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Abstract: In this paper, we study an absolutely new problem, namely, the Cayley inclusion problem
which involves the Cayley operator and a multi-valued mapping with XOR-operation. We have
shown that the Cayley operator is a single-valued comparison and it is Lipschitz-type-continuous.
A fixed point formulation of the Cayley inclusion problem is shown by using the concept of a resolvent
operator as well as the Yosida approximation operator. Finally, an existence and convergence result is
proved. An example is constructed for some of the concepts used in this work.
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1. Introduction

It is well known that inclusion problems were introduced and studied as a generalization of
equilibrium problems, which include a vast range of problems in analysis such as variational
inequalities, vector optimization, game theory, fixed point problems, the Nash equilibrium problem,
complementary problems, traffic equilibrium problems, economics, etc., see [1–3]. It is interesting
to note that the term “Variational inclusion”, is understood with different aspects in several works.
That is, it means simply multi-valued variational inequalities in [4,5] and the problem of finding the
zeros of maximal monotone mappings in [6–8], etc. Variational inclusions involving different kinds of
operators are useful and have a wide range of applications in industry, mathematical finance, decision
sciences, ecology, engineering sciences, etc., see [9–15].

Due to the fact that the projection methods cannot be used to solve variational inclusion problems,
the resolvent operator methods came into the picture to solve them efficiently. It is also known that the
monotone operators in abstract spaces can be regularized into single-valued Lipschitzian monotone
operator through a process known as Yosida approximation, see [16–19].

The XOR-operation ⊕ is a binary operation and behaves like ADD operation, which is associative
as well as commutative. XOR-operation depicts interesting facts and observations and forms various
real time applications, i.e., data encryption, error detection in digital communication, parity check and
helps to implement multi-layer perception in neural networks.

Many problems related to ordered variational inequalities and ordered equations were studied
by H.G.Li together with his co-authors, see [20–24] and I.Ahmad with his co-authors, see [25,26].
Considering all the facts mentioned above, in this paper, we introduce and study a quite
new and interesting problem which we call Cayley inclusion problem involving XOR-operation.
The Cayley inclusion problem involves a Cayley operator and a multi-valued mapping. We have
shown some properties of the Cayley operator, that is, it is single-valued, comparison as well as
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Lipschitz-type-continuous. A fixed point formulation of the Cayley inclusion problem is given by
using the concept of resolvent operator and Yosida approximation operator. An iterative algorithm
is established and finally an existence and convergence result is proved for the Cayley inclusion
problem involving XOR-operation. An example is constructed to illustrate some of the concepts used
in this paper.

2. Preliminaries

Throughout this paper, we suppose that H is a real ordered Hilbert space endowed with a norm
‖.‖ and an inner product 〈·, ·〉, d is the metric induced by the norm ‖.‖ and 2H is the family of all
nonempty subsets ofH.

Now, we recall some known concepts are results which we need to prove the main result of this
paper and can be found in [22–24,27,28].

Definition 1. A nonempty closed convex subset C ofH is said to be a cone, if

(i) for any x ∈ C and λ > 0, then λx ∈ C,
(ii) for any x,∈ C and −x ∈ C, then x = 0.

Definition 2. A cone C is said to be normal if and only if, there exist a constant λN > 0 such that 0 ≤ x ≤ y
implies ‖x‖ ≤ λN‖y‖, where λN is the normal constant of C.

Definition 3. Let C be a cone. For arbitrary element x, y ∈ H, x ≤ y holds if and only if, x − y ∈ C.
The relation “ ≤ ” inH is called partial ordered relation.

Definition 4. For arbitrary elements x, y ∈ H, if x ≤ y (or y ≤ x) holds, then x and y are said to be comparable
to each other (denoted by x ∝ y).

Definition 5. For arbitrary elements x, y ∈ H, lub{x, y} and glb{x, y} means least upper bound and greatest
upper bound of the set {x, y}. Suppose lub{x, y} and glb{x, y} exist, then some binary operations are defined
as follows:

(i) x ∨ y = lub{x, y},
(ii) x ∧ y = glb{x, y},
(iii) x⊕ y = (x− y) ∨ (y− x),
(iv) x� y = (x− y) ∧ (y− x).

