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Abstract: In this paper, we consider an insurance risk model with mixed premium income, in which
both constant premium income and stochastic premium income are considered. We assume that the
stochastic premium income process follows a compound Poisson process and the premium sizes are
exponentially distributed. A new method for estimating the expected discounted penalty function by
Fourier-cosine series expansion is proposed. We show that the estimation is easily computed, and it
has a fast convergence rate. Some numerical examples are also provided to show the good properties
of the estimation when the sample size is finite.

Keywords: compound poisson insurance risk model; expected discounted penalty function;
estimation; Fourier transform; Fourier-cosine series

1. Introduction

In this paper, we consider an insurance risk model with mixed premium income defined by

U(t) = u + ct +
M(t)

∑
i=1

Yi −
N(t)

∑
j=1

Xj, t ≥ 0, (1)

where u ≥ 0 is the initial surplus, c ≥ 0 is the constant premium rate, and U(t) denotes the surplus
level of an insurance company at time t. The premium number process M(t) and the claim number
process N(t) are homogenous Poisson processes with intensity µ > 0 and λ > 0, respectively.
The individual claim sizes, X1, X2, . . ., are positive independent and identically distributed (i.i.d)
continuous random variables with density function f . The premium sizes, Y1, Y2, . . . are positive i.i.d.
continuous random variables with exponential distribution function g(y) = βe−βy, y, β > 0, where β

is unknown. Throughout this paper, we assume that {M(t)}t≥0, {N(t)}t≥0, {Xi}i≥1 and {Yj}j≥1 are
mutually independent.

Whenever the surplus process becomes negative, we say that ruin occurs. The ruin time is
defined by

τ = inf{t ≥ 0 : U(t) < 0},

if for all t ≥ 0, U(t) > 0, we denote τ = ∞. To avoid that ruin is a certain event, suppose that the
following condition holds throughout this paper.

Net profit condition
c +

µ

β
− λE[X] > 0.
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The above condition guarantees that the expectation of the surplus process will always be positive
at any time t > 0.

Let δ ≥ 0 be the interest force, defining the expected discounted penalty function by

Φ(u) = E[e−δτw(U(τ−), |U(τ)|)1(τ<∞)|U(0) = u], u ≥ 0, (2)

where, w : [0, ∞)× [0, ∞)→ [0, ∞) is a measurable penalty function of the surplus before ruin and the
deficit at ruin, and 1A is an indicator function of the event A. This function was first introduced by
Gerber and Shiu [1], and is called Gerber-Shiu function in the literature. It has become an important
and standard risk measure in ruin theory since various quantities of interests in ruin theory can be
obtained for different values of the discount factor δ and different penalty functions w. For recent
research progress on the Gerber-Shiu function, we can refer to work by Lin et al. [2], Yuen et al. [3,4],
Zhao and Yin [5], Chi [6], Yin and Wang [7], Chi and Lin [8], Shen et al. [9], Yin and Yuen [10], Zhao
and Yao [11], Li et al. [12,13], Dong et al. [14], and Wang and Zhang [15], among others.

For the classical insurance risk model, the premium rate is usually set to a constant.
Extensive research has been done on the ruin measures of the model and its extension under the
constant premium rate, such as ruin probability, Gerber-Shiu function (see, e.g., Gerber and Shiu [1],
Willmot and Dickson [16], Wang et al. [17], Yin and Yuen [18], Dong and Yin [19], Yu [20], Yin et al. [21],
Zeng et al. [22], Zhao et al. [23] and Yu et al. [24]). However, in the actual insurance business,
the premium income of an insurance company, especially a small one, is sometimes volatile and
random. In view of this situation, Boucherie et al. [25] first extended the classical risk model to
the risk model with stochastic premium income by replacing the constant premium income with a
compound Poisson process. Since then, the risk model with stochastic premium income has been
widely studied by many scholars. The non-ruin probability and ruin probability were, respectively,
studied by Boikov [26] and Temnov [27]. Bao [28], Bao and Ye [29] and Yang and Zhang [30] studied
the Gerber-Shiu function in the classical risk model, delayed renewal risk model and Sparre Andersen
risk model by assuming the premium process are Poisson process, respectively. Supposing premium
and claim process follow compound Poisson processes, a defective renewal equation satisfied by the
Gerber-Shiu function was established by Labbé and Sendova [31]. Yang and Zhang [32] further studied
the above model by assuming that there exists a specific dependence structure among the claim sizes,
inter-claim times and premium sizes and the individual premium sizes are exponentially distributed.
Zhao and Yin [33] considered a renewal risk model where the premiums follow a compound Poisson
risk process and the claims follow a generalized Erlang(n) process. The Laplace transform and a
defective renewal equation for the Gerber-Shiu function are derived when the premium sizes are
exponentially distributed. For more study on the risk model with stochastic premium income, the
interested readers are referred to the work by Xu et al. [34], Yu [35,36], Zhou et al. [37], Gao and
Wu [38], Zhou et al. [39], Deng et al. [40] and Zeng et al. [41] and the references therein.

The above-mentioned papers assume that some probability characteristics of the surplus process
are known, however, which are usually unknown for an insurance company. Actually, some data
information on the surplus process, such as surplus levels, claim and premium numbers, and claim and
premium sizes, can be obtained. Thus, some semi-parametric and parametric estimations of the ruin
probability and Gerber-Shiu function for different risk models are presented in recent literature (e.g.,
Politis [42], Wang and Yin [43], Yuen and Yin [44], Zhang et al. [45], Wang et al. [46], Zhang [47], Zhang
and Yang [48,49] and Shimizu and Zhang [50], Peng and Wang [51,52], Yang et al. [53,54]). Besides,
some effective methods, such as Laplace transform, Fourier-Sinc series expansion and Laguerre series
expansion, have been applied in estimating the ruin probability and Gerber-Shiu function based on
the observed data information. We refer the interested readers to Shimizu [55], Zhang [56], Zhang and
Su [57,58] and Su et al. [59], among others.

