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Abstract: Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving
numerous real world global optimization problems. This paper presents an overview of the constraint
handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with
Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization
problems. The stochastic ranking approach is broadly used to maintain balance between penalty
and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic
algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale
factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules
to maintain balance between penalty and objective functions. SRIFA is experimented to optimize
24 CEC 2006 standard functions and five well-known engineering constrained-optimization design
problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the
overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of
the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering
design problems in its performance, quality and efficiency.

Keywords: constrained optimization problems (COPs); evolutionary algorithms (EAs); firefly
algorithm (FA); stochastic ranking (SR)

1. Introduction

Nature-Inspired Algorithms (NIAs) are very popular in solving real-life optimization
problems. Hence, designing an efficient NIA is rapidly developing as an interesting research
area. The combination of evolutionary algorithms (EAs) and swarm intelligence (SI) algorithms are
commonly known as NIAs. The use of NIAs is popular and efficient in solving optimization problems
in the research field [1]. EAs are inspired by Darwinian theory. The most popular EAs are genetic
algorithm [2], evolutionary programming [3], evolutionary strategies [4], and genetic programming [5].
The term SI was coined by Gerardo Beni [6], as it mimics behavior of biological agents such as
birds, fish, bees, and so on. Most popular SI algorithms are particle swarm optimization [7], firefly
algorithm [8], ant colony optimization [9], cuckoo search [10] and bat algorithm [11]. Recently, many
new population-based algorithms have been developed to solve various complex optimization problem
such as killer whale algorithm [12], water evaporation algorithm [13], crow search algorithm [14] and
so on. The No-Free-Lunch (NFL) theorem described that there is not a single appropriate NIA to
solve all optimization problems. Consequently, choosing a relevant NIAs for a particular optimization
problem involves a lot of trial and error. Hence, many NIAs are studied and modified to make
them more powerful with regard to efficiency and convergence rate for some optimization problems.
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The primary factor of NIAs are intensification (exploitation) and diversification (exploration) [15].
Exploitation refers to finding a good solution in local search regions, whereas exploration refers to
exploring global search space to generate diverse solutions [16].

Optimization algorithms can be classified in different ways. NIAs can be simply divided into two
types: stochastic and deterministic [17]. Stochastic (in particular, metaheuristic) algorithms always
have some randomness. For example, the firefly algorithm has “α” as a randomness parameter.
This approach provides a probabilistic guarantee for a faster convergence of global optimization
problem, usually to find a global minimum or maximum at an infinite time. In the deterministic
approach, it ensures that, after a finite time, the global optimal solution will be found. This approach
follows a detailed procedure and the path and values of both dimensions of problem and function
are reputable. Hill-climbing is a good example of deterministic algorithm, and it follows same path
(starting point and ending point) whenever the program is executed [18].

Real-world engineering optimization problems contain a number of equality and inequality
constraints, which alter the search space. These problems are termed as Constrained-Optimization
Problems (COPs). The minimization COPs defined as:

Minimize: f (~z) = (z1, z2, ...., zn) ~z ∈ S, (1)

gj(~z) ≤ 0 j = 1, 2, 3, . . . , m; (2)

hj(~z) = 0 j = m + 1, . . . , q ; (3)

lx ≤ k ≤ ux x = 1, 2, ...., n, (4)

where f (~z) is the objective-function given in Equation (1), (~z) = (z1, z2, z3..., zn) n-dimensional design
variables, lx and ux are the lower and upper bounds, gj(~z) inequality with m constraints and hj(~z)
equality with q− 1 constraints.

The feasible search space F ⊆ S is represented as the equality (q) and inequality (m). Some point
in the z ∈ F contains feasible or infeasible solutions. The active constraint (~z∗) is defined as inequality
constraints that are satisfied when gj(z) ≤ 0 (j = {1, 2, 3, . . . , m}) at given point (~z∗) ∈ F. In feasible
regions, all constraints (i.e., equality constraints) were acknowledged as active constraints at all points.