The operations ∨,∧, ⊕ and � are called OR, AND, XOR and XNOR operations, respectively.

Lemma 1. If x ∝ y, then lub{x, y} and glb{x, y} exist, x− y ∝ y− x and 0 ≤ (x− y) ∨ (y− x).

Lemma 2. For any natural number n, x ∝ yn and yn → y∗ as n→ ∞, then x ∝ y∗.

Proposition 1. Let ⊕ be an XOR-operation and � be an XNOR-operation. Then the following relations hold:

(i) x� x = 0, x� y = y� x = −(x⊕ y) = −(y⊕ x),
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0,
(iii) (λx)⊕ (λy) = |λ|(x⊕ y),
(iv) 0 ≤ x⊕ y, if x ∝ y,
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y,
(vi) (x + y)� (u + v) ≥ (x� u) + (y� v),
(vii) (x + y)� (u + v) ≥ (x� v) + (y� u),
(viii)if x, y and w are comparable to each other, then (x⊕ y) ≤ x⊕ w + w⊕ y,
(ix) αx⊕ βx = |α− β|x = (α⊕ β)x, if x ∝ 0, x, y, u, v ∈ H and α, β, λ ∈ R.
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Proposition 2. Let C be a normal cone inH with normal constant λN , then for each x, y ∈ H, the following
relations hold:

(i) ‖0⊕ 0‖ = ‖0‖ = 0,
(ii) ‖x ∨ y‖ ≤ ‖x‖ ∨ ‖y‖ ≤ ‖x‖+ ‖y‖,
(iii) ‖x⊕ y‖ ≤ ‖x− y‖ ≤ λN |x⊕ y‖,
(iv) if x ∝ y, then ‖x⊕ y‖ = ‖x− y‖.

Definition 6. Let A : H → H be a single-valued mapping.

(i) A is said to be a comparison mapping if x ∝ y then A(x) ∝ A(y), x ∝ A(x) and y ∝ A(y), f or all x, y ∈ H,
(ii) A is said to be strongly comparison mapping, if A is a comparison mapping and A(x) ∝ A(y) if and only

if x ∝ y, f or all x, y ∈ H.

Definition 7. A mapping A : H → H is said to be β-ordered comparison mapping, if A is comparison
mapping and

A(x)⊕ A(y) ≤ β(x⊕ y), f or 0 ≤ β ≤ 1, f or all x, y ∈ H.

Definition 8. Let M : H → 2H be a multi-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx, and if x ∝ y, then for any
vx ∈ M(x) and any vy ∈ M(y), vx ∝ vy, f or all x, y ∈ H,

(ii) a comparison mapping M is said to be α-non-ordinary difference mapping, if for each x, y ∈ H, vx ∈ M(x)
and vy ∈ M(y) such that

(vx ⊕ vy)⊕ α(x⊕ y) = 0,

(iii) a comparison mapping M is said to be γ-ordered rectangular, if there exists a constant γ > 0, and for any
x, y ∈ H, there exist vx ∈ M(x) and vy ∈ M(y) such that

〈vx � vy,−(x⊕ y)〉 ≥ γ‖x⊕ y‖2,

holds.
(iv) M is said to be weak comparison mapping, if for any x, y ∈ H, x ∝ y, then there exist vx ∈ M(x) and

vy ∈ M(y) such that x ∝ vx, y ∝ vy and vx ∝ vy.
(v) M is said to be λ-weak ordered different comparison mapping, if there exist a constant λ > 0 such that for

any x, y ∈ H, there exist vx ∈ M(x), vy ∈ M(y), λ(vx − vy) ∝ (x− y) holds.
(vi) a weak comparison mapping M : H → 2H is said to be a (γ, λ)-weak ordered rectangular different

multi-valued mapping, if M is a γ-ordered rectangular and λ-weak ordered different comparison mapping
and [I + λM](H) = H, for λ > 0.

Definition 9. Let M : H → 2H be a multi-valued mapping. The operator RM
I,λ : H → H defined by

RM
I,λ(x) = [I + λM]−1(x), f or all x ∈ H, (1)

is called the resolvent operator associated with M, where λ > 0 is a constant.

It is well known that the resolvent operator associated with M is single-valued.