In recent years, Fang and Oosterlee [60] proposed a novel method for pricing European options
by Fourier-cosine series expansion, which is also called the COS method in the literature. It can be
easily applied to approximate an integrable function as long as the corresponding Fourier transform
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has closed-form expression. Now, the COS method has been widely used for pricing options and
other financial derivatives (see, e.g., Fang and Oosterlee [61] and Zhang and Oosterlee [62]). Recently,
the COS method has also been used in risk theory to compute and estimate some risk measures by
some actuarial researchers. For example, Chau et al. [63,64] used the COS method to compute the
ruin probability and Gerber-Shiu function in the Lévy risk models. Zhang [65] applied the COS
method to compute the density of the time to ruin in the classical risk model. Yang et al. [66] used a
two-dimensional COS method to estimate the discounted density function of the deficit at ruin in the
classical risk model with stochastic income where the premiums are only described by a compound
Poisson process and the premium sizes are exponential distributed. Inspired by Yang et al. [66], in
this paper, we extend the risk model of Yang et al. [66] by considering that there is also constant rate
premium income process. Then, we use the COS method to estimate the expected discounted penalty
function in this risk model with mixed premiums income process. The remainder of this paper is
organized as follows. In Section 2, we first briefly introduce the Fourier-cosine series expansion method,
and then derive the Fourier transform of the expected discounted penalty function. In Section 3, an
estimator of the expected discounted penalty function is proposed by the observed sample of the
surplus process. The consistent property is studied in Section 4 under large sample size setting. Finally,
in Section 5, we present some simulation results to show that the estimator behaves well under finite
sample size setting.

2. Preliminaries on Expected Discounted Penalty Function

2.1. Fourier-Cosine Series Expansion

In this subsection, we present some known results on the Fourier-cosine series expansion method.
Let L1(R+) denote the class of integrable functions on the positive axis, and let F f and L f denote the
Fourier transform and Laplace transform of a f ∈ L1(R+), respectively. For any complex number z,
we denote its real part and imaginary part by Re(z) and Im(z), respectively.

It is known that an integrable function f defined on [a1, a2] has the following cosine
series expansion,

f (x) =
∞

∑
k=0

′
{

2
a2 − a1

∫ a2

a1

f (x) cos
(

kπ
x− a1

a2 − a1

)
dx
}

cos
(

kπ
x− a1

a2 − a1

)
, (3)

where ∑′ means the first term of the summation has half weight. For a function f ∈ L1(R+), we
introduce an auxiliary function

fa(x) = f (x) · 1(0≤x≤a), a > 0,

then fa has a finite domain [0, a] and f (x) = fa(x) when x ∈ [0, a]. By Equation (3), we have

f (x) = fa(x) =
∞

∑
k=0

′
{

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx
}

cos
(

kπ
x
a

)
, 0 ≤ x ≤ a. (4)

For large a, we have

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx =

2
a

Re
{∫ a

0
f (x)ei kπ

a xdx
}
≈ 2

a
Re
{
F f

(
kπ

a

)}
,

thus

f (x) ≈
∞

∑
k=0

′ 2
a

Re
{
F f

(
kπ

a

)}
cos

(
kπ

x
a

)
, 0 ≤ x ≤ a.
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Furthermore, for a large integer K, the above summation can be truncated as follows:

f (x) ≈
K−1

∑
k=0

′ 2
a

Re
{
F f

(
kπ

a

)}
cos

(
kπ

x
a

)
, 0 ≤ x ≤ a. (5)

As for the expected discounted penalty function, it follows from Equation (5) that for 0 ≤ u ≤ a,

Φ(u) ≈ ΦK,a(u) :=
K−1

∑
k=0

′ 2
a

Re
{
FΦ

(
kπ

a

)}
cos

(
kπ

x
a

)
. (6)

It can be easily seen that the key of approximating the expected discounted penalty function
by Fourier-cosine series expansion method is to calculate the Fourier transform FΦ(s) for s ∈ { kπ

a :
k = 0, 1, . . . , K − 1}. Therefore, we derive a specific expression of Fourier transform FΦ(·) in the
next section.

2.2. The Fourier Transform of Expected Discounted Penalty Function

In this subsection, we derive the Fourier transform of the expected discounted penalty function.
For convenience, we introduce the Dickson-Hipp operator Ts (see, e.g., Dickson and Hipp [67] and
Li and Garrido [68]), which for any integrable function f on (0, ∞) and any complex number s with
Re(s) ≥ 0 is defined as

Ts f (y) =
∫ ∞

y
e−s(x−y) f (x)dx =

∫ ∞

0
e−sx f (x + y)dx, y ≥ 0.

The Dickson-Hipp operator has been widely used in ruin theory to simplify the expression of ruin
related functions. For properties on this operator, we refer the interested readers to Li and Garrido [68].

We call the following equation (with respect to s) the Lundberg’s fundamental equation for the
risk model defined in Equation (1),

(β− s)
[

s− δ + µ + λ

c
+

µ

c
· β

β− s
+

λ

c
L f (s)

]
= 0. (7)

By Lemma 2.1 in Zhao and Yin [33], we known that for δ ≥ 0 and c > 0, the above equation has
exactly two nonnegative roots, denoted as ρ1, ρ2 in this literature, and one of the roots ρ1 equals 0
when δ = 0.

Remark 1. Let

χ(s) = δ + µ + λ− cs− λL f (s) +
µβ

s− β
, s ≥ 0.