In NIA problems, most of the constraint-handling techniques deal with inequality constraints.
Hence, we have transformed equality constrained into equality using some tolerance value (ε):∣∣hj(~z)

∣∣− ε ≤ 0, (5)

where j ∈ {m + 1, . . . , q } and ’ε’ is tolerance allowed. Apply the value of tolerance ε for equality
constraints for a given optimization problem. Then, the constraint-violation CV j (~z) of an individual
from the jth constraint can be calculated by

CV j(~z) =

{
max{gj(~z), 0} 1 ≤ j ≤ m,

max{|hj(~z)| − ε, 0} m + 1 ≤ j ≤ q.
(6)

The maximum constraint-violation of~z of every constraint in the all individual or population is
given as:

CV j(~z) = ∑q
j=1 CV j(~z). (7)

With this background, the rest of paper is ordered as follows: Section 2 explains the classification
of constrained-Handling Techniques (CHT); Section 3 deals with an overview of Constrained FA;
Section 4 gives the outline of SR and OBL approaches. Section 5 described the proposed SRIFA with
OBL; the experimental setup and computational outcomes of the SRIFA with 24 CEC 2006 benchmark
test functions are illustrated in Section 6. The comparison of SRIFA with existing metaheuristic
algorithms is also discussed with respect to its performance and effectiveness. The computational
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results of the SRIFA are examined with an engineering design problem in Section 7. Finally, in Section 8,
conclusions of the paper are given.

2. Constrained-Handling Techniques (CHT)

Classification of CHT

In this section, we provide a literature survey of various CHT approaches that are adapted into
NIAs to solve COPs. The classification of constrained handling approaches is shown in Figure 1. In the
past few decades, various CHTs have been developed, particularly for EAs. Mezura-Montes and
Coello conducted a comprehensive survey of NIA [19].

Constraint-Handling Techniques

Dynamic-Penalty

Static-Penalty

Adaptive-Penalty

Death-Penalty

Decoders

Locating the

boundary of

feasible region

Repair Strategy

Deb Rule for

 selection
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Separation of
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Hybrid Methods
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FROFI

No Repair

Centroid
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Fuzzy logic
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Figure 1. The classification of Constrained-Handling Techniques.

1. Feasibility Rules Approach: The most effective CHT was proposed by Deb [20]. Between any two
solutions Ai and Aj compared, Ai is better than Aj, under the following conditions:

(a) If Ai is a feasible solution, then Aj solution is not.
(b) Between two Ai and Aj feasible solutions, if Ai has better objective value over Aj, then Ai

is preferred.
(c) Between two Ai and Aj infeasible solutions, if Ai has the lowest sum of constraint-violation

over Aj, then Ai is preferred.

Wang and Li [21] integrated a Feasibility-Rule integrated with Objective Function Information
(FROFI), where Differential Evolution (DE) is used as a search algorithm along with feasibility
rule.

2. Penalty Function Method: COPs can be transformed into unconstrained problems using penalty
function. This penalty method includes various techniques such as static-penalty, dynamic-
penalty [22], adaptive-penalty [23], death-penalty [24], oracle-penalty and exact-penalty methods.

3. Special representation scheme: This method includes decoders, locating the boundary of a feasible
solution [25] and repair method [26]. The new repair methods classified into three types:
Constrained Optimization by Radical basis Function Approximation (COBRA) [27], the centroid
and No-pair method.
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4. Multi-objective Methods (MO) or Vector optimization or Pareto-optimization: It is an optimization
problems that has two or more objectives [28]. There are roughly two types of MO methods:
bi-objective and many-objective.

5. Split-up objective and constraints: There are many techniques to handle split-up objective and
constraints. These techniques are co-evolution, Powell and Skolnick technique, Deb-rule and
ranking method. There are different types of ranking methods such as stochastic ranking,
Tessema and Yen method, multiple ranking and the balanced ranking method.

6. Hybrid Method: The NIAs combined with a classical constrained method or heuristic method
are called as hybrid methods. The hybrid method includes Lagrangian multipliers, constrained
Optimization by random evolution and fuzzy logic [25].

7. Miscellaneous Method: These methods include ensemble [29], ε-constrained [30], dynamic
constrained, hyper-heuristic, parent-centric and inverse parabolic [31].