Definition 10. The Yosida approximation operator JM
I,λ associated with M is defined by

JM
I,λ(x) =

1
λ
[I − RM

I,λ](x), f or all x ∈ H, (2)

where λ > 0 is a constant.
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Now we define the Cayley operator based on resolvent operator (1)

Definition 11. The Cayley operator CM
I,λ of M is defined as:

CM
I,λ(x) = [2RM

Iλ − I](x), f or all x ∈ H, (3)

where I is the identity operator.

Proposition 3. Let M : H → 2H is a γ-ordered rectangular multi-valued mapping. Then, the Yosida
approximation operator JM

I,λ is single-valued, for λ > 0.

Proof. For the proof we refer to [25].

Proposition 4. Let M : H → 2H is a γ-ordered rectangular multi-valued mapping. Then, the Cayley operator
CM

I,λ associated with M is single valued, for γλ > 1.

Proof. Let x, y ∈ CM
I,λ(u). Then

x ∈ CM
I,λ(u) = (2RM

I,λ − I)(u),
1
2
(x + u) ∈ RM

I,λ(u) = [I + λM]−1(u),

i.e., u ∈ 1
2
(x + u)[I + λM],

u ∈ 1
2
(x + u) +

1
2

λM(x + u),

2u ∈ (x + u) + λM(x + u),

u− x ∈ λM(x + u).

Thus 1
λ (u− x) ∈ M(z1), where z1 = x + u. Let 1

λ (u− x) = vz1 , then vz1 ∈ M(z1).
Similarly, for y ∈ CM

I,λ(u), we have vz2 ∈ M(z2), where

vz2 =
1
λ
(u− y) and z2 = y + u.

Now, we evaluate vz1 ⊕ vz2 by using the values of vz1 and vz2 calculated above and using
Proposition 1.

vz1 ⊕ vz2 = [
1
λ
(u− x)⊕ 1

λ
(u− y)]

=
1
λ
[(u− x)⊕ (u− y)]

≤ 1
λ
(x⊕ y). (4)

Since M is γ-ordered rectangular multi-valued mapping and using (4), we have

γ‖(x + u)⊕ (y + u)‖2 ≤ 〈vz1 � vz2 ,−[(x + u)⊕ (y + u)]〉
= 〈vz1 ⊕ vz2 , x⊕ y〉

≤ 1
λ
〈x⊕ y, x⊕ y〉,
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which implies that

γ‖x⊕ y‖2 ≤ 1
λ
‖x⊕ y‖2

(γλ− 1)‖x⊕ y⊕ ‖2 ≤ 0

i.e., x⊕ y = 0

which implies that x = y.

Therefore, the Cayley operator CM
I,λ associated with M is single-valued.

Proposition 5. For any x, y ∈ H, let x ∝ y and RM
I,λ(x) ∝ RM

I,λ(y).Then, the Cayley operator CM
I,λ associated

with M is a comparison mapping.

Proof. For any x, y ∈ H, let x ∝ y then obviously I(x) ∝ I(y). As RM
I,λ is a comparison mapping,

we have RM
I,λ(x) ∝ RM

I,λ(y). Thus, we have

[2RM
I,λ − I](x) ∝ [2RM

I,λ − I](y).

i.e., we have
CM

I,λ(x) ∝ CM
I,λ(y).

Therefore, the Cayley operator CM
I,λ associated with M is a comparison mapping.

Lemma 3. Let M : H → 2H be a γ-ordered rectangular multi-valued mapping with respect to RM
I,λ, for λ > 1

γ .
Then the following condition holds:

‖RM
I,λ(x)⊕ RM

I,λ(y)‖ ≤ θ‖x⊕ y‖, f or all x, y ∈ H, where θ =
1

γλ− 1
.

That is, the resolvent operator RM
I,λ is Lipschitz-type-continuous.

Proof. For the proof we refer to [25].

Lemma 4. Let M : H → 2H be a (γ, λ)-weak ordered rectangular different multi-valued mapping with
respect to RM

I,λ and the resolvent operator RM
I,λ defined by (1) is θ-Lipschitz-type-continuous. Then, the Yosida

approximation operator JM
I,λ defined by (2) is θ

′
-Lipschitz-type-continuous. i.e.,

‖JM
I,λ(x)⊕ JM

I,λ(y)‖ ≤ θ
′‖x⊕ y‖, f or all x, y ∈ H, where θ =

1
γλ− 1

, θ
′
=

γ

γλ− 1
and γλ > 1.