It is obvious that χ(s) = 0 also has exactly two nonnegative roots ρ1, ρ2. Under net profit condition,
we have

χ
′
(s) = −c + λ

∫ ∞

0
xe−sx f (x)dx− µβ

(s− β)2

≤ −c− λE[X]− µ

β
< 0, 0 ≤ s < β,

which implies that χ(s) is decreasing on [0, β). In addition, χ(s) is continuous on [0, β), χ(0) = δ ≥ 0 and
χ(β− 0) = −∞. Therefore, we conclude that the root ρ1 of equation χ(s) = 0 is located in the interval [0, β),
and, in particular, ρ1 = 0 when δ = 0; then, ρ2 is located in the interval (β, ∞).
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By Theorem 3.1 in Zhao and Yin [33], when stochastic premium income follows a compound
Poisson process, we known that the expected discounted penalty function satisfies the following
renewal equation

Φ(u) =
∫ u

0
Φ(u− x)H(x)dx + K(u), (8)

where

H(x) =
λ

c

[
β− ρ1

ρ1 − ρ2
Tρ1 f (x) +

β− ρ2

ρ2 − ρ1
Tρ2 f (x)

]
,

K(u) =
λ

c

[
β− ρ1

ρ1 − ρ2
Tρ1 ω(u) +

β− ρ2

ρ2 − ρ1
Tρ2 ω(u)

]
,

ω(u) =
∫ ∞

u
w(u, x− u) f (x)dx.

To derive the Fourier transform of Φ(u), we assume the following condition holds true.
Condition 1. The penalty function w satisfies∫ ∞

0

∫ ∞

0
(1 + x)w(x, y) f (x + y)dydx < ∞.

This condition guarantees Φ ∈ L1(R+).
Now, we compute the Fourier transform of the expected discounted penalty function.

Applying the Fourier transform on both sides of Equation (8) gives

FΦ(s) =
∫ ∞

0
eisuΦ(u)du

=
∫ ∞

0
eisu

∫ u

0
Φ(u− x)H(x)dxdu +

∫ ∞

0
eisuK(u)du

=
∫ ∞

0

∫ ∞

0
eis(z+x)Φ(z)dzdx +FK(s)

= FΦ(s)FH(s) +FK(s),

leading to

FΦ(s) =
FK(s)

1−FH(s)
. (9)

For the Fourier transform FH(s), we have

FH(s) =
∫ ∞

0
eisuH(x)dx =

λ

c

[
β− ρ1

ρ1 − ρ2

∫ ∞

0
eisxTρ1 f (x)dx +

β− ρ2

ρ2 − ρ1

∫ ∞

0
eisxTρ2 f (x)dx

]
,

where ∫ ∞

0
eisuTρj f (x)dx =

∫ ∞

0
eisx

∫ ∞

x
e−ρj(y−x) f (y)dydx

=
∫ ∞

0

∫ ∞

x
e(is+ρj)x · e−ρjy f (y)dydx

=
1

ρj + is

[∫ ∞

0
eisy f (y)dy−

∫ ∞

0
e−ρiy f (y)dy

]
=

1
ρj + is

[F f (s)−L f (ρj)], j = 1, 2.
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Then, we obtain

FH(s) =
λ

c(ρ1 − ρ2)

[
(β− ρ2)[F f (s)−L f (ρ2)]

ρ2 + is
− (β− ρ1)[F f (s)−L f (ρ1)]

ρ1 + is

]
. (10)

Similarly, for FK(s), we obtain

FK(s) =
λ

c(ρ1 − ρ2)

[
(β− ρ2)[Fω(s)−Lω(ρ2)]

ρ2 + is
− (β− ρ1)[Fω(s)−Lω(ρ1)]

ρ1 + is

]
. (11)

3. Estimation Procedure

In this section, we study how to estimate the expected discounted penalty function by
Fourier-cosine series expansion based on the discretely observed information of the surplus process,
the aggregate claims and premiums processes. According to Equation (6), we know that the key is to
construct an estimation of FΦ(s) based on these discrete information.

Assume that we can observe the surplus process over a long time interval [0, T]. Let ∆ > 0 be a
fixed inter-observation interval. Furthermore, without loss of generality, we assume T/∆ is an integer
denoted as n.

Suppose that the insurer can get the following datasets.

(1) Dataset of surplus levels:
{Uj∆ : j = 0, 1, 2, . . . , n},

where Uj∆ is the observed surplus level at time t = j∆.
(2) Dataset of claim numbers and claim sizes:

{Nj∆, X1, X2, . . . , XNj∆}, j = 1, . . . , n,

where Nj∆ is the total claim number up to time t = j∆.
(3) Dataset of premium numbers and claim sizes:

{Mj∆, Y1, Y2, . . . , YNj∆}, j = 1, . . . , n,

where Mj∆ is the total premium number up to time t = j∆.

Next, we study how to estimate the Fourier transform FΦ(s) based on the above datasets.
To estimate FΦ(s) by Equations (9)–(11), we should first estimate the following characteristics:

λ, µ, β, F f , Fω, ρj, L f (ρj), Lω(ρj), j = 1, 2.

First, we can estimate F f (s) by the empirical characteristic function

F̂ f (s) =
1

NT

NT

∑
j=1

eisXj .

Similarly, L f (s) can be estimated by

L̂ f (s) =
1

NT

NT

∑
j=1

e−sXj .
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Next, for the function ω(u), we have

Fω(s) = E
(∫ X

0
eisuw(u, X− u)du

)
,

Lω(s) = E
(∫ X

0
e−suw(u, X− u)du

)
.

Then, Fω(s) and Lω(s) can be respectively estimated by

F̂ω(s) =
1

NT

NT

∑
j=1

∫ Xj

0
eisuw(u, Xj − u)du,

L̂ω(s) =
1

NT

NT

∑
j=1

∫ Xj

0
e−suw(u, Xj − u)du.

According to the property of Poisson distribution, λ and µ can be estimated by

λ̂ =
1
T

NT , µ̂ =
1
T

MT .

It is easily seen that
λ̂− λ = Op(T−

1
2 ), µ̂− µ = Op(T−

1
2 ).

Since the premium size Y follows exponential distribution with parameter β, we have E[Y] = 1
β

;

then, we can estimate β by

β̂ =
1

1
MT

MT

∑
i=1

Yi

.