3. Overview of Constrained FA

3.1. Basic FA

FA is a swarm-based NIAs proposed by Xin-she Yang [8]. Fister et al. [32] carried out in detail
comprehensive review of FA. The basic FA pseudo-code is indicated in Algorithm 1. The mathematical
formulation of the basic FA is as follows (Figure 2):

 Population size (Ps),

Decision  variable (D),

Max generation(G)

initialize  absorption, randomness, and

attractiveness coefficients.

Rank fireflies A/c to attractiveness

Sort fireflies

Move fireflies

Is optimal

solution

obtained ?

Obtain global minimum

Update

t<G

NO

Yes

Figure 2. Basic Firefly Algorithm (BFA).

Let us consider that attractiveness of FA is assumed as brightness (i.e., fitness function).
The distance between brightness of two fireflies (assume u and v) is given as:

I = I0e−γr2
uv (zu − zv, ) (8)

where I is an intensity of light-source parameter, γ is an absorption coefficient, and (zu) is distance
between two fireflies u and v. I0 is the intensity of light source parameter when r = 0. The attractiveness
for two fireflies u and v (u is more attractive than v) is defined as:

β = β0e−γr2
uv (zu − zv) . (9)
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β0 is attractiveness parameter when r = 0.
Movement of fireflies are basically based on the attractiveness, when a firefly u is less attractive

than firefly v; then, firefly u moves towards firefly v and it is determined by Equation (10):

zv = zv + β0e−γr2
uv (zu − zv) + α

(
rand− 1

2

)
, (10)

where the second term is an attractive parameter, the third term is a randomness parameter and rand
is a vector of random-numbers generated uniform distribution between 0 and 1.

3.2. Constrained FA

The FA Combined with CHT has been widely used for solving COPs. Some typical constrained
FA (CFA) has been briefly discussed below.

To solve engineering optimization problems, the adaptive-FA is designed has been discussed
in [33]. Costa et al. [34] used penalty based techniques to evaluate different test functions for
global optimization with FA. Brajevic et al. [35] developed feasibility-rule based with FA for COPs.
Kulkarni et al. [36] proposed a modified feasibility-rule based for solving COPs using probability.
The upgraded FA (UFA) is proposed to solve mechanical engineering optimization problem [37].
Chou and Ngo designed a multidimensional optimization structure with modified FA (MFA) [38].

Algorithm 1 Stochastic Ranking Approach (SRA)

1: Number of population (N), Pf balanced dominance of two solution of f (~z), CVk (~z) is sum of
constrained violation, m is individual who will be ranked

2: Rank the individual based on Pf and f (~z)
3: Calculate zk = 1, */ k ∈ 1, 2, 3, ..., λ and zk is variable of f(z)
4: for i = 1 to n do
5: for k = 1 to m-1 do
6: Random R = U(0, 1) */random number generator
7: end for
8: if (CVk((zk) = CVk((zk+1) = 0)) or R < Pf then
9: if (f(zk) > f(zk+1)) then

10: swap (zk,zk+1)
11: end if

12: else if (CVk(zk) > CVk(zk+1)) then
13: swap (zk, zk+1)

end if
14: end if
15: if no swapping then break;
16: end if
17: end for

4. Stochastic Ranking and Opposite-Based Learning (OBL)

This section represents an overview of SR and OBL.

4.1. Stochastic Ranking Approach (SRA)

This approach, which was introduced by Runarsson and Yao [39], which balances fitness or
(objective function) and dominance of a penalty approach. Based on this, the SRA uses a simple bubble
sort technique to rank the individuals. To rank the individual in SRM, Pf is introduced, which is used
to compare the fitness function in infeasible area of search space. Normally, when we take any two
individuals for comparison, three possible solutions are formed.

(a) if both individuals are in a feasible region, then the smallest fitness function is given the
highest priority; (b) For both individuals at an infeasible region, an individual having smallest
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constraint-violation (CVk) is preferred to fitness function and is given the highest priority; and (c) if
one individual is feasible and other is infeasible, then the feasible region individual is given highest
priority. The pseudo code of SRM is given in Algorithm 1.

