) is a complete b-metric space. Consequently, the sequence {un} converges to a
point (say) u∗ ∈M w.r.t b-metric %sb, that is, lim

n→+∞
%sb(un, u

∗) = 0. Again, from (1) we get

%b(u
∗, u∗) = lim

n→+∞
%b(un, u

∗) = lim
n→+∞

%b(un, un) = 0.

Thus {un} is a Cauchy sequence in (M,%b).110

Case-II: Let λ ∈ [1s , 1) (s > 1) . In this case, we have λn → 0 as n → ∞, then there is k ∈ N111

such that λk < 1
s . Thus, by Case-I, we have that112

{uk, uk+1, uk+2, ..., uk+n, ...} ,

is a Cauchy sequence. Since113

{un}∞n=0 = {u0, u1,..., uk−1} ∪ {uk, uk+1, uk+2, ..., uk+n, ...} ,

we obtain that un ∈ T nu0, n = 1, 2, ... is a Cauchy sequence in M.114

6

such that
λk < 1

s . Thus, by Case-I, we have that

{uk, uk+1, uk+2, ..., uk+n, ...} ,

is a Cauchy sequence. Since

{un}∞
n=0 = {u0, u1,..., uk−1} ∪ {uk, uk+1, uk+2, ..., uk+n, ...} ,

we obtain that un ∈ T nu0, n = 1, 2, ... is a Cauchy sequence in M.

Definition 8. Let (M, $b) be a complete weak partial b-metric space. A multivalued mapping T : M →
CB$b(M) is calledH+

$b
-contraction if
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(1′) for every s, t ∈ M, ∃ k ∈ (0, 1) such that

H+
$b
(Ts\{s}, Tt\{t}) ≤ k$b(s, t);

(2′) for every s ∈ X, t in Ts and ε > 0, ∃ z in T t such that

$b(t, z) ≤ H+
$b
(T s, T t) + ε.

4. Fixed Point Result

Our main result is the following:

Theorem 2. EveryH+
$b

-type multivalued contraction on a complete weak partial b-metric space (M, $b) has
a fixed point.

Proof. Let u0 ∈ M be arbitrary. If u0 ∈ T u0 then u0 is the fixed point. Therefore, we assume that
u0 6∈ T u0. Let u1 ∈ T u0 and u0 6= u1 such that u1 6∈ T u1. From (2′), we have u2 ∈ T u1 such that
u2 6= u1 and

$b(u1, u2) ≤ H+
$bb

(T u0, T u1) + ε.

Continuing this process we get un+1 ∈ T un such that un+1 6= un and

$b(un, un+1) ≤ H+
$b
(T un−1, T un) + ε. (2)

Choosing ε =
(

1√
k
− 1
)
H+

$b
(T un−1, T un) in (2), we have

$b(un, un+1) ≤ H+
$b
(T un−1, T un) +

(
1√
k
− 1
)
H+

$b
(T un−1, T un) =

1√
k
H+

$b
(T un−1, T un).

Thus √
k$b(un, un+1) ≤ H+

$b
(T un−1, T un) = H+

$b
(T un−1\{un−1}, T un\{un}) .

From (1′), we get √
k$b(un, un+1) ≤ k$b(un−1, un) = (

√
k)2$b(un−1, un).

Thus for all n ∈ N,

$b(un, un+1) ≤
√

k$b(un−1, un). (3)

Taking
√

k = λ, we obtained by Lemma 1 that {un} is a Cauchy sequence. Since (M, $b) is complete.
Therefore, there exists u∗ ∈ M such that lim

n→+∞
un = u∗. To show that u∗ ∈ T . On contrary suppose

that u∗ 6∈ T u∗. Since

1
2
[δ$b(T un, T u∗) + δ$b(T u∗, T un)] = H+

$b
(T un, T u∗)

= H+
$b
(T un\{un}, T u∗\{u∗})

≤ k$b(un, u∗),

hence
lim

n→+∞
inf[δ$b(T un, T u∗) + δ$b(T u∗, T un)] = 0.