It is also easily seen that β̂− β = Op(T−
1
2 ). The estimation of ρj, j = 1, 2, denoted as ρ̂j, j = 1, 2,

are defined to be the nonnegative roots of the following equation (in s),

δ + µ̂ + λ̂− cs− λ̂L̂ f (s) +
µ̂β̂

s− β̂
= 0.

Furthermore, we can, respectively, estimate L f (ρj), Lω(ρj), j = 1, 2 by L̂ f (ρ̂j), L̂ω(ρ̂j), j = 1, 2.

Remark 2. Let

χ̂(s) = δ + µ̂ + λ̂− cs− λ̂L̂ f (s) +
µ̂β̂

s− β̂
, s ≥ 0.

By the similar arguments of the Lunderg’s fundamental equation in Zhao and Yin [33], we can obtain
that equation χ̂(s) = 0 has exactly two nonnegative roots, denoted as ρ̂1, ρ̂2 in this literature. It is clear that
χ̂(0) = δ ≥ 0 and χ̂(β̂− 0) = −∞. Under net profit condition, we have

χ̂
′
(s) = −c + λ̂

1
NT

NT

∑
j=1

Xje
−sXj − µ̂β̂

(s− β̂)2

≤ −c + λ̂
1

NT

NT

∑
j=1

Xj −
µ̂

β̂

a.s.−→ −c + λE[X]− µ

β
< 0, 0 ≤ s < β̂.
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Therefore, we obtain that the probability that χ̂(s) = 0 has unique root ρ̂1 on [0, β̂) tends to one as T → ∞.
We set ρ̂1 = 0 when δ = 0 since ρ1 = 0 in this case. Then, the other root ρ̂2 is located in the interval (β̂, ∞)

with probability tends to one as T → ∞.

Proposition 1. Suppose that net profit condition holds true, then we have ρ̂1
p−→ ρ1 and ρ̂2

p−→ ρ2.

Proof of Proposition 1. By Remark 2, when 0 ≤ s < β̂, χ̂(s) is continuous and the probability that
χ̂(s) = 0 has unique nonnegative root tends to one as T → ∞; and when s > β̂, χ̂(s) is continuous and
the probability that χ̂(s) = 0 has unique positive root tends to one as T → ∞. By Remark 1, it is easily
seen that, for every ε > 0, χ(ρ1 − ε) > 0 > χ(ρ1 + ε) and χ(ρ2 − ε) > 0 > χ(ρ2 + ε). Besides, we find

that for any s > 0, χ̂(s)
p−→ χ(s). Thus, it follows from Lemma 5.10 in Van Der Vaart [69] that ρ̂1

p−→ ρ1

and ρ̂2
p−→ ρ2.

Once we have obtained the estimation of the above characteristics, by Equations (9)–(11), the
estimation of Fourier transform FΦ(s), denoted as F̂Φ(s), can be defined as

F̂Φ(s) =
F̂K(s)

1− F̂H(s)
, (12)

where

F̂K(s) =
λ̂

c(ρ̂1 − ρ̂2)

[
(β̂− ρ̂2)[F̂ω(s)− L̂ω(ρ̂2)]

ρ̂2 + is
− (β̂− ρ̂1)[F̂ω(s)− L̂ω(ρ̂1)]

ρ̂1 + is

]
,

F̂H(s) =
λ̂

c(ρ̂1 − ρ̂2)

[
(β̂− ρ̂2)[F̂ f (s)− L̂ f (ρ̂2)]

ρ̂2 + is
− (β̂− ρ̂1)[F̂ f (s)− L̂ f (ρ̂1)]

ρ̂1 + is

]
.

Finally, replacing FΦ(·) in Equation (6) by the estimation F̂Φ(·), the expected discounted penalty
function can be estimated by

Φ̂K,a(u) :=
K−1

∑
k=0

′ 2
a

Re
{
F̂Φ

(
kπ

a

)}
cos

(
kπ

x
a

)
, 0 ≤ u ≤ a. (13)

4. Consistency Properties

In this section, we study the asymptotic properties of the estimation Φ̂K,a. Let L2(R+) denote the
class of square integrable functions on the positive axis. For any function f ∈ L2(R+), its L2-norm is

defined by ‖ f ‖ =
(∫ ∞

0
f 2(x)dx

) 1
2
. Throughout this section, C represents a positive generic constant

that may take different values at different steps. In addition, we define

Hj(x) =
∫ x

0
ujw(u, x− u)du, j = 0, 1, 2.

It is easy to see that ∫ ∞

0
ujω(u)du = E

[
Hj(X)

]
.

For reader’s convenience, we introduce some definitions in empirical process theory, which are
used to study the asymptotic properties. For any measurable function f , its Lr(P)-norm is defined by

‖ f ‖P,r =

(∫
| f (ω)|rdP(ω)

) 1
r
. Given two functions l and u, the bracket [l, u] is the set of all functions

f with l ≤ f ≤ u. An ε-bracket in Lr(P) is a bracket [l, u] with ‖u− l‖P,r < ε. For a class G ⊂ Lr(P),
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the bracketing number N�(ε, G, Lr(P)) is the minimum number of ε-brackets needed to cover G. For

β > 0, the bracketing integral is defined by J� (β,G, Lr(P)) =
∫ β

0

√
N�(ε, G, Lr(P))dε.

We use the L2-norm to study the asymptotic properties of the estimator. The following condition
is useful in our discussion, which ensures Φ ∈ L2(R+).
Condition 2. For the penalty function w, there exist some integers α1, α2 and constant C such that

w(x, y) ≤ C(1 + x)α1(1 + y)α2 .