4.2. Opposition-Based Learning (OBL)

The OBL is suggested by Tizhoosh in the research industry, which is inspired by a relationship
among the candidate and its opposite solution. The main aim of the OBL is to achieve an optimal
solution for a fitness function and enhance the performance of the algorithm [40]. Let us assume that z
∈ [x + y] is any real number, and the opposite solution of z is denoted as ź and defined as

ź = x + y− z. (11)

Let us assume that Z = (z1, z2, z3, . . . , zn) is an n-dimensional decision vector, in which
zi∈[xi + yi] and i = 1, 2, . . . , n. In the opposite vector, p is defined as Ź = (ź1, ź2, ź3, . . . , źn), where
źi = ([xi + yi]− zi).

5. The Proposed Algorithm

The most important factor in NIAs is to maintain diversity of population in search space to
avoid premature convergence. From the intensification and diversification viewpoints, an expansion
in diversity of population revealed that NIAs are in the phase of intensification, while a decreased
population of diversity revealed that NIAs are in the phase of diversification. The adequate balance
between exploration and exploitation is achieved by maintaining a diverse populations. To maintain
balance between intensification and diversification, different approaches were proposed such as
diversity maintenance, diversity learning, diversity control and direct approaches [16]. The diversity
maintenance can be performed using a varying size population, duplication removal and selection of
a randomness parameter.

On the other hand, when the basic FA algorithm is performed with insufficient diversification
(exploration), it leads to a solution stuck in local optima or a suboptimal region. By considering these
issues, a new hybridizing algorithm is proposed by improving basic FA.

5.1. Varying Size of Population

A very common and simple technique is to increase the population size in NIAs to maintain the
diversity of population. However, due to an increase in population size, computation time required
for the execution of NIAs is also increased. To overcome this problem, the OBL concept is applied to
improve the efficiency and performance of basic FA at the initialization phase.

5.2. Improved FA with OBL

In the population-based algorithms, premature convergence in local optimum is a common
problem. In the basic FA, every firefly moves randomly towards the brighter one. In that condition,
population diversity is high. After some generation, the population diversity decreases due to a lack of
selection pressure and this leads to a trap solution at local optima. The diversification of FA is reduced
due to premature convergence. To overcome this problem, the OBL is applied to an initial phase of FA,
in order to increase the diversity of firefly individuals.

In the proposed Improved Firefly Algorithm (IFA), we have to balance intensification and
diversification for better performance and efficiency of the proposed FA. To perform exploration,
a randomization parameter is used to overcome local optimum and to explore global search. To balance
between intensification and diversification, the random-scale factor (R) was applied to generate
randomly populations. Das et al. [41] used a similar approach in DE:

Ru,v = lbv + 0.5(1 + rand(0, 1)) ∗ (ubv − lbv), (12)
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where Ru,v is a vth parameter of the uth firefly, ubv is upper-bound, lbv is a lower-bound of vth value
and rand (0, 1) is randomly distributed of the random-number.

The movement of fireflies using Equation (10) will be modified as

zv = zv + β0e−γr2
uv (zu − zv) + Ru,v. (13)

5.3. Stochastic Ranking with an Improved Firefly Algorithm (SRIFA)

Many studies are published in literature for solving COPs using EAs and FA. However, it is quite
challenging to apply this approach for constraints effectively handling optimization problems. FA
produces admirable outcomes on COPs and it is well-known for having a quick convergence rate [42].
As a result of the quick convergence rate of FA and popularity of the stochastic-ranking for CHT,
we proposed a hybridized technique for constrained optimization problems, known as Stochastic
Ranking with an Improved Firefly Algorithm (SRIFA). The flowchart of SRIFA is shown in Figure 3.

START

Initialization

phase

Initialize Objective-function (COPs)

Initialize population-size and apply OBL

approach

Initialize attractiveness, absorption ,

and randomness values.

Initialize parameter of SR

U(0,1) is random-value-generator(RVG)

Searching

Phase

Make a copy of firefly population

Apply Random scale factor (R) as in

Eq.(10)

Evaluate each fireflies with SR method

Sort the fireflies  and ranked them

  Choose global best firefly

Is any local firefly best

than global best ?

max generation

Update

global best

firefly

Termination

Phase

YES

END
Obtain global minimum or

Maximum

NO
Stopping

 criterion

Figure 3. The flowchart of the SRIFA algorithm.
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5.4. Duplicate Removal in SRIFA

The duplicate individuals in a population should be eliminated and new individuals should
generated and inserted randomly into SRIFA. Figure 4 represents the duplication removal in SRIFA.