That is, the Yosida approximation operator JM
I,λ is Lipschitz-type-continuous.

Proof. For the proof we refer to [25].

Lemma 5. Let M : H → 2H be (γ, λ)-weak ordered rectangular different multi-valued mapping with respect to
RM

I,λ and the resolvent operator RM
I,λ is θ-Lipschitz-type-continuous. Then, the Cayley operator CM

I,λ defined by
(3) is (2θ + 1)-Lipschitz-type-continuous. That is,
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‖CM
I,λ(x)⊕ CM

I,λ(y)‖ ≤ (2θ + 1)‖x⊕ y‖, f or all x, y ∈ H, where θ =
1

γλ− 1
and γλ > 1.

Proof. Using Cauchy-Schwartz inequality and Proposition 1, we have

‖CM
I,λ(x)⊕ CM

I,λ(y)‖
2 = 〈CM

I,λ(x)⊕ CM
I,λ(y), CM

I,λ(x)⊕ CM
I,λ(y)〉

= 〈(2RM
I,λ(x)− I(x))⊕ (2RM

I,λ(y)− I(y)),

(2RM
I,λ(x)− I(x))⊕ (2RM

I,λ(y)− I(y))〉
= 〈(2RM

I,λ(x)⊕ 2RM
I,λ(y)) + (I(x)⊕ I(y)),

(2RM
I,λ(x)⊕ 2RM

I,λ(y)) + (I(x)⊕ I(y))〉
= 〈2RM

I,λ(x)⊕ 2RM
I,λ(y), 2RM

I,λ(x)⊕ 2RM
I,λ(y)〉

+〈2RM
I,λ(x)⊕ 2RM

I,λ(y), I(x)⊕ I(y)〉
+〈I(x)⊕ I(y), 2RM

I,λ(x)⊕ 2RM
I,λ(y)〉

+〈I(x)⊕ I(y), I(x)⊕ I(y)〉
≤ 4‖RM

I,λ(x)⊕ RM
I,λ(y)‖

2 + 2‖RM
I,λ(x)⊕ RM

I,λ(y)‖‖x⊕ y‖
+2‖RM

I,λ(x)⊕ RM
I,λ(y)‖‖x⊕ y‖+ ‖x⊕ y‖2

=
(

2‖RM
I,λ(x)⊕ RM

I,λ(y)‖+ ‖x⊕ y‖
)2

i.e., ‖CM
I,λ(x)⊕ CM

I,λ(y)‖ ≤ 2‖RM
I,λ(x)⊕ RM

I,λ(y)‖+ ‖x⊕ y‖.

Using the Lipschitz-type-continuity of the resolvent operator RM
I,λ, we have

‖CM
I,λ(x)⊕ CM

I,λ(y)‖ ≤ 2θ‖x⊕ y‖+ ‖x⊕ y‖,

i.e., ‖CM
I,λ(x)⊕ CM

I,λ(y) ≤ (2θ + 1)‖x⊕ y‖, where θ =
1

γλ− 1
and γλ > 1.

i.e., the Cayley operator CM
I,λ is Lipschitz-type-continuous.

We construct the following example in support of some of the concepts used in this paper.

Example 1. Let C ⊆ H be a normal cone with constant λN . Let M : H → 2H be the multi-valued mapping
defined by M(x) = {x + 1 : x ∈ H} and x ∝ y.

As x ∝ y, clearly M(x) ∝ M(y)

That is, M is a comparison mapping.

Let vx = x + 1 ∈ M(x) and vy = y + 1 ∈ M(y) and

〈vx ⊕ vy,−(x⊕ y)〉 = 〈vx ⊕ vy, x⊕ y〉
= 〈(x + 1)⊕ (y + 1), x⊕ y〉
= 〈x⊕ y, x⊕ y〉
= ‖x⊕ y‖2

≥ 4
5
‖x⊕ y‖2, ∀x, y ∈ H.
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Thus, M is 4
5 -ordered rectangular mapping. Also it is easy to see that for λ = 2, M is 2-weak ordered

different comparison mapping. Hence, M is ( 4
5 , 2)-weak ordered rectangular different multi-valued mapping.

