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Abstract: The two procedures traditionally followed for group decision making with the Analytical
Hierarchical Process (AHP) are the Aggregation of Individual Judgments (AIJ) and the Aggregation
of Individual Priorities (AIP). In both cases, the geometric mean is used to synthesise judgments and
individual priorities into a collective position. Unfortunately, positional measures (means) are only
representative if dispersion is reduced. It is therefore necessary to develop decision tools that allow:
(i) the identification of groups of actors that present homogeneous and differentiated behaviours; and,
(ii) the aggregation of the priorities of the near groups to reach collective positions with the greatest
possible consensus. Following a Bayesian approach to AHP in a local context (a single criterion),
this work proposes a methodology to solve these problems when the number of actors is not high.
The method is based on Bayesian comparison and selection of model tools which identify the number
and composition of the groups as well as their priorities. This information can be very useful to
identify agreement paths among the decision makers that can culminate in a more representative
decision-making process. The proposal is illustrated by a real-life case study.

Keywords: Analytic Hierarchy Process (AHP); group decision making; homogeneous groups;
Bayesian analysis

1. Introduction

Two of the most outstanding characteristics of the Knowledge Society (KS), understood as a space
for the talent, imagination and creativity of human beings, are [1]: (i) the collaborative predisposition
of citizens in the resolution of complex problems, motivated by the existence of a more educated and
participative society that wants to be involved in decision-making processes; and, (ii) the relevance
of the human factor and the need for the formal models to incorporate the subjective, intangible and
emotional aspects inherent to the human being, alongside the tangible and rational objectives of the
traditional scientific method.

In order to take advantage of the characteristics of the KS and to provide an adequate response
to new challenges and needs, it is necessary to develop appropriate analytical and computing
decision-making tools to solve the complex problems characterised by the existence of multiple
scenarios, actors and both tangible and intangible criteria. One of the most utilised multicriteria
techniques that best incorporates intangible aspects and multiple actors is the Analytic Hierarchy
Process (AHP) proposed by Thomas L. Saaty in the mid-1970s [2]. The methodology consists of three
stages: (i) Hierarchical modelling; (ii) Valuation; (iii) Prioritisation and Synthesis.

AHP incorporates the intangible through the judgments issued when assessing the matrices of
paired comparisons considered in the problem. The two most commonly used methods in AHP for the
calculus of collective priorities in multi-actor decision making are [3–5]: the Aggregation of Individual
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Judgments (AIJ) and the Aggregation of Individual Priorities (AIP). They obtain, as averages (geometric
mean), the collective judgments or collective priorities. The average is not a representative indicator
of the collective when it is not homogeneous. It is therefore necessary to evaluate the compatibility
(an objective measure obtained automatically) or the agreement (a subjective measure that requires
personal intervention) between the individual positions of the actors and the position of the group.

If not all actors are compatible with the collective priority vector, the different positions and the
actors that support them must be identified in order to initiate posterior negotiation processes to achieve
final decisions that are as representative as possible. This paper presents a Bayesian procedure to solve
this problem in a local context (a single criterion). The procedure adopts the Bayesian hierarchical
approach (Stochastic AHP) proposed in reference [6]. It allows the estimation of the priorities of the
group by incorporating restrictions on the maximum level of inconsistency of the actors involved in the
problem. The procedure quantifies the homogeneity of the groups by means of the marginal density
of the judgments elicited by their respective actors. The density evaluates the goodness of fit of the
model and allows for comparisons between different partitions of the set of actors. The work further
puts forward an algorithm for the exhaustive search of homogeneous groups with respect to their
priorities based on the Bayesian comparison and selection of models. The methodology is illustrated by
a practical example.

The paper is structured as follows: Section 2 presents the model used to determine the priorities
of a group of homogeneous decision makers; Section 3 describes the algorithm that identifies decision
groups with homogeneous preferences; Section 4 applies the methodology to a case study; and,
Section 5 concludes by highlighting the most relevant aspects of the work and possible extensions.

2. Bayesian Local Priorities in an AHP-Multi-Actor Decision Making Context

This section deals with the problem of determining the total priorities of a group of actors with
homogeneous opinions regarding a decision criterion. A Bayesian statistical approach based on the
use of a log-linear model similar to that used in reference [6] is employed to describe the process of
the issuing judgments by the decision makers of a group. The posterior distribution of the group’s
priorities is calculated by means of Bayes’ Theorem; this is followed by a description of how to make
inferences about the most preferred alternative (alpha problem—P.α) and the priority ranking (gamma
problem—P.γ).