Start

Initial population N

firefly1, firefly2

variable(M)

duplicate

element

found in N

match found, alter firefly

(firefly1==firefly2)

 randomize function to generate fireflies

population  firefly2=rand[1,0]

Assign  upper and lower bound

Evaluate the firefly2 End

NO

YES

Figure 4. The flowchart of duplication removal in SRIFA.

6. Experimental Results and Discussions

To examine the performance of SRIFA with existing NIAs, the proposed algorithm is applied to
24 numerical benchmark test functions given in CEC 2006 [43]. This preferred benchmark functions
have been thoroughly studied before by various authors.

In Table 1, the main characteristics of 24 test function are determined, where a fitness function
(f(z)), number of variables or dimensions (D), ρ = |Feas|/|SeaR| is expressed as a feasibility ratio between
a feasible solution (Feas) with search region (SeaR), Linear-Inequality constraint (LI), Nonlinear
Inequality constraint (NI), Linear-Equality constraint (LE), Nonlinear Equality constraint (NE), number
active constraint represented as (a∗) and an optimal solution of fitness function denoted (OPT) are
given. For convenience, all equality constraints, i.e., hj(z) are transformed into inequality constraint
hj(z)− ε ≤ 0, where ε = 10−4 is a tolerance value, and its goal is to achieve a feasible solution [43].

6.1. Experimental Design

To investigate the performance and effectiveness of the SRIFA, it is tested over 24 standard-
functions and five well-known engineering design-problems. All experiments of COPs were
experimented on an Intel core (TM) i5− 3570 processor @3.40 GHz with 8 GB RAM memory, where an
SRIFA algorithm was programmed with Matlab 8.4 (R2014b) under Win7 (x64). Table 2 shows the
parameter used to conduct computational experiments of SRIFA algorithms. For all experiments,
30 independent runs were performed for each problem. To investigate efficiency and effectiveness of
the SRIFA, various statistical parameters were used such as best, worst, mean, global optimum and
standard-deviation (Std). Results in bold indicate best results obtained.
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Table 1. Characteristic of 24 standard-functions.

Problems Dimension Types of Functions ρ (%) L-I N-I L-E N-E a∗ Opt

G01 13 Quadratic 0.0003 9 0 0 0 6 −15.0000
G02 20 Non-linear 99.9962 1 1 0 0 1 −0.8036
G03 10 Non-linear 0.0002 0 0 0 1 1 −1.0000
G04 5 Quadratic 26.9089 0 6 0 0 2 −30,655.5390
G05 4 nonlinear 0.0000 2 0 0 3 3 5126.4970
G06 2 Non-linear 0.0065 0 2 0 0 2 −6961.8140
G07 10 Quadratic 0.0010 3 5 0 0 6 24.3060
G08 2 Non-linear 0.8488 0 2 0 0 0 0.9583
G09 7 Non-linear 0.5319 0 4 0 0 2 680.6300
G10 8 Linear 0.0005 3 3 0 0 6 7049.2480
G11 2 Quadratic 0.0099 0 0 0 1 1 0.7499
G12 3 Quadratic 4.7452 0 9 0 0 0 −1.0000
G13 5 Non-linear 0.0000 0 0 1 2 3 0.0539
G14 10 Non-linear 0.0000 0 0 3 0 3 −47.7650
G15 3 Quadratic 0.0000 0 0 1 1 2 961.7150
G16 5 Non-linear 0.0204 4 34 0 0 4 −1.9050
G17 6 Non-linear 0.0000 0 0 4 4 4 8853.5397
G18 9 Quadratic 0.0000 0 13 0 0 6 −0.8660
G19 15 Non-linear 33.4761 0 5 0 0 0 32.6560
G20 24 Linear 0.0000 0 6 2 12 16 0.0205
G21 7 Linear 0.0000 0 1 0 5 6 193.7250
G22 22 Linear 0.0000 0 1 8 11 19 236.4310
G23 9 Linear 0.0000 0 2 3 1 6 −400.0050
G24 2 Linear 79.6556 0 2 0 0 2 −5.5080

Table 2. Experimental parameters for SRIFA.