Since

lim
n→+∞

inf δ$b(T un, T u∗) + lim
n→+∞

inf δ$b(T u∗, T un) ≤ lim
n→+∞

inf[δ$b(T un, T u∗) + δ$b(T u∗, T un)],
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we have
lim

n→+∞
inf δ$b(T un, T u∗) + lim

n→+∞
inf δ$b(T u∗, T un) = 0.

This implies that
lim

n→+∞
inf δ$b(T un, T u∗) = 0.

Since
$b(u∗, T u∗) ≤ δ$b(T un, T u∗) + $b(un+1, u∗),

therefore

$b(u∗, T u∗) ≤ lim
n→+∞

inf[δ$b(T un, T u∗) + $b(un+1, u∗)]

= lim
n→+∞

inf δ$b(T un, T u∗) + lim
n→+∞

$b(un+1, u∗).

This implies $b(u∗, T u∗) = 0, therefore from (1), we obtain

$b(u∗, u∗) = $b(u∗, T u∗),

which implies u∗ ∈ T u∗ = T u∗, as T u∗ is closed.

Example 2. Consider a set M = {0, 1
2 , 1} and $b : M×M→ R+ a weak partial b-metric given by

$b(u, v) =
1
2
|u− v|2 + 1

2
max{u, v} for all u, v ∈ M.

Since $b

(
1
2 , 1

2

)
= 1

4 6= 0 and $b(1, 1) = 1
2 6= 0. Also

u ∈ {0} ⇔ $b(u, {0}) = $b(u, u)

⇔ 1
2

u2 +
1
2

u =
1
2

u⇔ u = 0

⇔ u ∈ {0}.

Also

u ∈ {0, 1} ⇔ $b(u, {0, 1}) = $b(u, u)

⇔ min
{

1
2

u2 +
1
2

u,
1
2
|u− 1|2 + 1

2
max{u, 1}

}
=

1
2

u

⇔ u ∈ {0, 1}

and

u ∈
{

0,
1
2

}
⇔ $b

(
u,
{

0,
1
2

})
= $b(u, u)

⇔ min

{
1
2

u2 +
1
2

u,
1
2

∣∣∣∣u−
1
2

∣∣∣∣
2
+

1
2

max
{

u,
1
2

}}
=

1
2

u

⇔ u ∈
{

0,
1
2

}
.

Hence, {0}, {0, 1} and
{

0, 1
2

}
are closed w.r.t weak partial b-metric $b.

Define T : X → CB$b(M) by

T (0) = {0}, T
(

1
2

)
=

{
0,

1
2

}
and T (1) = {0, 1}.
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To show that for all u, v ∈ M, the contractive condition (1′) holds for all k ∈ (0, 1), we consider the
following cases:

For u = v = 0, we have

H+
$b
(T (0)\{0}, T (0)\{0}) = H+

$b
({0}\{0}, {0}\{0}) = H+

$b
(∅, ∅) = 0,

so (1′) satisfied.
For u = 0, v = 1

2 , we have

H+
$b

(
T (0)\{0}, T

(
1
2

)
\
{

1
2

})
= H+

$b

(
{0}\{0},

{
0,

1
2

}
\
{

1
2

})
= H+

$b
(∅, {0}) = 0,

so (1′) satisfied.
For u = v = 1

2 , we have

H+
$b

(
T
(

1
2

)
\
{

1
2

}
, T
(

1
2

)
\
{

1
2

})
= H+

$b

({
0,

1
2

}
\
{

1
2

}
,
{

0,
1
2

}
\
{

1
2

})

= H+
$b
({0}, {0}) = $b(0, 0) = 0,

so (1′) satisfied.
For u = 0, v = 1, we have

H+
$b
(T (0)\{1}, T (1)\{1}) = H+

$b
({0}\{0}, {0, 1}\{0}) = H+

$b
(∅, {0}) = 0,

so (1′) satisfied.
For u = 1

2 , v = 1, we have

H+
$b

(
T
(

1
2

)
\
{

1
2

}
, T (1)\{1}

)
= H+

$b

({
0,

1
2

}
\{0}, {0, 1}\{1}

)
= H+

$b
({0}, {0})

= $b(0, 0) = 0,

so (1′) satisfied.
For u = v = 1, we have

H+
$b
(T (1)\{1}, T (1)\{1}) = H+

$b
({0, 1}\{1}, {0, 1}\{1}) = H+

$b
({0}, {0}) = $b(0, 0) = 0,

so (1′) satisfied.