2.1. Problem Formulation

First, the log-linear model that is used to determine the priorities of the groups of decision makers
is explained: in what follows, N (µ, σ) denotes the univariate normal distribution of mean µ and
standard deviation σ; Np (µ, ∑) denotes the p-variant normal distribution of mean vector µ and the
matrix of variances and covariances ∑; Tp (µ, ∑, υ) denotes the p-variant Student t distribution with
mean vector µ, scale matrix ∑ and degrees of freedom υ; Gamma(p, a) denotes the gamma distribution
with shape parameter p and scale parameter 1/a; χ2

ν denotes the chi-squared distribution with υ
degrees of freedom; IA denotes the indicator function of set A; ∝ indicates ‘proportional to’ and [Y|X]
denotes the density function of the conditional distribution of Y given X.

Let G = {D[1], . . . ., D[K]} be a group of K homogeneous decision makers (k = 1, . . . , K), A = {A1,
. . . , An} be a set of n alternatives and R(k) =

(
r(k)ij

)
; k = 1, . . . , K be the nxn paired comparison matrices

issued by each decision maker.
We assume, without loss of generality, that the matrices of judgments are complete—all paired

comparisons have been made. If some of the rij comparisons are missing, the proposed methodology
could be analogously adapted, as shown in reference [6].

We further assume that the decision makers of G have homogeneous opinions regarding the
priorities of each of the alternatives of A so that:

y(k)
ij = µ

(G)
i − µ(G)

j + ε
(k)
ij ; k = 1, . . . , K; 1 ≤ i < j ≤ n; (1)
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with y(k)
ij = log

(
r(k)ij

)
, where:

(a) µ
(G)
i = log

(
v(G)

i

)
; i = 1, . . . , n being v(G)

i the priority (without normalising) given to the
alternative Ai by the members of the group G

(b) v(G)
n = 1 (that is to say, µ(G)

n = 0) to avoid identifiability problems

(c) ε
(k)
ij ∼ N

(
0,σ(G)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n independents

The normalised priorities of the group will be given by the vector w(G) =
(

w(G)
i ; i = 1, . . . , n

)′
where w(G)

i =
v(G)

i
n
∑

i=1
v(G)

i

; i = 1, . . . , n. Likewise, the level of homogeneity will be determined by the

standard deviation of the errors σ(G) that quantifies the inconsistency level of all decision makers in
the group with the priority vector w(G).

2.2. Estimation of the Local Priorities for the Group

The estimation of the vector of group priorities w(G) uses a Bayesian approach that allows exact
inferences about their values. We adopt, as a prior, a normal-gamma distribution given by:

µ(G) =
(
µ
(G)
1 , . . . ,µ(G)

n−1

)′
|τ(G) ∼ Nn−1

(
0,

1
c0τ(G)

In−1

)
with c0 > 0 (2)

τ(G) =
1

σ(G)2
∼ Gamma

(
n0

2
,

n0s2
0

2

)
(3)

that is the standard conjugate distribution used in Bayesian literature [7]. The constants c0, n0 and s2
0

determine the degree of strength of the prior distribution. In the illustrative example we have taken
c0 = 0.1 so that the influence of the prior distribution of µ(G) is not significant. The hyper-parameters
n0 and s2

0 are determined from the maximum levels of inconsistency σ2
max allowed for each decision

maker so that
P
[
0 ≤ σ(G)2 ≤ σ2

max

]
= 1− α

being, 1 − α (0 < α < 1) the level of credibility that we want to achieve. The value of σ2
max has been

set using the consistency thresholds of the geometric consistency index (GCI) proposed by [8]. In our
illustrative example, and given that n = 4, we take σ2

max = 0.35 and α = 0.05, which resulted in n0 = 0.1
and s2

0 = 0.0014.
Using Bayes’ theorem, and taking into account (1)–(3), we calculate the posterior distribution of

(µ(G), τ(G)) whose density is given by:[
µ(G)

∣∣∣τ(G),
{

y(k); k ∈ {1, . . . , K}
}]

∝ ∏
1≤i<j≤n

[
y(k)

ij

∣∣∣µ(G), τ(G)
][
µ(G)

∣∣∣τ(G)
][
τ(G)

]
∝

∝
K
∏

k=1
∏

1≤i<j≤n

(
τ(G)

) 1
2 exp

[
−τ(G)

2

(
y(k)

ij − µ
(G)
i + µ

(G)
j

)2
](
τ(G)

) n−1
2 exp

[
− c0τ

(G)

2

(
n−1
∑

i=1

(
µ
(G)
i

)2
)]

x
(
τ(G)

) n0
2 −1

exp
[
−τ(G)

2 n0s2
0

]
I(0,∞)

(
τ(G)

)
=

=
(
τ(G)