Parameters Value Significances

Size of population (NP) 50

Gandomi [44] suggested that 50 fireflies are adequate to
perform experiments for any application. If we
increase the population size, the computational time of
the proposed algorithm will be increased.

Initial randomization value (α0) 0.5
In the literature, many authors suggested that a randomness
parameter must used in range (0, 1). In our experiment,
we have used a 0.5 value.

Initial attractiveness value (β0) 0.2
The attractiveness parameter for our experiment is
0.2 value.

Absorption coefficient (γ) 4
The absorption value is crucial in our experiment.
It determines convergence speed of algorithms.
In most applications, the γ value in range (0.001, 100)

Number of iterations or generations (G) 4800 Total number of iterations.

Total number of function evaluation (NFEs) 240,000
The total number of objective function evaluations
(50 × 4800 = 240,000 evaluations)

Constrained-handling values Initial tolerance value: 0.5 (for equality)

Final tolerance: 1× 10−4 (for equality)

Probability Pf 0.45
It is used to rank objects. Pf is used to compare
the fitness (objective) function in infeasible areas
of the search space.

Varphi (φ) 1 Sum of constrained violation.

6.2. Calibration of SRIFA Parameters

In this section, we have to calibrate the parameter of the SRIFA. According to the strategy of the
SRIFA, described in Figure 2, the SRIFA contains eight parameters: size of population (NP), initial
randomization value (α0), initial attractiveness value (β0), absorption-coefficient (γ), max-generation
(G), total number of function evaluations (NFEs), probability Pf and varphi (φ). To derive a suitable
parameter, we have performed details of fine-tuning by varying parameters of SRIFA. The choice of
each of these parameters as follows: (NP)∈ (5 to 100 with an interval of 5), (α0) ∈ (0.10 to 1.00 with an
interval of 0.10), (β0) ∈ (0.10 to 1.00 with an interval 0.10), (γ) ∈ (0.01 to 100 with an interval of 0.01
until 1 further 5 to 100), (G) ∈ (1000 to 10,000 with an interval of 1000), NFEs ∈ (1000 to 240,000), Pf
= ∈ (0.1 to 0.9 with an interval of 0.1) and (φ) ∈ (0.1 to 1.0 with an interval of 0.1). The best optimal
solutions obtained by SRIFA parameter experiments from the various test functions. In Table 2, the
best parameter value for experiments for the SRIFA are described.
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6.3. Experimental Results of SRIFA Using a GKLS (GAVIANO, KVASOV, LERA and SERGEYEV) Generator

In this experiment, we have compared the proposed SRIFA with two novel approaches:
Operational Characteristic and Aggregated Operational Zone. An operational characteristic approach
is used for comparing deterministic algorithms, whereas an aggregated operational zone approach is
used by extending the idea of operational characteristics to compare metaheuristic algorithms.

The proposed algorithm is compared with some widely used NIAs (such as DE, PSO and FA)
and the well-known deterministic algorithms such as DIRECT, DIRECT-L (locally-biased version),
and ADC (adaptive diagonal curves). The GKLS test classes generator is used in our experiments.
The generator allows us to randomly generate 100 test instances having local minima and dimension.
In this experiment, eight classes (small and hard) are used (with dimensions of n = 2, 3, 4 and 5) [45].
The control parameters of the GKLS-generator required for each class contain 100 functions and
are defined by the following parameters: design variable or problem dimension (N), radius of the
convergence region (ρ), distance from of the paraboloid vertex and global minimum (r) and tolerance
(δ). The value of control parameters are given in Table 3.

Table 3. Control parameter of the GKLS generator.

N Class r ρ δ

2 Simple 0.9 0.2 104

2 Hard 0.9 0.1 104

3 Simple 0.66 0.2 105

3 Hard 0.9 0.2 105

4 Simple 0.66 0.2 106

4 Hard 0.9 0.2 106

5 Simple 0.66 0.3 107

5 Hard 0.9 0.2 107

From Table 4, we can see that the mean value of generations required for computation
of 100 instances are calculated for each deterministic and metaheuristic algorithms using an
GKLS generator. The values “>m(i)” indicate that the given algorithm did not solve a global
optimization problem i times in 100 × 100 instances (i.e., 1000 runs for deterministic and 10,000
runs for metaheuristic algorithms). The maximum number of generations is set to be 106. The mean
value of generation required for proposed algorithm is less than other algorithms, indicating that the
performance SRIFA is better than the given deterministic and metaheuristic algorithms.