Put ΦK,a = Φ̂K,a = 0 when u > a. By triangle inequality, we have

‖Φ− Φ̂K,a‖ ≤ ‖Φ−ΦK,a‖+ ‖ΦK,a − Φ̂K,a‖, (14)

where the first term ‖Φ−ΦK,a‖ is the bias caused by Fourier cosine series approximation, and the
second term ‖ΦK,a − Φ̂K,a‖ is the bias caused by statistical estimation.

For the bias ‖Φ − ΦK,a‖, by similar arguments to those of Zhang [65], we obtain the
following result.

Theorem 1. Suppose that
∫ ∞

0
|Φ′(u)|du < ∞ and for some integer m, Φ(u) ≤ Cu−(m+1); then, under net

profit condition, Conditions 1 and 2, we have

‖Φ−ΦK,a‖ ≤ C
{

K + 1
a2m+1 +

a
K− 1

}
.

Next, we study the error ‖ΦK,a − Φ̂K,a‖. For ρ̂1 and ρ̂2, we derive the following result.

Theorem 2. Supposing that net profit condition holds, we have ρ̂1 − ρ1 = Op(T−
1
2 ). Supposing that

c > λE[X], we have ρ̂2 − ρ2 = Op(T−
1
2 ).

Proof of Theorem 2. By the mean value theorem,

χ̂(ρj) = χ̂(ρ̂j) + χ̂
′
(ρ∗j )(ρj − ρ̂j) = χ̂

′
(ρ∗j )(ρj − ρ̂j), j = 1, 2,

where ρ∗j (j = 1, 2) is a random number between ρj (j = 1, 2) and ρ̂j (j = 1, 2). Since χ(ρj) = 0, j = 1, 2,
we obtain

ρ̂j − ρj =
χ(ρj)− χ̂(ρj)

χ̂
′(ρ∗j )

, j = 1, 2.

It is easily seen that χ(ρj)− χ̂(ρj) = Op(T−
1
2 ), j = 1, 2 for λ̂− λ = Op(T−

1
2 ), µ̂− µ = Op(T−

1
2 ),

and β̂− β = Op(T−
1
2 ).

For ρ1, under net profit condition, we introduce the following set:

AT,1 =

{
|χ̂′(ρ∗1)| >

1
2

(
c +

µ

β
− λE[X]

)}
.
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Since c +
µ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj
p−→ c +

µ

β
− λE[X] and |χ̂′(ρ∗1)| ≥ c +

µ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj, we have

P(AT,1) ≥ P
(

c +
µ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj ≥
1
2
(c +

µ

β
− λE[X])

)

=1− P
(

c +
µ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj <
1
2
(c +

µ

β
− λE[X])

)

=1− P
(

c +
µ

β
− λE[X]− c− µ̂

β̂
+ λ̂

1
NT

NT

∑
j=1

Xj ≥
1
2
(c +

µ

β
− λE[X])

)
→ 1, as T → ∞.

For ρ2, we have

|χ̂′(ρ∗2)| ≥ c +
µ̂β̂

(s− β̂)2
− λ̂

1
NT

NT

∑
j=1

Xj ≥ c− λ̂
1

NT

NT

∑
j=1

Xj.

Under condition c > λE[X], we introduce the following set:

AT,2 =

{
|χ̂′(ρ∗2)| >

1
2
(c− λE[X])

}
.

Similarly, we obtain that P(AT,2)→ 1 as T → ∞ in that c− λ̂
1

NT

NT

∑
j=1

Xj
p−→ c− λE[X].

Furthermore,

P
(
|ρ̂j − ρj| > CT−

1
2

)
= P

(
|χ(ρj)− χ̂(ρj)|
|χ̂′(ρ∗j )|

> CT−
1
2

)

≤ P
({
|χ(ρj)− χ̂(ρj)|
|χ̂′(ρ∗j )|

> CT−
1
2

}⋂
AT,j

)
+ P(Ac

T,j)

= P
(
|χ(ρj)− χ̂(ρj)| > CT−

1
2

)
+ P(Ac

T,j), j = 1, 2.

As a result, since P(Ac
T,1) → 0 under net profit condition, P(Ac

T,2) → 0 under c > λE[X], and

χ(ρj)− χ̂(ρj) = Op(T−
1
2 ), j = 1, 2, we derive desired results.

The following two theorems give the uniform convergence rates of FH and FK.

Theorem 3. Suppose that c > λE[X], ‖Hj(X)‖P,1 < ∞, j = 0, 1, and ‖Hj(X)‖P,2 < ∞, j = 1, 2. Then, for
large a, K and T, we have

sup
s∈[0,Kπ/a]

∣∣∣FK(s)− F̂K(s)
∣∣∣ = Op

(√
log
(

K
a

)
/T

)
.

Proof of Theorem 3. By Equations (11) and (12),

F̂K(s)−FK(s) =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is

[
F̂ω(s)− L̂ω(ρ̂2)

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
[Fω(s)−Lω(ρ2)]

+
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂1

ρ̂1 + is

[
F̂ω(s)− L̂ω(ρ̂1)

]
− λ

c(ρ1 − ρ2)

β− ρ1

ρ1 + is
[Fω(s)−Lω(ρ1)]

:=I1 + I2,

(15)
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Since I1 and I2 have similar formations, we only study I1 in detail.

I1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is

[
F̂ω(s)− L̂ω(ρ̂2)

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
[Fω(s)−Lω(ρ2)]

=
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[∫ X

0
(eisu − e−ρ2u)w(u, X− u)du

]
=

λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(e−ρ2u − e−ρ̂2u)w(u, Xj − u)du

+
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[∫ X

0
(eisu − e−ρ2u)w(u, X− u)du

]
=I I1 + I I2.

where

I I1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(e−ρ2u − e−ρ̂2u)w(u, Xj − u)du,

I I2 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[∫ X

0
(eisu − e−ρ2u)w(u, X− u)du

]
.

For I I1, we have

|I I1| ≤
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
u|ρ2 − ρ̂2|w(u, Xj − u)du

=
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
|ρ2 − ρ̂2|

1
NT

NT

∑
j=1

H1(Xj).