) JK+n−1+n0
2 −1

exp

[
−τ(G)

2

[
n0s2

0 +
K
∑

k=1
∑

1≤i<j≤n

(
y(k)

ij − µ
(G)
i + µ

(G)
j

)2
+ c0

(
n−1
∑

i=1

(
µ
(G)
i

)2
)]]

I(0,∞)

(
τ(G)

)
=
(
τ(G)

) JK+n−1+n0
2 −1

exp
[
−τ(G)

2

[
n0s2

0 +
K
∑

k=1

(
y(k) − Xµ(G)

)′(
y(k) − Xµ(G)

)
+ c0

(
µ(G)′µ(G)

)]]
I(0,∞)

(
τ(G)

)
(4)

where y(k) =
(

y(k)
ij ; 1 ≤ i < j ≤ n

)′
for k = 1, . . . , K and X = (xij) (J × (n − 1)) with J = n(n−1)

2 is the
regression matrix of model (1) so that:

- xij = 1 if the ith judgement is yjk with k 6= j;
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- xij = −1 if the ith judgement is ykj with k 6= j;

- xij = 0 in any other case.

It follows that: [
µ(G)

∣∣∣τ(G),
{

y(k); k ∈ {1, . . . , K}
}]

∝

∝
(
τ(G)

) JK+n0
2 −1

exp
[
−τ(G)

2

{
n0s2

0 +
K
∑

k=1
y(k)′y(k) −m(g)′(K(X′X)+ c0In−1

)
m(g)

}]
x

x
(
τ(G)

) n−1
2 −1

exp
[
−τ(G)

2

{(
µ(G) −m(G)

)′(
K
(
X′X

)
+ c0In−1

)(
µ(G) −m(G)

)}]
I(0,∞)

(
τ(G)

) (5)

where m(G) =
(
K
(
X′X

)
+ c0In−1

)−1
(

X
′
(

K
∑

k=1
y(k)

))
.

Therefore, it follows from (5) that:

µ(G)|τ(G),
{

y(k); k ∈ {1, . . . , K}
}
∼ Nn−1

(
m(G),

1
τ(G)

(
K
(
X′X

)
+ c0In−1

)−1
)

(6)

τ(G)
∣∣∣{y(k); k ∈ {1, . . . , K}

}
∼ Gamma

(
n0 + JK

2
,
(

n0 + JK
2

)
s(G)2

)
(7)

where s2(G) =
n0s2

0+
K
∑

k=1
y(k)′y(k)−m(G)′(K(X′X)+c0In−1)m(G)

n0+JK .
Integrating with respect to τ(G) in (5), it follows that:

µ(G)|
{

y(k); k ∈ {1, . . . , K}
}
∼ Tn−1

(
m(G), s(G)2(K(X′X)+ c0In−1

)−1, n0 + JK
)

(8)

From the posterior distributions (7) and (8), point estimates and credibility intervals of w(G) and
σ(G) can be obtained using the posterior median and the corresponding quantiles.

In the case of σ2(G), and taking into account that from (7) τ(G) ∼
χ2

n0+JK

(n0+JK)s(G)2 , a 100 (1 − α)%,

the Bayesian credibility interval for σ2(G) is given by

[
s2(G)(n0+JK)

χ2
n0+JK,1−α

2

, s2(G)(n0+JK)

χ2
n0+JK, α2

]
where χ2

ν,α denotes the

(1 − α)th quantile of the distribution χ2
ν.

To calculate a credibility interval for w(G)
i (1 ≤ i ≤ n) the Monte Carlo method is applied by

extracting a sample
{
µ(G,s) =

(
µ
(G,s)
1 , . . . ,µ(G,s)

n−1

)′
; s = 1, . . . , S

}
from (8) and calculating a sample

of the posterior distribution of w(G), W(G) =

{
w(G,s) =

(
w(G,s)

1 , . . . , w(G,s)
n

)′
; s = 1, . . . , S

}
with

w(G,s)
i =

exp
[
µ
(G,s)
i

]
n
∑

j=1
exp

[
µ
(G,s)
j

] where µ(G,s)
n = 0. From this sample a credibility interval for w(G)

i is given

by
[
w(G)

i
(
α
2
)
, w(G)

i
(
1− α

2
)]

where w(G)
i (α) is the αth quantile of the sample W(G).

