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Abstract

:

In this article, our main purpose is to introduce a new and generalized quadratic Gauss sum. By using analytic methods, the properties of classical Gauss sums, and character sums, we consider the calculating problem of its fourth power mean and give two interesting computational formulae for it.






Keywords:


the generalized quadratic Gauss sums; the fourth power mean; analytic method; computational formula




MSC:


11L05; 11L40












1. Introduction


For any integer q>1, let χ denote any Dirichlet character modq. Then the classical Gauss sum τ(χ,m;q) is defined as follows:


τ(χ,m;q)=∑a=1qχ(a)eamq,








where m is any integer and e(y)=e2πiy.



If (m,q)=1 or χ is a primitive character modq, then it is easy to prove the identity τ(χ,m;q)=χ¯(m)τ(χ,1;q), and τ(χ,1;q) is called the classical Gauss sum. Usually, we denote τ(χ,1;q) as τ(χ).



The generalized quadratic Gauss G(χ,m;q) is defined as


G(χ,m;q)=∑a=1qχ(a)ema2q.



(1)







These sums have an important status in the research of analytic number theory. Many famous number theory problems are closely related to them. Therefore, these Gauss sums have been studied by many scholars, and they also have a series of interesting conclusions. For example, Zhang Wenpeng and Hu Jiayuan [1] proved that for any prime p with p≡1mod3 and any third-order character ψmodp, one has the equation


τ3(ψ)+τ3ψ¯=dp,








where d is uniquely determined by 4p=d2+27b2 and d≡1mod3.



Chen Li [2] proved that for any prime p with p≡1mod6 and any sixth-order character λmodp, one gets the identity


τ3(λ)+τ3λ¯=p12d2−2pifp=12h+1,−i·p12d2−2pifp=12h+7,








where i2=−1, d is the same as in the above.



Recently, the classical Gauss sum is also researched by Wang Tingting and Chen Guohui [3]. They proved that


Wk(p,χ)=τ6kχτ6kχ5+τ6kχ¯τ6kχ¯5








satisfying the second-order linear recurrence Formula


Wk+1(p,χ)=2p2−4pd2+d4p2Wk(p,χ)−Wk−1(p,χ),








where W0(p,χ)=2, W1(p,χ)=2p2−4pd2+d4p2, p is a prime with p≡1mod12, χ be any twelfth-order character modp, and d is the same as before.



From the properties of the second-order linear recurrence sequence, we may easily calculate the general terms Wk(χ,p) for any positive integer k. That is,


Wk(χ,p)=β+β2−42k+β−β2−42k,








where β=2p2−4pd2+d4p2.



For any odd prime p and any integer n with (n,p)=1, Zhang Wenpeng [4] obtained the identities


∑χmodpG(χ,n;p)4=(p−1)3p2−6p−1ifp≡3mod4,(p−1)3p2−6p−1+4nppifp≡1mod4








and


1p−1∑χmodpG(χ,n;p)6=10p3−25p2−4p−1,ifp≡3mod4.











Many other papers related to classical Gauss sums, generalized quadratic Gauss sums, and character sums can also be found in references [5,6,7,8,9,10,11,12,13,14,15,16,17,18], we do not enumerate them one by one here.



In this paper, we introduce a generalized quadratic Gauss sum as follows:


G(χ1,χ2,⋯,χk;q)=∑a1=1q∑a2=1q⋯∑ak=1qχ1(a1)χ2(a2)⋯χk(ak)ea1+a2+⋯+ak2q,



(2)




where k is any positive integer and χimodq, 1≤i≤k.



In fact, if we take k=1, then (2) becomes (1) with m=1. So (2) is also a generalized quadratic Gauss sum, and (1) is a special case of (2). Therefore, G(χ1,χ2,⋯,χk;q) is a further promotion and extension of G(χ,1;q).



We will consider the 2h-th power mean of (2) in this paper. i.e.,


∑χmodq∑a1=1q∑a2=1q⋯∑ak=1qχ1(a1)χ2(a2)⋯χk(ak)ea1+a2+⋯+ak2q2h.



(3)







If q=p is an odd prime and k=h=2, then we will use the analytic method and the properties of classical Gauss sums to give an exact computational formula for (3). That is, we shall prove the following results:



Theorem 1.

Let p be a prime with p≡3mod4. Then for any character ψmodp, we have the identity


1p−1∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(b)e(a+b)2p4=p5−7p4+17p3−10p2−12p−1ifψ=χ0,3p4−6p3−p2ifψ(−1)=−1,3p4+E(ψ,p)ifψ(−1)=1andψ≠χ0,








where χ0 denotes the principal character modp, and |E(ψ,p)|≤23p3.