Since
1

NT

NT

∑
j=1

H1(Xj)
p−→ ‖H1(X)‖P,1 < ∞, ρ2 − ρ̂2 = Op(T−

1
2 ), we have

|I I1| = Op(T−
1
2 ). (16)
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For I I2 we derive

I I2 =
λ̂(β̂− ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

∫ Xj

0

eisu − e−ρ̂2u

ρ2 + is
w(u, Xj − u)du

− λ(β− ρ2)

c(ρ1 − ρ2)
E
[∫ X

0

eisu − e−ρ2u

ρ2 + is
w(u, X− u)du

]
=

λ̂(β̂− ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

[
g1,s(Xj)−E[g1,s(X)]

]
+ (ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β− ρ2)

ρ2 + is

)
E[g1,s(X)],

where

g1,s(x) =
∫ x

0

eisu − e−ρ2u

ρ2 + is
w(u, x− u)du

=
∫ x

0

∫ u

0
eis(u−y)−ρ2ydyw(u, x− u)du, x ≥ 0.

For g1,s(x), we have

sup
s∈[0,Kπ/a]

|E [g1,s(X)]| ≤
∫ ∞

0

∫ x

0

∫ u

0
e−ρ2ydyw(u, x− u)du f (x)dx

≤
∫ ∞

0

∫ x

0
uw(u, x− u)du f (x)dx = ‖H1(X)‖P,1 < ∞,

then

sup
s∈[0,Kπ/a]

∣∣∣∣∣(ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β− ρ2)

ρ2 + is

)
E[g1,s(X)]

∣∣∣∣∣
≤
∣∣∣∣∣(ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β− ρ2)

ρ2 + is

)∣∣∣∣∣ · ‖H1(X)‖P,1 = Op(T−
1
2 ) (17)

for λ̂− λ = Op(T−
1
2 ), µ̂− µ = Op(T−

1
2 ), ρ̂1 − ρ1 = Op(T−

1
2 ) and ρ̂2 − ρ2 = Op(T−

1
2 ).

Let us introduce the following two types of real-valued functions,

GK,R = {g : g = Re(g1,s), s ∈ [0, Kπ/a]} ,

GK,I = {g : g = Im(g1,s), s ∈ [0, Kπ/a]} .

Then, we have

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣
≤ sup

g∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣+ sup
g∈GK,I

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣ . (18)

We only study the convergence rate of the first term supg∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣,
since the second term follows similarly.
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For any real-valued function g ∈ GK,R, we have

|g(x)| ≤ sup
s∈[0,Kπ/a]

∣∣∣∣∫ x

0

∫ u

0
eis(u−y)−ρ2ydyw(u, x− u)du

∣∣∣∣
≤
∫ x

0

∫ u

0
e−ρ2ydyw(u, x− u)du ≤

∫ x

0
uw(u, x− u)du = H1(x),

which implies that GK,R is contained in the single bracket [−H1, H1]. For two functions g1,s1 , g1,s2 ,
where sj ∈ [0, Kπ/a], j = 1, 2, the mean value theorem gives

∣∣Re(g1,s1)− Re(g1,s2)
∣∣ = ∣∣∣∣∫ x

0

∫ u

0
(cos(s1(u− y))− cos(s2(u− y)))e−ρ2ydyw(u, x− u)du

∣∣∣∣
=

∣∣∣∣− ∫ x

0

∫ u

0
sin(s∗(u− y)) · (u− y) · (s1 − s2)e−ρ2ydyw(u, x− u)du

∣∣∣∣
≤
∫ x

0

∫ u

0
(u− y)e−ρ2ydyw(u, x− u)du · |s1 − s2| ≤ H2(x)|s1 − s2|,

where s∗ is a number between s1 and s2. Under the condition ‖H2(X)‖P,2 < ∞, it follows from
Example 19.7 in Van Der Vaart [69] that, for any 0 < ε < Kπ/a, there exists a constant C such that the
bracket number for GK,R satisfies

N�(ε,GK,R, L2(P)) ≤ C
Kπ

εa
‖H2(x)‖P,2.

As a result, for every δ > 0, the bracketing integral

J�(δ,GK,R, L2(P)) ≤
∫ δ

0

√
log
(

C
Kπ

εa
‖H2(x)‖P,2

)
dε .

√
log
(

K
a

)
.

Furthermore, by Corollary 19.35 in Van Der Vaart [69], we have

E
(

1√
NT

sup
g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ ∣∣NT

)

≤J�(δ,GK,R, L2(P)) ≤
∫ δ

0

√
log
(

C
Kπ

εa
‖H2(x)‖P,2

)
dε .

√
log
(

K
a

)
,

then

E
(

1
NT

sup
g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣
)

=E
(

1√
NT

E
(

1√
NT

sup
g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ ∣∣NT

))

.

√
log
(

K
a

)
/E[

√
NT ] ≤

√
log
(

K
a

)
/
√
E[NT ] =

√
log
(

K
a

)
/λT.

Therefore,

sup
g∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (19)
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Similarly,

sup
g∈GK,I

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (20)

Combining Equations (18)–(20), we obtain

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (21)

As a result, Equations (17) and (21) give

sup
s∈[0,Kπ/a]

|I I2| = Op

(√
log
(

K
a

)
/T

)
. (22)

By Equations (16) and (22), we have

sup
s∈[0,Kπ/a]

|I1| = Op

(√
log
(

K
a

)
/T

)
; (23)

then by the similar arguments of I1, we have

sup
s∈[0,Kπ/a]

|I2| = Op

(√
log
(

K
a

)
/T

)
. (24)

Finally, we can derive the desired result by Equations (23) and (24).

Theorem 4. Suppose that c > λE[X], E[Xk] < ∞, k = 1, 2. Then, for large a, K and T, we have

sup
s∈[0,Kπ/a]

∣∣∣FH(s)− F̂H(s)
∣∣∣ = Op

(√
log
(

K
a

)
/T

)
.