Alpha distributions could also be calculated P
Gg
α =

(
P

Gg
α,1, . . . , P

Gg
α,n

)
with:

PG
α,i = P

[
w(G)

i = max1≤j≤nw(G)
j

∣∣∣{y(k); k = 1, . . . , K
}]

; i = 1, . . . , n (9)

and gamma distributions with:

PG
γ,γh

= P
[
w(G)

γh,1 ≤ . . . ≤ w(G)
γh,n

∣∣∣{y(k); k = 1, . . . , K
}]

; h = 1, . . . , n! (10)
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where γh = (γh,1, . . . , γh,n) is the hth permutation of the elements of A sorted according to the
lexicographical order. The approximate calculation of these probabilities is from the sample W(G) by
means of the expressions:

P̂G
α,i =

1
S

S

∑
s=1

I
w(G,s)

i =max1≤j≤nw(G,s)
j

(s) (11)

P̂G
γ,γh

=
1
S

S

∑
s=1

I
w(G,s)

γh,1 ≤...≤w(G,s)
γh,n

(s) (12)

These distributions report on preferences as well as the most preferred alternative and ranking
for the group.

3. Identification of Homogeneous Groups of Actors

The procedure for estimating the priorities of a group, as detailed in the previous section, is based
on the hypothesis of the similarity of the opinions of the decision makers. However, it is quite possible
that there will be different opinions. In this case, and in order to facilitate a subsequent negotiation
process, it is useful to identify the different opinions within the group and the actors that support them;
this section presents a systematic procedure for doing this. It utilises a Bayesian oriented tool selection
model based on the use of the Bayes factor as a selection element.

3.1. Problem Formulation

Let D = {D[1], . . . , D[K]} be a group of K decision makers, G = {G1, . . . , Gm} be a partition of

D, with Gg =
{

D[ig,1], . . . , D[ig,ng ]
}
⊆ D; g = 1, . . . , m, Gg ∩ Gg

′ = ∅ if g 6= g′, D =
m
∪

g=1
Gg. To avoid

identifiability problems we impose that ig,1 < . . . < ig,ng and ig,1 < ig′,1 if g < g′.
The problem is to select the G partitions that best describe the opinions expressed by the decision

makers about the alternative to be chosen from the judgments issued Y =
{

y(k); k = 1, . . . , K
}

. To this
end we extend the approach made in the previous section to the case of several groups, assuming that
the decision makers of each group {Gg; g = 1, . . . , m} of the partition G have homogeneous opinions
regarding the priorities of each alternative of set A so that:

y(k)
ij = µ

(g(k))
i − µ(g(k))j + ε

(k)
ij with ε(k)ij ∼ N

(
0,σg(k)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n (13)

(i) D[k] ∈ Gg(k) with g(k) ∈ {1, . . . , m} the group to which the decision maker D[k] belongs

(ii) µ
(g)
i = log

(
v(g)

i

)
; i = 1, . . . , n being v(g)

i the priority (without normalising) given to the alternative
Ai by the members of the group Gg

(iii) v(g)
n = 1 (that is to say, µ(g)n = 0) to avoid identifiability problems

(iv) ε
(k)
ij ∼ N

(
0,σg(k)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n and independent

Finally, we take the following prior distributions for the parameters of the normal-gamma model:

µ(g) =
(
µ
(g)
1 , . . . ,µ(g)n−1

)′
|τ(g) ∼ Nn−1

(
0,

1
c0τ

(g)
In−1

)
with c0 > 0 (14)

τ(g) =
1

σ2(g)
∼ Gamma

(
n0

2
,

n0s2
0

2

)
(15)

independents for g = 1, . . . , m.
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3.2. Goodness of Fit Evaluation of G

The selection of the best G partitions is made by an evaluation of their adjustment to the Y issued
judgments. We use [Y|G], the prior marginal density of the model (13)–(15), which is one of the tools
utilised in the Bayesian inference to quantify it, so that, the higher the value, the greater the degree of
fit of G as a description of the existing opinions in D and the greater is the explanatory power of the Y
issued judgments.

This density is given by:

[Y|G ] =
m
∏

g=1

[{
y(k); k : g(k) = g

}
|Gg

]
=

m
∏

g=1

∫ ∞
0

∫
Rn−1

[{
y(k); k : g(k) = g

}
|µ(g), τ(g)

][
µ(g)|τ(g)

][
τ(g)

]
dµ(g)dτ(g) =

=
m
∏

g=1

∫ ∞
0

[{
y(k); k : g(k) = g

}
|τ(g)

][
τ(g)

]
dτ(g)

(16)

Taking into account that:

[{
y(k); k : g(k) = g

}
|τ(g)

]
=

[{
y(k); k : g(k) = g

}
,µ(g), τ(g)

]
[
µ(g)

∣∣∣{y(k); k : g(k) = g
}

, τ(g)
]

from (6), (13), (14) and (15) it follows that[{
y(k); k : g(k) = g

}∣∣∣τ(g)] =
(τ(g))