Further, we show that for every u ∈ M, v ∈ T u and ε > 0, ∃ w ∈ T v such that

$b(v, w) ≤ H+
$b
(T u, T v) + ε.

So,

(a) If u = 0, v ∈ T (0) = {0}, ε > 0, ∃ w ∈ T v = {0}

0 = $b(v, w) ≤ H+
$b
(T v, T u) + ε.

(b) If u = 1
2 , v ∈ T u = T ( 1

2 ) = {0, 1
2}, for v = 0, ε > 0, ∃ w ∈ T v = {0} such that

0 = $b(v, w) <
3

16
+ ε ≤ H+

$b
(T v, T u) + ε
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and for v = 1
2 , ε > 0, ∃ w ∈ Tv = {0, 1

2} such that

1
4
= $b(v, w) <

1
4
+ ε ≤ H+

$b
(T v, T u) + ε.

(c) If u = 1, v ∈ T u = T (1) = {0, 1}, for v = 0, ε > 0, ∃ w ∈ Tv = {0} such that

0 = $b(v, w) <
3
4
+ ε ≤ H+

$b
(T v, T u) + ε

and for v = 1, ε > 0, ∃ w ∈ T v = {0, 1} such that

1
2
= $b(v, w) <

1
2
+ ε ≤ H+

$b
(T v, T u) + ε.

Thus condition (2′) is satisfied.
Hence Theorem 2 can be applied and we conclude that u ∈ {0, 1

2 , 1} is fixed points of T .

5. Application

We now apply our main result to show the existence of solution of nonlinear integral inclusion of
Volterra type. Suppose l = (0, 1), and M = C[l,R), the space of all continuous functions f : l → R.
Consider weak partial b-metric on M by

$b(x, y) = sup
t∈l

e−βt|x(t)− y(t)|p + α,

∀ x, y ∈ C(l,R), p > 1 and α > 0. We have $s
b(x, y) = supt∈l e−βt|x(t)− y(t)|p, so by Definition 6,

(C(l,R), $b) is complete partial b-metric space. Denote by Pcl(R) the class of all nonempty closed
subsets of R.

Theorem 3. Assume the integral equation inclusion of Volterra type

y(t) ∈ f (t) +
∫ t

0
K(t, s, y(s))ds, t ∈ l. (4)

Suppose

(a) K : l × l × R → Pcl(R) is such that Ky(t, s) := K(t, s, y(s)) is continuous for all (t, s) ∈ l × l and
y ∈ C(l,R);

(b) f ∈ C(l,R);
(c) for each t ∈ l, there exist y ∈ C(l,R), such that

H+
$b
(K(t, x, y(x)), K(t, x, h(x))) ≤ 1

tp−1

(
sup
x∈l
|y(x)− h(x)|p + α

)
,

for all t, x ∈ l and all y, h ∈ C(l,R).

Then there is at least one solution of (4) in C(l,R).

Proof. Define T : C(l,R)→ Pcl(C(l,R)) by

T x(t) =
{

y ∈ C(l,R) such that y(t) ∈ f (t) +
∫ t

0
K(t, s, x(s))ds, t ∈ l

}

for each x ∈ C(l,R). For each Kx : l× l → Pcl(R) there exists kx : l× l → R such that kx(t, s) ∈ Kx(t, s)
for all t, s ∈ l. This implies that f (t) +

∫ t
0 kx(t, s)ds ∈ T x, and so T x 6= ∅. It is easy to prove that T x

is closed.
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We show that T is H+
$b

-type multivalued contraction. Let u1, u2 ∈ C(l,R) and y ∈ T x. Then ∃
ku1(t, s) ∈ Ku1(t, s), t, s ∈ l such that y(t) = f (t) +

∫ t
0 kx(t, s)ds, t ∈ l. Also by hypothesis (iii),

H+
$b
(K(t, s, u1(s)), K(t, s, u2(s))) ≤

1
tp−1

(
sup
s∈l
|u1(s)− u2(s)|p + α

)
∀ t, s ∈ l.