The resolvent operator defined by (1) is given by

RM
I,λ(x) =

(x− 2)
3

, f or all x ∈ H.

Also,

‖RM
I,λ(x)⊕ RM

I,λ(y)‖ = ‖
(x− 2)

3
⊕ (y− 2)

3
‖ = 1

3
‖x⊕ y‖ ≤ 5

3
‖x⊕ y‖.

That is, the resolvent operator RM
I,λ is 5

3 -Lipschitz-type-continuous.
In view of the above, the Cayley operator CM

I,λ defined by (3) is of the form:

CM
I,λ(x) =

(−x− 4)
3

, f or all x ∈ H.

It is easy to see that that the Cayley operator defined above is a comparison and single-valued mapping. Also,

‖CM
I,λ(x)⊕ CM

I,λ(y)‖ = ‖
(−x− 4)

3
⊕ (−y− 4)

3
‖ = 1

3
‖x⊕ y‖ ≤ 13

3
‖x⊕ y‖,

⇒ ‖CM
I,λ(x)⊕ CM

I,λ(y)‖ ≤
13
3
‖x⊕ y‖, f or all x, y ∈ H.

That is, the Cayley operator CM
I,λ is 13

3 -Lipschitz-type-continuous.

3. Formulation of The Problem and Existence of Solution

LetH be a real ordered Hilbert space. Let M : H → 2H be the multi-valued mapping and CM
I,λ be

the Cayley operator. We consider the following problem:
Find x ∈ H such that

0 ∈ CM
I,λ(x)⊕M(x). (5)

We call Problem (5) a Cayley inclusion problem involving XOR-operation.
If C = 0, then the Problem (5) reduces to the problem of finding x ∈ H such that

0 ∈ M(x). (6)

Problem (6) is a fundamental problem of inclusions in analysis and studied by Li et al. [22]
and others.

The following Lemma is a fixed point formulation of Cayley inclusion Problem involving
XOR-operation (5).

Lemma 6. The Cayley inclusion Problem (5) involving XOR-operation has a solution x ∈ H if and only if,
it satisfies the following equation:

x = RM
I,λ

{
λ(JM

I,λ(x)⊕ CM
I,λ(x)) + RM

I,λ(x)
}

. (7)

Proof. From Equation (7), we have

x = RM
I,λ

{
λ(JM

I,λ(x)⊕ CM
I,λ(x)) + RM

I,λ(x)
}

.
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Using the definition of resolvent operator and Yosida approximation operator, we obtain

x = [I + λM]−1
{

λ(JM
I,λ(x)⊕ CM

I,λ(x)) + RM
I,λ(x)

}
,

x + λM(x) = λ.
1
λ
(I − RM

I,λ)(x)⊕ λCM
I,λ(x) + RM

I,λ(x)

= x− RM
I,λ(x)⊕ λCM

I,λ(x) + RM
I,λ(x),

λM(x) = λCM
I,λ(x),

which implies that

0 ∈ CM
I,λ(x)⊕M(x),

i.e., the required Cayley inclusion Problem involving XOR-operation (5).

Based on Lemma 6, we define the following iterative algorithm for finding the solution of the
Cayley inclusion problem involving XOR-operation (5).

Iterative Algorithm 1. For initial element x0 ∈ H, compute the sequence {xn} by the following
iterative scheme:

xn+1 = (1− α)xn + αRM
I,λ{λ(JM

I,λ(xn)⊕ CM
I,λ(xn)) + RM

I,λ(xn)},

where α ∈ [0, 1], λ > 0 is a constant and I is the identity operator.

Theorem 1. Let H be a real ordered Hilbert space and C be a normal cone with normal constant λN with
ordering “ ≤ ”. Let M : H → 2H be γ-ordered rectangular, (γ, λ)-weak ordered rectangular different
multi-valued mapping. Let JM

I,λ be the Yosida approximation operator defined by (2) and CM
I,λ be the Cayley

operator defined by (3) such that both the operators are Lipschitz-type-continuous with constant θ
′

and (2θ + 1),
respectively. Let xn+1 ∝ xn and JM

I,λ(x)⊕ JM
I,λ(y) ∝ CM

I,λ(x)⊕ CM
I,λ(y), for all x, y ∈ H, n = 0, 1, 2, 3, ...