Jng+n−1+n0
2 −1

exp

[
− τ(g)

2

[
n0s2

0+ ∑
k:g(k)=g

(y(k)−Xµ(g))
′
(y(k)−Xµ(g))+c0(µ(g)′µ(g))

]]
IRn−1(µ(g))I(0,∞)(τ(g))

(τ(g))
n−1

2 |(ng(X′X)+c0In−1)|
1
2 exp

[
− τ(g)

2 (µ(g)−m(g))
′
(ng(X′X)+c0In−1)(µ(g)−m(g))

]
IRn−1(µ(g))

x
(2π)−

Jng+n−1
2

(
n0s2

0
2

) n0
2

c
n−1

2
0

(2π)−
n−1

2 Γ( n0
2 )

(17)

where m(G) =
(
ng
(
X′X

)
+ c0In−1

)−1
(

X′
(

∑
k:g(k)=g

y(k)

))
. It follows that

[{
y(k); k : g(k) = g

}∣∣∣τ(g)] =
(τ(g))

Jng+n0
2 −1

exp
[
− τ(g)

2

[
n0s2

0+(µ
(g)−m(g))

′
(ng(X′X)+c0In−1)(µ(g)−m(g))

]]
|(ng(X′X)+c0In−1)|

1
2 exp

[
− τ(g)

2 (µ(g)−m(g))
′
(ng(X′X)+c0In−1)(µ(g)−m(g))

] x

x exp

[
−τ(g)

2

{
∑

k:g(k)=g
y(k)′y(k) −m(g)′(ng

(
X′X

)
+ c0In−1

)
m(g)

}]
(2π)−

Jng
2

(
n0s2

0
2

) n0
2

c
n−1

2
0

Γ( n0
2 )

I(0,∞)

(
τ(g)

)
=

(
n0s2

0
2

) n0
2
(τ(g))

n0+Jng
2 −1

(2π)
Jng

2 Γ( n0
2 )
∣∣∣( ng

c0
(X′X)+In−1

)∣∣∣ 1
2

exp
[
−τ(g)

2 Q(g)
]
I(0,∞)

(
τ(g)

)
(18)

where Q(g) = n0s2
0 + ∑

k:g(k)=g
y(k)′y(k) −m(g)′(ng

(
X′X

)
+ c0In−1

)
m(g).
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Substituting in (16) it follows that:

[Y|G ] =

(
n0s2

0
2

) n0
2

(2π)
Jng

2 Γ( n0
2 )
∣∣∣( ng

c0
(X′X)+In−1

)∣∣∣ 1
2

m
∏

g=1

∫ ∞
0

(
τ(g)

) n0+Jng
2 −1

exp
[
−τ(g)

2 Q(g)
]
dτ(g)

=

(
n0s2

0
2

)m
n0
2

(Γ( n0
2 ))

m

m
∏

g=1
Γ
(

n0+Jng
2

)∣∣∣(ng
c0

(
X′X

)
+ In−1

)∣∣∣− 1
2
(

2
Q(g)

) n0+Jng
2 ∝

∝

(
n0s2

0
2

)m
n0
2

(Γ( n0
2 ))

m

m
∏

g=1

Γ
( n0+Jng

2

)∣∣∣( ng
c0
(X′X)+In−1

)∣∣∣− 1
2

(Q(g))
n0+Jng

2

(19)

3.3. Location of Opinion Groups

Now that the evaluation of the adjustment of a G partition to the issued judgements is completed,
in this section we describe the process followed to determine the most representative partitions. We

use Bayesian selection models and the Bayes factor, [
Y|G ′ ]
[Y|G ]

as a tool of comparison of two elements G
and G ′ of ℘(D), the set of possible partitions of D.

We set a threshold β (0 < β < 1) to discriminate if there are significant differences in the data

adjustment of the partitions G and G ′ so that if [Y|G ′ ]
[Y|G ]

< β then the degree of fit of G ′ is significantly
worse than that of G and, therefore, G is more representative than G ′. In this case, and in line with [9],
we take β = 0.05.

The problem is to determine G ∈ ℘(D) so that:

[Y|G ]

[Y|Gmax ]
≥ β (20)

where [Y|Gmax ] = maxG∈℘(D)[Y|G ] and gives us the ‘Occam’s window’ of our problem [10].
The partitions could be taken as starting points for subsequent negotiation processes in order to
reach an agreement among the decision makers that is as representative as possible. In our case, we
look for the partitions of the window that have the least number of groups, since it can be foreseen
that the fewer groups there will be, the easier it will be to reach more representative agreements
because there are fewer disparate opinions. In order to do this, we use an exhaustive search algorithm
that calculates the values of [Y|G] for all the elements of ℘(D) using expression (19). Then Gmax is
determined and, from this, the partitions of Occam’s window that verify (20) are identified. Other
methods for consensus searching in group decision making can be seen in references [11–16].