Proof of Theorem 4. By Equations (11) and (12),

F̂H(s)−FH(s) =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is

[
F̂ f (s)− L̂ f (ρ̂2)

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
[F f (s)−L f (ρ2)]

+
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂1

ρ̂1 + is

[
F̂ f (s)− L̂ f (ρ̂1)

]
− λ

c(ρ1 − ρ2)

β− ρ1

ρ1 + is
[F f (s)−L f (ρ1)]

:=l1 + l2,

(25)

Since l1 and l2 have similar formations, we only study l1 in detail. For l1, we have

l1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ̂2Xj

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[
eisX − e−ρ2X

]

=
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
e−ρ2Xj − e−ρ̂2Xj

]
+

λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ2Xj

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[
eisX − e−ρ2X

]
:=ll1 + ll2,
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where

ll1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
e−ρ2Xj − e−ρ̂2Xj

]
,

ll2 =
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ2Xj

]
− λ

c(ρ1 − ρ2)

β− ρ2

ρ2 + is
E
[
eisX − e−ρ2X

]
.

For ll1, we have

|ll1| ≤
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
|ρ2 − ρ̂2|

1
NT

NT

∑
j=1

Xj.

Since
1

NT

NT

∑
j=1

Xj
p−→ E[X] < ∞, ρ2 − ρ̂2 = Op(T−

1
2 ), we have

|ll1| = Op(T−
1
2 ). (26)

For ll2, we obtain

ll2 =
λ̂(β̂− ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

[
g2,s(Xj)−E[g2,s(X)]

]
+ (ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂− ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β− ρ2)

ρ2 + is

)
E[g2,s(X)],

where
g2,s(x) = eisx, x ≥ 0.

For g2,s(x), we have

sup
s∈[0,Kπ/a]

|E[g2,s(X)]| = sup
s∈[0,Kπ/a]

∣∣∣∣∫ ∞

0
eisx f (x)dx

∣∣∣∣ ≤ 1 < ∞,

Under condition E[Xk] < ∞, k = 1, 2, by similar arguments of g1,s, we conclude that

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g2,s(Xj)−E (g2,s(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (27)

In addition, it follows from a similar analysis of I I2 in the proof of Theorem 3 that

sup
s∈[0,Kπ/a]

|ll2| = Op

(√
log
(

K
a

)
/T

)
. (28)

Then, Equations (26) and (28) give

sup
s∈[0,Kπ/a]

|l1| ≤ sup
s∈[0,Kπ/a]

|ll2|+ sup
s∈[0,Kπ/a]

|ll2| = Op

(√
log
(

K
a

)
/T

)
. (29)
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Similarly, we derive

sup
s∈[0,Kπ/a]

|l2| = Op

(√
log
(

K
a

)
/T

)
. (30)

Finally, we can derive the desired result by Equations (29) and (30).

Based on the above conclusions, we have the following result.

Theorem 5. Suppose that c > λE[X], E[Xk] < ∞, k = 1, 2, ‖Hj(X)‖P,1 < ∞, j = 0, 1, and ‖Hj(X)‖P,2 <

∞, j = 1, 2. Then, for large a, K and T, we have

‖ΦK,a − Φ̂K,a‖2 = Op

(
K
a

log
(

K
a

)
/T
)

.

Proof of Theorem 5. First, we have∥∥∥ΦK,a − Φ̂K,a

∥∥∥2
=
∫ a

0

∣∣∣ΦK,a(u)− Φ̂K,a(u)
∣∣∣2du

≤
K−1

∑
k=0

4
a2

(
Re
{
FΦ

(
kπ

a

)
− F̂Φ

(
kπ

a

)})2 ∫ a

0

(
cos

(
kπ

a
u
))2

du

=
2
a

K−1

∑
k=0

∣∣∣∣FΦ
(

kπ

a

)
− F̂Φ

(
kπ

a

)∣∣∣∣2
≤2K

a
sup

s∈[0,Kπ/a]

∣∣∣FΦ (s)− F̂Φ (s)
∣∣∣2.

(31)

Then, by Equations (9) and (12), we obtain

sup
s∈[0,Kπ/a]

∣∣∣FΦ(s)− F̂Φ(s)
∣∣∣

= sup
s∈[0,Kπ/a]

∣∣∣∣∣ FK(s)
1−FH(s)

− F̂K(s)

1− F̂H(s)

∣∣∣∣∣
= sup

s∈[0,Kπ/a]

∣∣∣∣∣∣
(1−FH(s))

(
FK(s)− F̂K(s)

)
+FK(s)

(
FH(s)− F̂H(s)

)
(1−FH(s))

(
1− F̂H(s)

)
∣∣∣∣∣∣ .

(32)

Combining Theorems 3 and 4 gives

sup
s∈[0,Kπ/a]

|FΦ(s)− F̂Φ(s)| = Op

(√
log
(

K
a

)
/T

)
.

Finally, by Equation (31), we derive that

‖ΦK,a − Φ̂K,a‖2 ≤ 2K
a

sup
s∈[0,Kπ/a]

|FΦ(s)− F̂Φ(s)|2 = Op

(
K
a

log
(

K
a

)
/T
)

.

This completes the proof.

Combing Theorems 1 and 5, we finally obtain the following convergence rate:

‖Φ− Φ̂K,a‖2 = O
(

K + 1
a2m+1

)
+ O

(
a

K− 1

)
+ Op

(
K
a

log
(

K
a

)
/T
)

. (33)
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We first find the optimal truncation parameter a∗ = O
(

K−(n+1)
)

to minimize the convergence

rate O
(

K + 1
a2m+1

)
+ O

(
a

K− 1

)
. Replacing a by a∗ in Equation (33) gives

‖Φ− Φ̂K,a‖2 = O
(

K−
m

m+1

)
+ Op

(
K

m
m+1 log (K) /T

)
. (34)

In addition, we find the optimal truncation K∗ = O
(

T
m+1
2m

)
. Thus, we obtain the smallest

convergence rate ‖Φ− Φ̂K,a‖2 = Op

(
T
− 2m2

(m+1)2

)
.