such that the following condition is satisfied:

θ
′
+ 2θ <

[1− θ(1 + λ)]

λθ
, where θ =

1
γλ− 1

, θ
′
=

γ

γλ− 1
and γλ > 1. (8)

Then the sequence {xn} generated by the Algorithm 1 strongly converges to x∗, the solution of the Cayley
inclusion Problem involving XOR-operation (5). In addition, for any x0 ∈ H, the following condition holds:

‖x∗ − x0‖ ≤
1 + (λN − 1)[(1− α) + αθ[1 + λθ

′
+ λ(2θ + 1)]

1− [(1− α) + αθ[1 + λθ1 + λ(2θ + 1)]
×

α‖x0 + RM
I,λ{λ(JM

I,λ(x0)⊕ CM
I,λ(x0)) + RM

I,λ(x0)}‖.

Proof. By using Algorithm 1 and Proposition 1, we have

0 ≤ xn+1 ⊕ xn

=
(
(1− α)xn + α

[
RM

I,λ{λ(JM
I,λ(xn)⊕ CM

I,λ(xn)) + RM
I,λ(xn)}

])
⊕
(
(1− α)xn−1 + α

[
RM

I,λ{λ(JM
I,λ(xn−1)⊕ CM

I,λ(xn−1)) + RM
I,λ(xn−1)}

])
= (1− α)(xn ⊕ xn−1) + α

([
RM

I,λ{λ(JM
I,λ(xn)⊕ CM

I,λ(xn)) + RM
I,λ(xn)}

]
⊕
[

RM
I,λ{λ(JM

I,λ(xn−1)⊕ CM
I,λ(xn−1)) + RM

I,λ(xn−1)}
])

. (9)
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Using Proposition 2, we calculate

‖xn+1 ⊕ xn‖ ≤ λN‖(1− α)(xn ⊕ xn−1) + α
([

RM
I,λ{λ(JM

I,λ(xn)⊕ CM
I,λ(xn)) + RM

I,λ(xn)}
]

⊕
[

RM
I,λ{λ(JM

I,λ(xn−1)⊕ CM
I,λ(xn−1)) + RM

I,λ(xn−1)}
])
‖

≤ λN(1− α)‖xn ⊕ xn−1‖+ λNα‖RM
I,λ{λ(JM

I,λ(xn)⊕ CM
I,λ(xn))}

⊕RM
I,λ{λ(JM

I,λ(xn−1)⊕ CM
I,λ(xn−1))}‖+ λNα‖RM

I,λ(xn)⊕ RM
I,λ(xn−1)‖.

As RM
I,λ is Lipschitz-type-continuous, we have

‖xn+1 ⊕ xn‖ ≤ λN(1− α)‖xn ⊕ xn−1‖+ λNαλθ‖[JM
I,λ(xn)⊕ CM

I,λ(xn)]

⊕[JM
I,λ(xn−1)⊕ CM

I,λ(xn−1)]‖+ λNαθ‖xn ⊕ xn−1‖

≤
(

λN(1− α) + λNαθ
)
‖xn ⊕ xn−1‖+ λNαλθ‖

(
JM
I,λ(xn)⊕ JM

I,λ(xn−1

)
⊕
(

CM
I,λ(xn)⊕ CM

I,λ(xn−1)
)
‖

≤
(

λN(1− α) + λNαθ
)
‖xn ⊕ xn−1‖+ λNαλθ‖(JM

I,λ(xn)⊕ JM
I,λ(xn−1))

−(CM
I,λ(xn)⊕ CM

I,λ(xn−1))‖.