Figure 1 shows the main steps for determining the groups with homogeneous opinions.Mathematics 2019, 7, x FOR PEER REVIEW 9 of 14 
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4. Case Study

In September 2006 the Government of Aragón and the Zaragoza City Council advanced the
‘Zaragoza Plan for Sustainable Mobility’, which led to the construction of the city’s Tram Line 1 that
was completed in 2013. The construction was controversial and in the following municipal elections,
the political parties presented their proposals for improving transport in the city. Representatives
of the main political parties (PSOE, PP and CHA) attended the university to explain their preferred
alternative. The case study concerns a citizen participation project in a local community which
contemplated alternatives put forward by the political parties during the municipal elections for the
extension of the city tram network.

Eleven students (K = 11) from the ‘Electronic-Government and Public Decisions’ course of
the Faculty of Economics and Business at the University of Zaragoza (Spain) were involved in
its implementation.

There were 4 alternatives:

A1 Build a new tram line
A2 Use a tram and bus combination called Tranbus
A3 Use a tram combination with commuter lines
A4 Do nothing

As the construction of Line 1 had a high economic cost, and the selection of any of first three
alternatives assumes a significant investment, a fourth alternative (no cost) was included. The selection
problem was solved using the Analytic Hierarchy Process [2]. The hierarchical model comprised four
levels (the goal, 3 criteria, 9 attributes and 4 alternatives).

The results of the Investment Cost attribute have been used to illustrate the proposed methodology.
The prior distribution parameters were c0 = 0.1, n0 = 1 and s2

0 = 0.0014 (corresponding to take
σ2

max = 0.35 and α = 0.05) and β = 0.05. The number of partitions was equal to the 678,570 that
were processed in 98.84 s of CPU by a Toshiba Ultrabook KIRA with Intel (R) Core™ i7-4510U CPU @
2.00GHz 2.60 GHz (64 bits) and 8 Gb of RAM.

The resulting number of groups was equal to five and the most probable composition was: G1 =
{D1, D2, D3, D7}, G2 = {D4, D10}, G3 = {D5, D6}, G4 = {D9}, G5 = {D11}. The results obtained are shown in
Tables 1–3. More specifically, Table 1 contains the posterior medians of the priorities of each alternative
for each decision maker and each group. Table 2 shows the posterior probabilities that each alternative
would be the most preferred, corresponding to the Pα distributions. Table 3 gives the probabilities
for each ranking corresponding to the Pγ distributions. The values were calculated from (7)–(8) and
(11)–(12), as described in Section 2.2, using S = 10,000 simulations.

So, for example, group G1 made up of decision makers D1, D2, D3 and D7, gives the highest
priority (0.4502) to alternative A4, followed by the alternatives A2 (priority 0.3076), A3 (0.1518) and
A1 (0.0879) (see Table 1). This ranking is also reflected by its Pα and Pγ distributions, which give
the maximum posterior probabilities to the A4 alternative (97.31%, see Table 2) and the ranking 4231
(96.94%, see Table 3). Even though the individual opinion of D3 is different to the rest of the members
of the group (their preferred alternative is A2 and the ranking is 2431), the consistency of the group G1

(0.2790) is good, being lower than the maximum level of inconsistency 0.35. This is due to the high
priority of D3 for alternative A4 (0.2705) and the similarity of their priorities to alternatives A1 and A3

which means that G1 can be considered as a homogeneous group.
From the tables, it can be observed that the compositions of the groups are very much determined

by their similarity to the most preferred alternative. The decision makers from groups G1 and G3 mostly
prefer the alternative A4, those from group G2 prefer alternative A1, those from G3 prefer alternative A3

and those from G4 prefer alternative A2 (see Tables 1 and 2). However, groups G1 and G3 differ in the
rankings (see Table 3). The decision makers from the group G1 tend to prefer the 4231 ranking, while
those from the group G3 prefer 4123. Nevertheless, preferences within each group are not completely
homogeneous; in group G1, decision-maker D3 shows a greater preference for alternative A2. This
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opinion is shared with decision maker D11 of group G4, although it assigns a priority 0.2705 to alternative
A4 that justifies its inclusion in group G1. Something similar happens in group G3, in which decision
maker D5 shows a greater preference for alternative A1, although it assigns a non-negligible priority
(0.3613) to alternative A4 and to the ranking 4123, hence its inclusion in group G3.