Theorem 2.

Let p be a prime with p≡1mod4. Then for any character ψmodp, we have the identity


1p−1∑χmodp∑a=1p−1∑b=1p−1χ(a)ea+b2p4=p5−7p4+17p3−6p2−24p−1+4pp3−5p2+7p+1








and


1p−1∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(b)ea+b2p4=3p4−6p3−p2+4p52ifψ(−1)=−1,3p4+H(ψ,p)ifψ(−1)=1andψ≠χ0,








where H(ψ,p) satisfies the estimate |H(ψ,p)|≤22p3.





Theorem 3.

Let p be an odd prime, ψ be a fixed non-principal character modp. Then for any character χmodp, we have the upper bound estimate


G(χ,ψ;p)≤2p.













From Theorem 1 and Theorem 2 we may immediately deduce the following:



Corollary 1.

Let p be an odd prime. Then for any odd character ψmodp, we have the identity


1p−1∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(b)ea+b2p4=3p4−6p3−p2ifp≡3mod4,3p4−6p3−p2+4p52ifp≡1mod4.













Corollary 2.

Let p be an odd prime. Then for any non-principal character ψmodp, we have the asymptotic formula


∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(b)ea+b2p4=3p5+K(ψ,p),








where K(ψ,p) satisfies the estimate |K(ψ,p)|≤23p4.





Some notes:

If ψ is a non-principal even character modp, then we cannot get the exact value of the sum


∑a=1p−1ψ(a)ea2p4.













So, in this case, we can only get a sharp asymptotic formula for mean value (3).



It is clear that if q=p is an odd prime and k≥3, maybe we can also give an accurate calculating formula for mean value (3). However, in this case, various discussions are required based on the different characters χimodp with 1≤i≤k, and the situation is more complicated, so we do not discuss it further here.



If p≡3mod4 and ψ=χ0 or ψ(−1)=−1, then from the result in [4] and the method of proving Theorem 1 we can also give an accurate calculating formula for (3) with k=3 and k=2.



For general integer q, does there exist a calculating formula similar to our theorems? These are open problems, which need to be further studied.




2. Several Simple Lemmas


To prove our theorems, we need two simple lemmas. In the process of proving our lemmas, we need to use some basic properties of classical Gaussian sums and character sums, all of which can be found in references [3,6,19], so there is no need to repeat them here.



Lemma 1.

Let p be a prime. For any character χ,ψmodp with χ(−1)ψ(−1)=1, if p≡3mod4, then we have the identity


G(χ,ψ;p)2=p(p−2)2+1ifχ=ψ=χ0p2+pifχψ=χ0andχ≠χ0,p·∑b=1p−1χ(b)ψ(b)eb2p2ifχψ≠χ0andχ≠χ0,∑b=1p−1ψ(b)eb2p2ifχ=χ0andψ≠χ0;








If p≡1mod4, then we have the identity


G(χ,ψ;p)2=1+p(p−2)2ifχ=ψ=χ0p−p2ifχψ=χ0andχ≠χ0,p·∑b=1p−1χ(b)ψ(b)eb2p2ifχψ≠χ0andχ≠χ0,∑b=1p−1ψ(b)eb2p2ifχ=χ0andψ≠χ0,








where χ0 denotes the principal character modp.





Proof. 

First, if χ(−1)ψ(−1)=−1, then we have G(χ,ψ;p)=0. In fact, if χ(−1)ψ(−1)=−1, then from the definition of G(χ,ψ;p) we have


G(χ,ψ;p)=∑a=1p−1∑b=1p−1χ(−a)ψ(−b)e(−a−b)2p=χ(−1)ψ(−1)∑a=1p−1∑b=1p−1χ(a)ψ(b)e(a+b)2p=−G(χ,ψ;p),








which implies the identity G(χ,ψ;p)=0.



On the other hand, for any integer k with (k,p)=1, from the properties of the Legendre’s symbol modp (see Theorem 7.5.4 in [3]) we have


∑a=0p−1eka2p=1+∑a=1p−11+χ2(a)ekap=∑a=1p−1χ2(a)ekap=χ2(k)·τχ2,



(4)




where χ2=∗p denotes the Legendre’s symbol modp.



Now if χ=ψ=χ0, then we have


G(χ,ψ;p)=∑a=1p−1∑b=1p−1e(a+b)2p=∑a=1p−1∑b=1p−1eb2(a+1)2p=(p−1)+∑a=1p−2∑b=0p−1eb2(a+1)2p−1=1+∑a=1p−2∑b=0p−1eb2p=1+(p−2)τχ2.