Then there exist g(t, s) ∈ Ku1(t, s) such that

|ku1(t, s)− g(t, s)|p + ξ ≤ 1
tp−1 [|u1(s)− u2(s)|p + α]

for all t, s ∈ l. Define a multivalued operator Q(t, s) by

Q(t, s) = Ku2(t, s) ∩ {η ∈ R, |ku1 − η|p + α ≤ 1
tp−1 |u1(s)− u2(s)|p + α}

for all t, s ∈ l. Since Q is continuous operator, there exists a continuous operator ku2 : l × l → R such
that ku2(t, s) ∈ Q(t, s) for all t, s ∈ l and

h(t) = f (t) +
∫ t

0
ku2(t, s)ds ∈ f (t) +

∫ t

0
K(t, s, u2(s))ds.

Therefore, let q > 1 such that 1
p + 1

q = 1.

$b(y(t), T u2(t)) ≤ $b(y(t), h(t))

= sup
t∈l

e−βt|y(t)− h(t)|p + α

= sup
t∈l

e−βt
∣∣∣∣
∫ t

0
[ku1(t, s)− ku2(t, s)]ds

∣∣∣∣
p
+ α

≤ sup
t∈l

e−βt

[(∫ t

0
ds
) 1

q
(∫ t

0
|ku1(t, s)− ku2(t, s)|pds

) 1
p
]p

+ α

≤ sup
t∈l

e−βt (t)
p
q

(∫ t

0
|ku1(t, s)− ku2(t, s)|pds

)
+ α

= sup
t∈l

e−βt (t)p−1
(∫ t

0
eβse−βs|ku1(t, s)− ku2(t, s)|pds

)
+ α

= sup
t∈l

e−βt (t)p−1
(∫ t

0
eβse−βs|ku1(t, s)− ku2(t, s)|pds

)
+ α

= e−βt (t)p−1

(∫ t

0

(
eβs sup

t∈l
{e−βs|ku1(t, s)− ku2(t, s)|p + α} − α

)
ds

)
+ α

≤ e−βt (t)p−1

(∫ t

0

(
eβs sup

t∈l
{ 1

tp−1 |u1(t)− u2(t)|p + α} − α

)
ds

)
+ α

= e−βt (t)p−1 1
tp−1 $b(u1(t), u2(t))

∫ t

0
eβsds− e−βt (t)p−1

∫ t

0
αds + α

= e−βt$b(u1(t), u2(t))(eβt − 1)− e−βt (t)p−1 αt + α

= (1− e−βt)$b(u1(t), u2(t)) + (1− e−βttp)α

≤ (1− e−βt)$b(u1(t), u2(t))

= k.$b(u1(t), u2(t)),
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where k = (1− e−βt) < 1. Since y(t) is arbitrary, we have

δ$b(T u1, T u2) ≤ k.$b(u1, u2). (5)

Similarly, we get
δ$b(T u2, T u1) ≤ k.$b(u2, u1). (6)

From (5) and (6), we get

H+
$b
(T u1, T u2) = k.

δ$b(T u1, T u2) + δ$b(T u2, T u1))

2
≤ k.$b(u2, u1).

Hence, T isH+
$b

-type multivalued contraction. Thus all the assertions of Theorem 2 are satisfied and
hence (4) has a solution.

6. Conclusions

In this paper, we present the concept of weak partial b-metric spaces with their topology and
weak partial Hausdorff b-metric spaces and generalized the famous Nadler’s theorem in weak partial
b-metric space by using weak partial Hausdorff b-metric spaces. We give an example to show the
validity and an application to nonlinear Volterra integral inclusion for the usability of our result.
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