The consistency levels of the actors and most of the groups are acceptable (<0.35). The only
exception is G3 whose consistency is estimated as 0.4071, but with a 95% credibility interval [0.20, 1.43]
that does not reject the consistency hypothesis σ2(G3) ≤ 0.35.

The ambiguities of the opinions are revealed if we analyse the partitions selected by Occam’s
window with the smaller number of groups, included in Table 4 and Figure 2. Figure 2 incorporates, in
each node, the groups of decision makers that are classified together in all the selected partitions and
includes a link between two nodes if their components are classified together in some of the partitions.
Most of the decision makers are linked because of their preferences for alternatives A2 and A4, the
latter being the alternative which most decision makers support. Only D4, D9 and D10 are isolated
because of their preferences for alternatives A1 (D4 and D10) and A3 (D9).

Table 1. Priorities and consistency for each decision maker and each group.

Decision
Maker

Priorities Consistency
w1 w2 w3 w4

D1 0.1285 0.2860 0.1275 0.4511 0.1412
D2 0.0899 0.2500 0.1418 0.5110 0.2042
D3 0.0900 0.4759 0.1582 0.2705 0.1363
D7 0.0587 0.2501 0.1839 0.5026 0.1405
G1 0.0879 0.3076 0.1518 0.4502 0.2790
D4 0.5748 0.1406 0.1086 0.1721 0.1214
D10 0.6318 0.1809 0.0797 0.1044 0.1046
G2 0.6139 0.1600 0.0926 0.1318 0.1602
D5 0.4021 0.1570 0.0758 0.3613 0.0888
D6 0.2131 0.1057 0.0542 0.6194 0.2849
D8 0.1388 0.2763 0.0578 0.5197 0.2186
G3 0.2321 0.1676 0.0617 0.5338 0.4071
D9 0.2846 0.0871 0.5503 0.0720 0.2186
G4 0.2846 0.0871 0.5503 0.0720 0.2186
D11 0.1228 0.4684 0.2736 0.1294 0.1261
G5 0.1228 0.4684 0.2736 0.1294 0.1261

in bold the highest priority.

Table 2. Alpha distributions for each decision maker and each group.

Decision Maker
Alternatives

A1 A2 A3 A4

D1 0.30 6.11 0.00 93.59
D2 0.19 2.71 0.04 97.06
D3 0.00 96.75 0.00 3.25
D7 0.01 1.75 0.04 98.20
G1 0.00 2.69 0.00 97.31
D4 99.23 0.03 0.00 0.74
D10 99.92 0.02 0.00 0.06
G2 99.96 0.00 0.00 0.04
D5 63.16 0.01 0.00 36.83
D6 5.24 0.00 0.00 94.76
D8 1.09 3.92 0.00 94.99
G3 2.96 0.00 0.00 97.04
D9 5.49 0.00 94.51 0.00
G4 5.49 0.00 94.51 0.00
D11 0.01 98.75 1.20 0.04
G5 0.01 98.75 1.20 0.04

in bold the probabilities higher than 20%.
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Table 3. Gamma distributions for each decision maker (Di) and each group (Gj) (probabilities higher than 20% are in bold).

Decision
Maker

Rankings

1234 † 1243 1324 1342 1432 1423 2134 2143 2314 2341 2431 2413 3214 3241 3124 3142 3412 3421 4231 4213 4321 4312 4132 4123