(5)







If χψ=χ0 and χ≠χ0, then applying the properties of the reduced residue system modp and (4) we have


G(χ,ψ;p)=∑a=1p−1∑b=1p−1χ(a)ψ(b)e(a+b)2p=∑a=1p−1χ(a)∑b=1p−1χ(b)ψ(b)eb2(a+1)2p=χ(p−1)(p−1)+∑a=1p−2χ(a)∑b=0p−1eb2(a+1)2p−1=χ(−1)p+∑a=1p−2χ(a)∑b=0p−1eb2p=χ(−1)p−τχ2.



(6)







If χ≠χ0 and χψ≠χ0, then we have


G(χ,ψ;p)=∑a=1p−1∑b=1p−1χ(a)ψ(b)e(a+b)2p=∑a=1p−1χ(a)∑b=1p−1χ(b)ψ(b)eb2(a+1)2p=∑a=1p−2χ(a)χ¯(a+1)ψ¯(a+1)∑b=1p−1χ(b)ψ(b)eb2p=∑a=1p−1χ1−aψ(a)∑b=1p−1χ(b)ψ(b)eb2p.



(7)







Please note that the identity


∑a=1p−1χ1−aψ(a)=1τχ¯∑a=1p−1ψ(a)∑b=1p−1χ¯(b)eb(1−a)p=1τχ¯∑b=1p−1χ¯(b)ebp∑a=1p−1ψ(a)e−abp=ψ(−1)τ(ψ)·τχ¯ψ¯τχ¯.



(8)







Combining (7), (8) and |τ(ψ)|=τχ¯ψ¯=τχ¯=p we have


G(χ,ψ;p)2=p·∑b=1p−1χ(b)ψ(b)eb2p2.



(9)







For any even character ψmodp with ψ≠χ0, we have


G(χ0,ψ;p)=∑a=1p−1∑b=1p−1ψ(b)e(a+b)2p=∑a=1p−1∑b=1p−1ψ(b)eb2(a+1)2p=∑a=1p−2ψ¯a+1∑b=1p−1ψ(b)eb2p=−∑b=1p−1ψ(b)eb2p.



(10)







Please note that if p≡1mod4, then τχ2=p, and if p≡3mod4, then τχ2=i·p. So, from (5), (6), (9) and (10) we may deduce Lemma 1 immediately. □





Lemma 2.

Let p be a prime. Then for any Dirichlet character ψmodp, we have the identity


∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4=(p−1)3p2−6p−1ifp≡3mod4,(p−1)3p2−6p−1+4pifp≡1mod4.













Proof. 

It is clear that if χ(−1)ψ(−1)=−1, then we have


∑a=1p−1χ(a)ψ(a)ea2p=0.











If χψ≠χ0 and χ(−1)ψ(−1)=1, then from (4) and the properties of the reduced residue system modp we have


∑a=1p−1χ(a)ψ(a)ea2p2=∑a=1p−1χ(a)ψ(a)∑b=1p−1eb2a2−1p   =1+χ(−1)ψ(−1)(p−1)+∑a=2p−2χ(a)ψ(a)∑b=0p−1eb2a2−1p−1   =2p+τχ2·∑a=2p−2χ(a)ψ(a)χ2a2−1−∑a=1p−1χ(a)ψ(a)   =2p+τχ2·∑a=1p−1χ(a)ψ(a)χ2a2−1.



(11)







If ψ=χ0 and p≡3mod4, then from (11) and the orthogonality of the characters modp we have


∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4 =∑χmodpχ(−1)=12p+τχ2·∑a=1p−1χ(a)χ2a2−12+τχ2−14  −2p+τχ2·∑a=1p−1χ2a2−12 =2p2(p−1)+4pτ(χ2)∑a=1p−1χ2a2−1∑χmodpχ(a)+τχ2−14  +τ2(χ2)∑a=1p−1∑b=1p−1χ2a2−1χ2b2−1∑χmodpχ(ab)−4p2 =2p2(p−1)+(p−1)τ2(χ2)∑a=1p−1χ2a2−1χ2a¯2−1−3p2+2p+1 =2p2(p−1)+p(p−1)(p−3)−3p2+2p+1 =(p−1)3p2−6p−1.



(12)







If ψ=χ0 and p≡1mod4, then note that the identity


∑a=1p−1a2−1p=∑a=1p−1a2+2ap−1=∑a=1p−11+2ap−1=−2,








from the method of proving (12) we have


∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4 =2p2(p−1)+p(p−1)(p−3)+p−14−2p+p∑a=1p−1χ2a2−12 =2p2(p−1)+p(p−1)(p−3)+p+1−2p2−2p−2p2 =(p−1)3p2−6p−1+4p.