6.4. Experimental Results FA and SRIFA

In our computational experiment, the proposed SRIFA is compared with the basic FA. It differs
from the basic FA in following few points. In the SRIFA, the OBL technique is used to enhance initial
population of algorithm, while, in FA, fixed generation is used to search for optimal solutions. In the
SRIFA, the chaotic map (or logistic map) is used to improve absorption coefficient γ, while, in the
FA, fixed iteration is applied to explore the global solution. The random scale factor (R) was used
to enhance performance in SRIFA. In addition, SRIFA uses Deb’s rules in the form of the stochastic
ranking method.

The experimental results of the SRIFA with basic FA are shown in Table 5. The comparison between
SRIFA and FA are conducted using 24 CEC (Congress on Evolutionary-Computation) benchmark test
functions [43]. The global optimum, CEC 2006 functions, best, worst, mean and standard deviation
(Std) outcomes produced by SRIFA and FA in over 25 runs are described in Table 5.

In Table 5, it is clearly observed that SRIFA provides promising results compared to the basic FA
for all benchmark test functions. The proposed algorithm found optimal or best solutions on all test
functions over 25 runs. For two functions (G20 and G22), we were unable to find any optimal solution.
It should be noted that ’N-F’ refers to no feasible result found.
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Table 4. Statistical results obtained by deterministic and metaheuristic algorithms using
GKLS generator.

N Class

Deterministic Algorithm Metaheuristic Algorithms
(100 Runs for Each Algorithm and Class) (10,000 Runs for Each Algorithm and Class)

DIRECT DIRECT-L ADC DE PSO FA SRIFA

2 Simple 198.9 292.8 176.3 >52,910.38 (511) >110,102.74 (1046) 1190.3 1008
2 Hard 1063.8 1267.1 675.7 >357,467.49 (3556) >247,232.35 (2282) >4299.6 (3) >3457.6 (3)
3 Simple 1117.7 1785.7 735.8 >165,125.02 (1515) >170,320.10 (1489) 15,269.2 14,987
3 Hard >42,322.7 (4) 4858.9 2006.8 >476,251.20 (4603) >285,499.04 (2501) >21,986.3 (1) 20,989
4 Simple >47,282.9 (4) 18,983.6 5014.1 >462,401.52 (4546) >303,436.36 (2785) 23,166.7 22,752.4
4 Hard >95,708.3 (7) 68,754 16,473 >773,481.03 (7676) >456,996.08 (4157) 40,380.7 38,123.2
5 Simple >16,057.5 (1) 16,758.4 5129.9 >294,839.01 (2815) >181,805.17 (1561) >47,203.1 (16) >45,892.8 (15)
5 Hard >217,215.6 (16) >269,064.4 (4) 30,471.8 >751,930.00 (7473) >250,462.63 (2109) >79,555.2 (38) >76,564 (34)

Table 5. Statistical results obtained by SRIFA and FA on 24 benchmark functions over 25 runs.