D1 0.02 0.17 0.00 0.00 0.00 0.11 0.01 0.64 0.00 0.01 0.51 4.94 0.00 0.00 0.00 0.00 0.00 0.00 49.20 43.98 0.09 0.01 0.01 0.30
D2 0.05 0.10 0.00 0.00 0.00 0.04 0.01 0.23 0.00 0.00 0.87 1.60 0.00 0.00 0.00 0.00 0.01 0.03 86.05 8.68 2.10 0.05 0.03 0.15
D3 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.57 0.21 1.05 91.49 3.00 0.00 0.00 0.00 0.00 0.00 0.00 3.20 0.02 0.03 0.00 0.00 0.00
D7 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.04 1.55 0.09 0.00 0.00 0.01 0.00 0.00 0.03 89.78 0.07 8.33 0.00 0.01 0.01
G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.28 0.41 0.00 0.00 0.00 0.00 0.00 0.00 96.94 0.36 0.01 0.00 0.00 0.00
D4 1.75 20.98 0.23 0.40 8.64 67.23 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.41 0.29
D10 8.90 88.84 0.01 0.01 0.06 2.10 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.04
G2 2.46 80.42 0.00 0.02 0.15 16.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03
D5 0.00 0.29 0.00 0.00 0.04 62.83 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.06 36.69
D6 0.01 0.15 0.00 0.00 0.09 4.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 3.63 0.16 0.16 1.99 88.46
D8 0.01 0.64 0.01 0.00 0.00 0.43 0.00 0.57 0.00 0.00 0.00 3.35 0.00 0.00 0.00 0.00 0.00 0.00 2.27 90.83 0.00 0.01 0.01 1.87
G3 0.00 0.03 0.00 0.00 0.00 2.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.32 0.00 0.00 0.00 85.72
D9 0.00 0.00 5.37 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 66.57 26.61 1.08 0.17 0.00 0.00 0.00 0.00 0.00 0.00
G4 0.00 0.00 5.37 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 66.57 26.61 1.08 0.17 0.00 0.00 0.00 0.00 0.00 0.00
D11 0.01 0.00 0.00 0.00 0.00 0.00 1.14 0.00 43.39 53.94 0.28 0.00 0.28 0.88 0.00 0.00 0.00 0.04 0.03 0.00 0.01 0.00 0.00 0.00
G5 0.01 0.00 0.00 0.00 0.00 0.00 1.14 0.00 43.39 53.94 0.28 0.00 0.28 0.88 0.00 0.00 0.00 0.04 0.03 0.00 0.01 0.00 0.00 0.00

† 1234 denotes the ranking A1 > A2 > A3 > A4.
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There are 4 homogeneous groups: {D1, D2, D7} that prefer alternative A4 and the ranking 4231;
{D5, D6} position alternatives A2 and A3 in the last places and they show a non-negligible preference for
A4; {D4, D10} prefer alternative A1 and put A3 in last place; decision maker {D9} prefers A3. Decision
makers D3, D8, D11 are in more intermediate and ambiguous positions. In the case of D3, this is due
to the greater preference for A2 (shared with D11) and the non-negligible preference for A4 (which
places them close to the group {D1, D2, D7}). In the case of D8, the intermediate position is due to their
preferences for A4 and A2, in that order, which places them close to the group {D1, D2, D7}, as well as
to the rejection of A3, which places them close to the group {D5, D6}.

In order to achieve as broad an agreement as possible, alternative A4 could be suggested, given
that a majority of decision makers (in groups G1 and G3) showed a preference for it. The negotiation
should be aimed at convincing decision makers D4, D9, D10 and D11.

With regards to the practical implications of the Bayesian procedure proposed in this work, it is
worth mentioning that, as in AHP, these applications are numerous, especially in matters of strategic
planning where the number of actors is not usually very high.

Table 4. Partitions selected by the Occam window.

Partition D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Ratio †

1 1 1 1 2 3 3 1 3 4 2 5 1.00
2 1 1 2 3 4 4 1 4 5 3 2 0.48
3 1 1 1 2 3 3 1 1 4 2 5 0.42
4 1 1 2 3 4 4 1 1 5 3 2 0.15

† The ratio calculates the quotient of the posterior probability for the most probable model and that for the model
corresponding to each partition.
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5. Conclusions

This paper has proposed a methodology for the identification of homogenous opinion groups
with AHP in a local context. The methodology is based on the use of Bayesian processes for the
selection of hierarchical models that describe the judgments issued by each decision maker in their
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matrices of pairwise comparisons based on a set of priorities common to each of the members of
the group.

Using an exhaustive search method of the most compatible partitions with the judgments issued,
the Occam’s window of the compared models is defined. From these models it has been shown how
it is possible to describe the existing opinions in the groups, information that can be very useful to
identify consensus paths among the decision makers that can culminate in a more representative
decision-making process.

The search method works in a local AHP context, but has some limitations. First, it functions
if the number of decision makers is not very high (≤11). The total number of partitions of the set of

decision makers is equal to the Bell number BK =
K−1
∑

k=0

(
K− 1

k

)
Bk with B0 = 1, B1 = 1. The larger

the number of decision makers, the more computationally infeasible is the problem. In our case
(K = 11), the number of possible partitions is 687,570, which is computationally feasible. For instance,
if K = 22 the number is 4507× 1015, then it is necessary to use algorithms that approximately determine
Occam’s window.

We are currently experimenting with stochastic search algorithms and the results obtained will
be published in a future work. A second limitation is that it is necessary that the groups constitute a
partition of the set of decision makers and this implies that a decision maker cannot belong to more
than one group. Even though this requirement decreases the computational time of the algorithm,
it also reduces the flexibility of the method. The development of search strategies that eliminate
this unrealistic assumption is worthy of consideration. Finally, it would be interesting to extend the
methodology to a global context in which a hierarchy of criteria and sub-criteria is used.
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