That is,

‖xn+1 ⊕ xn‖ ≤
(

λN(1− α) + λNαθ
)
‖xn ⊕ xn−1‖+ λNαλθ‖JM

I,λ(xn)⊕ JM
I,λ(xn−1)‖

+λNαλθ‖CM
I,λ(xn)⊕ CM

I,λ(xn−1)‖, where θ =
1

γλ− 1
and γλ > 1. (10)

Using the Lipschitz-type-continuity of Yosida approximation operator JM
I,λ and Cayley operator

CM
I,λ, we have

‖xn+1 ⊕ xn‖ ≤
(

λN(1− α) + λNαθ
)
‖xn ⊕ xn−1‖+ λNαλθθ

′‖xn ⊕ xn−1‖

+λNαλθ(2θ + 1)‖xn ⊕ xn−1‖

= λN

[
(1− α) + αθ + αλθθ

′
+ αλθ(2θ + 1)

]
‖xn ⊕ xn−1‖,

i.e., ‖xn+1 ⊕ xn‖ ≤ λN

[
(1− α) + αθ(1 + λθ

′
+ λ(2θ + 1))

]
‖xn ⊕ xn−1‖, (11)

where θ = 1
γλ−1 , θ

′
= γ

γλ−1 and γλ > 1.
Since xn+1 ∝ xn, we have

‖xn+1 ⊕ xn‖ = ‖xn+1 − xn‖ ≤ λN

[
(1− α) + αθ[1 + λθ

′
+ λ(2θ + 1)]

]
‖xn − xn−1‖.

Thus, we have

‖xn+1 − xn‖ ≤ λNνn‖x1 − x0‖,
where ν = (1− α) + αθ[1 + λθ

′
+ λ(2θ + 1)].

Hence, for m > n > 0, we have

‖xm − xn‖ ≤
m−1

∑
i=n
‖xi+1 − xi‖ ≤ λN‖x1 − x0‖

m−1

∑
i=n

νi. (12)
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It follows from condition (8) that 0 < ν < 1, and thus ‖xm − xn‖ → 0, as n→ ∞ and so {xn} is a
Cauchy sequence inH. SinceH is complete xn → x∗ ∈ H, as n→ ∞. Thus, we can write

x∗ = lim
n→∞

xn+1

= lim
n→∞

[
(1− α)xn + α[RM

I,λ{λ(JM
I,λ(xn)⊕ CM

I,λ(xn)) + RM
I,λ(xn)}]

]
= (1− α) lim

n→∞
xn + α lim

n→∞

[
RM

I,λ{λ(JM
I,λ(xn)⊕ CM

I,λ(xn)) + RM
I,λ(xn)}

]
= (1− α)x∗ + α

[
RM

I,λ{λ(JM
I,λ( lim

n→∞
xn)⊕ CM

I,λ( lim
n→∞

xn)) + RM
I,λ( lim

n→∞
xn)}

]
= (1− α)x∗ + α

[
RM

I,λ{λ(JM
I,λ(x∗)⊕ CM

I,λ(x∗)) + RM
I,λ(x∗)}

]
.

It follows that x∗ satisfies the Equation (7),

i.e., x = RM
I,λ

{
λ(JM

I,λ(x)⊕ CM
I,λ(x)) + RM

I,λ(x)
}

.

By Lemma 6, x∗ is a solution of Cayley inclusion problem involving XOR-operation (5).

On the other hand, it follows that RM
I,λ

{
λ(JM

I,λ(x)⊕ CM
I,λ(x)) + RM

I,λ(x)
}

∝ x∗, n = 0, 1, 2, ... .
Using Lemma 1 and (12), we have

‖x∗ − x0‖ = lim
n→∞

‖xn − x∗‖

≤ lim
n→∞

n

∑
i=1
‖xi+1 − xi‖ ≤ lim

n→∞
λN

n

∑
i=2

νi−1‖x1 − x0‖+ ‖x1 − x0‖

≤ 1 + (λN − 1)[(1− α) + αθ[1 + λθ
′
+ λ(2θ + 1)]

1− [(1− α) + αθ[1 + λθ
′ + λ(2θ + 1)]

×

α‖x0 + RM
I,λ{λJM

I,λ(x0)⊕ CM
I,λ(x0) + RM

I,λ(x0)}‖.

This complete the proof.

4. Conclusions

We have introduced and studied a new problem which involves a Cayley operator and a
multi-valued mapping with XOR-operation in real ordered Hilbert space, called the Cayley Inclusion
problem involving XOR-operation. A fixed point formulation of the Cayley inclusion problem
involving XOR-operation is given by using the Yosida approximation operator and resolvent operator.
Finally, an existence and convergence result is proved with some extra condition. An example is
constructed to illustrate some of the concepts used in this paper.

We remark that our results may be extended in ordered Banach spaces and other higher
dimensional spaces.
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