5. Simulation Studies

In this section, we present some numerical examples to explain the excellent properties of our
estimator when the observed sample is finite. We mainly studied the following three kinds of special
expected discounted penalty function:

(1) Ruin probability (RP: w ≡ 1, δ = 0);
(2) Laplace transform of ruin time (LT: w ≡ 1, δ = 0.1);
(3) Expected discounted deficit at ruin (EDD) when ruin is due to a claim (w(x, y) = y, δ = 0.1).
Some simulation examples of the above functions are presented for different distributions of

claim sizes:
(1) Exponential distribution: f (x) = e−x, x > 0;
(2) Erlang(2) distribution: f (x) = 4xe−2x, x > 0;
(3) Combined exponential distribution: f (x) = 3e−1.5x − 3e−3x, x > 0;
(4) Mixed exponential distribution: f (x) = 2

3 e−2x + 2
3 e−x, x > 0.

We set ∆ = 1, λ = 2, and µ = 5, where ∆ = 1 can be explained as one week. That is to say, in a long
time interval, the insurer will observe the data once a week, the expected claim number is 2 times per
week, and the expected premium number is 5 times per week. Furthermore, since there are 52 business

weeks every year, we assumed that T =
1
4
× 52×∆, T =

1
2
× 52×∆, T = 1× 52×∆, T = 5× 52×∆,

which means that we observed the surplus process for one quarter, half a year, one year and five years.
Then, we used Equation (13) to estimate the above Gerber-Shiu functions, and the corresponding true
value obtained by Laplace inversion. In all simulations, we set c = 5, a = 30, K = 213, and we carried
out the relevant analysis based on 300 simulation experiments. We first introduce several concepts
used in this section. The mean value and the mean relative error, which are, respectively, defined by

1
300

300

∑
j=1

Φ̂K,a,j(u),
1

300

300

∑
j=1

∣∣∣∣∣ Φ̂K,a,j(u)
Φ(u)

− 1

∣∣∣∣∣ ,

and the integrated mean square error (IMSE), which is defined by

1
300

300

∑
j=1

∫ ∞

0
(Φ̂K,a,j(u)−Φ(u))2du ≈ 1

300

300

∑
j=1

∫ 30

0
(Φ̂K,a,j(u)−Φ(u))2du,

where Φ̂K,a,j(u) is the estimate of expected discounted penalty function in the jth experiment. For
IMSE, we computed the integral on the finite domain [0, 30], as both the true value and the estimator
will be very small when u ≥ 30. In reality, both the true value and the estimated value are very close
to zero when u > 20, thus we present all images for u ∈ [0, 20] to illustrate the performance of our
estimators better.

First, we plot the mean curves of the estimated expected discounted penalty functions and
compare them with the corresponding true curves. For the above-mentioned four distributions
of claim sizes, we show the mean curves and the true curves of RP, LT, EDD due to a claim in
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Figures 1–3, respectively. It is easily observed that, even though we used the quarter book data, the
performance of the estimation for each claim distribution was still good. We could hardly distinguish
the true curves from the mean curves when we used the five-year book data. Since it is difficult
to distinguish the mean curves for different T values when u becomes large, we further show the
mean relative error curves of the estimated expected discounted penalty functions for different claim
distributions in Figures 4–6, respectively. We observed that the mean relative errors became small
as T increased, and they were very small when T = 260. Besides, we found that the mean relative
errors were small when u was small, but became very large when u was large. This is because the
true values of the expected discounted penalty functions were very small when u was large. All of
the above results illustrate the performance of our estimations by images. Finally, we present some
values of IMSE for the estimators of RP, LT, and EDD in Tables 1 and 2 to further show that our
estimators perform well. Combining all of the simulation results, we conclude that our estimators
could effectively approximate the true values, and they performed well for the large T.
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Figure 1. Estimation of the ruin probability for different claim sizes. Mean curves: (a) exponential
claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and (d) mixed-exponential
claim sizes.
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Figure 2. Estimation of the Laplace transform of ruin time for different claim sizes. Mean curves:
(a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and (d)
mixed-exponential claim sizes.

Table 1. IMSE of Φ̂K,a.

T
Exp Erlang(2)

RP LT EDD RP LT EDD

13 0.00717 0.00644 0.01586 0.00351 0.00414 0.00412
26 0.00352 0.00316 0.00846 0.00186 0.00200 0.00214
52 0.00177 0.00199 0.00537 0.00108 0.00099 0.00095

260 0.00032 0.00034 0.00092 0.00018 0.00020 0.00019
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Table 2. IMSE of Φ̂K,a.

T
Com-Exp Mix-Exp

RP LT EDD RP LT EDD

13 0.00719 0.00431 0.00527 0.00474 0.00511 0.01176
26 0.00271 0.00195 0.00277 0.00267 0.00233 0.00602
52 0.00160 0.00114 0.00124 0.00117 0.00107 0.00257

260 0.00046 0.00021 0.00024 0.00025 0.00018 0.00053
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(d)
Figure 3. Estimation of the expected discounted deficit at ruin due to a claim for different claim sizes.
Mean curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes;
and (d) mixed-exponential claim sizes.
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Figure 4. Estimation of the ruin probability for different claim sizes. Mean relative error curves:
(a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and
(d) mixed-exponential claim sizes.
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Figure 5. Cont.
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Figure 5. Estimation of the Laplace transform of ruin time for different claim sizes. Mean relative error
curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and
(d) mixed-exponential claim sizes.
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Figure 6. Estimation of the expected discounted deficit at ruin due to a claim for different claim sizes.
Mean relative error curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential
claim sizes; and (d) mixed-exponential claim sizes.
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