(13)







If ψ≠χ0 and p≡3mod4, then from (11) and the method of proving (12) we also have the identity


∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4 =∑χmodpχ(−1)=ψ(−1)2p+τχ2·∑a=1p−1χ(a)ψ(a)χ2a2−12+τχ2−14 −2p+τχ2·∑a=1p−1χ2a2−12 =∑χmodpχ(−1)=12p+τχ2·∑a=1p−1χ(a)χ2a2−12+τχ2−14 −2p+τχ2·∑a=1p−1χ2a2−12=(p−1)3p2−6p−1.



(14)







Similarly, if ψ≠χ0 and p≡1mod4, then from (11) and the method of proving (13) we have the identity


∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4=(p−1)3p2−6p−1+4p.



(15)







Now Lemma 2 follows from (12), (13), (14) and (15). □






3. Proofs of the Theorems


In this section, we shall complete the proofs of our theorems. First we prove Theorem 1. If p≡3mod4, let ψ be any character modp, if ψ=χ0, then from Lemma 1 and Lemma 2 we have


∑χmodpG(χ,ψ;p)4=∑χmodp∑a=1p−1∑b=1p−1χ(a)ea+b2p4=∑χmodpχ(−1)=1τ(χ2)∑a=1p−1χ(a)−∑a=1p−1χ(a)ea2p4=∑χmodp∑b=1p−1χ(b)eb2p4+1+(p−2)2p2−τ(χ2)−14=(p−1)3p2−6p−1+1+(p−2)2p2−p+12=(p−1)p5−7p4+17p3−10p2−12p−1.



(16)







If ψ≠χ0, then from Lemma 1 and Lemma 2 we have


∑χmodpG(χ,ψ;p)4=∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(a)ea+b2p4=p2·∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4+1−p2∑b=1p−1ψ(b)eb2p4=(p−1)3p4−6p3−p2−(p+1)∑b=1p−1ψ(b)eb2p4.



(17)







Please note that if ψ(−1)=−1, then we have


∑b=1p−1ψ(b)eb2p=0.



(18)







If ψ(−1)=1 and ψ≠χ0, then we have the estimate


∑b=1p−1ψ(b)eb2p≤2p.



(19)







Combining (16)–(19) we may immediately deduce Theorem 1.



Similarly, we can use the method of proving Theorem 1 to prove Theorem 2. If p≡1mod4 and ψ=χ0, then from Lemma 1 and Lemma 2 we have


∑χmodpG(χ,m;p)4=∑χmodp∑a=1p−1∑b=1p−1χ(a)ea+b2p4=∑χmodpχ(−1)=1τ(χ2)∑a=1p−1χ(a)−∑a=1p−1χ(a)ea2p4=∑χmodp∑b=1p−1χ(b)eb2p4+1+(p−2)p4−p−14=(p−1)3p2−6p−1+4p+1+(p−2)p4−p−14=(p−1)p5−7p4+17p3−6p2−24p−1+4pp3−5p2+7p+1








or


1p−1∑χmodp∑a=1p−1∑b=1p−1χ(a)ea+b2p4=p5−7p4+17p3−6p2−24p−1+4pp3−5p2+7p+1.



(20)







If p≡1mod4 and ψ≠χ0, then form Lemma 1 and Lemma 2 we have


∑χmodpG(χ,ψ;p)4=∑χmodp∑a=1p−1∑b=1p−1χ(a)ψ(a)ea+b2p4=p2·∑χmodp∑a=1p−1χ(a)ψ(a)ea2p4+1−p2∑b=1p−1ψ(b)eb2p4=(p−1)3p4−6p3−p2+4p52−(p+1)∑b=1p−1ψ(b)eb2p4.



(21)







Combining (18)–(21) we complete the proof of Theorem 2.



For any characters χ and ψmodp with ψ≠χ0, applying (19) and Lemma 1 we may immediately deduce the upper bound estimate


G(χ,ψ;p)≤2p.











This completes the proof of Theorem 3.




4. Conclusions


The main results of this paper are Theorem 1, Theorem 2, and Corollary 1. They obtain some exact expressions for the fourth power mean (3) with k=2 and q=p, an odd prime. For Corollary 1 in particular, the result is very simple and beautiful. These works have good references for further research on generalized multivariate quadratic Gauss sums. In addition, these theorems also profoundly reveal the regularity of the value distribution of this kind of new Gauss sum. In other words, its value is mainly concentrated on G(χ0,χ0;p), where χ0 is the principal character modp.



For the general integer q>1 (or q=p and k≥3), we also proposed two open problems. These will contribute to the further study of these contents.
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