Algo. Functions Global Opt Best Worst Mean Std

FA G01 −15.000 −14.420072 −11.281250 −13.840104 1.16 × 100

SRIFA −15.000 −15.000 −15.000 7.86 × 10−13

FA G02 −0.8036191 −0.8036191 −0.5205742 −0.7458475 6.49 × 10−2

SRIFA −0.8036191 −0.800909 −0.80251 8.95 × 10−4

FA G03 −1.000 −1.0005 −1.0005 −1.0005 9.80 × 10−7

SRIFA −1.0005 −1.0005 −1.0005 6.54 × 10−6

FA G04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 2.37 × 10−9

SRIFA −30,665.539 −30,665.54 −30,665.54 6.74 × 10−11

FA G05 5126.49671 5126.49671 5144.3028 5233.2377 2.92 × 101

SRIFA 5126.49671 5126.4967 5126.4967 1.94 × 10−9

FA G06 −6961.8138 −6961.81388 −6961.81388 −6961.81388 1.76 × 10−7

SRIFA −6961.8138 −6961.814 −6961.814 4.26 × 10−8

FA G07 24.306 24.306283 24.310614 24.32652 3.80 × 10−3

SRIFA 24.306 24.306 24.306 2.65 × 10−8

FA G08 −0.09582 −0.09582504 −0.09582504 −0.09582504 1.83 × 10−17

SRIFA −0.09582 −0.09582 −0.09582 5.40 × 10−20

FA G09 680.63 680.630058 680.630063 680.630082 7.11 × 10−6

SRIFA 680.6334 680.6334 680.6334 5.64 × 10−7

FA G10 7049.248 7071.757586 7181.02714 7111.54937 3.00 × 101

SRIFA 7049.2484 7049.2484 7049.2484 5.48 × 10−4

FA G11 0.7499 0.7499 0.7499 0.7499 5.64 × 10−9

SRIFA 0.7499 0.7499 0.7499 8.76 × 10−15

FA G12 −1.000 −1.000 −1.000 −1.000 5.00 × 10−2

SRIFA −1.000 −1.000 −1.000 6.00 × 10−3

FA G13 0.053942 0.054 0.439 0.131 1.54 × 10−1

SRIFA 0.053943 0.053943 0.053943 0.00 × 100

FA G14 −47.765 −47.764879 −47.764563 −47.762878 3.82 × 10−4

SRIFA −47.7658 −47.7658 −47.7658 5.68 × 10−6

FA G15 961.715 961.715 961.715 961.715 8.67 × 10−9

SRIFA 961.7155 961.7155 961.7155 6.34 × 10−11

FA G16 −1.9050 −1.90515 −1.90386 −1.90239 8.76 × 10−5

SRIFA −1.9050 −1.9050 −1.9050 2.55 × 10−10

FA g17 8853.5397 8853.5339 8900.0831 9131.5849 5.52 × 101

SRIFA 8853.5339 8853.5339 8853.5339 5.80 × 10−3

FA G18 −0.8660 −0.8660 −0.8660 −0.8660 7.60 × 10−5

SRIFA −0.8660 −0.8660 −0.8660 6.54 × 10−10

FA G19 32.6560 32.7789 34.6224 38.3827 1.65 × 100

SRIFA 32.6560 32.6560 32.6560 2.22 × 10−6

FA G20 30.0967 ’N-F’ ’N-F’ ’N-F’ ’N-F’
SRIFA ’N-F’ ’N-F’ ’N-F’ ’N-F’

FA G21 193.7250 193.7245 683.1906 350.9696 5.41 × 102

SRIFA 193.7240 193.7240 193.7240 4.26 × 10−4

FA G22 236.4310 ’N-F’ ’N-F’ ’N-F’ ’N-F’
SRIFA ’N-F’ ’N-F’ ’N-F’ ’N-F’

FA G23 −400.0050 −347.917268 −347.9345669 −347.923470 7.54 × 10−3

SRIFA −400.0050 −400.0052 −400.0050 5.65 × 10−4

FA G24 −5.5080 −5.5081 −5.5080 −5.5080 1.11 × 10−5

SRIFA −5.5081 −5.5080 −5.5080 1.21 × 10−13
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6.5. Comparison of SRIFA with Other NIAs

To investigate the performance and effectiveness of the SRIFA, these results are compared with five
metaheuristic algorithms. These algorithms are stochastic ranking with a particle-swarm-optimization
(SRPSO) [46], self adaptive mix of particle-swarm-optimization (SAMO-PSO) [47], upgraded firefly
algorithm (UFA) [37], an ensemble of constraint handling techniques for evolutionary-programming
(ECHT-EP2) [48] and a novel differential-evolution algorithm (NDE) [49]. To evaluate proper
comparisons of these algorithms, the same number of function evaluations (NFEs = 240,000)
were chosen.

The statistical outcomes achieved by SRPSO, SAMO-PSO, UFA, ECHT-EP2 and NDE for
24 standard functions are listed in Table 6. The outcomes given in bold letter indicates best or
optimal solution. N-A denotes “Not Available”. The benchmark function G20 and G22 are discarded
from the analysis, due to no feasible results were obtained.

On comparing SRIFA with SRPSO for 22 functions as described in Table 6, it is clearly seen
that, for all test functions, statistical outcomes indicate better performance in most cases. The SRIFA
obtained the best or the same optimal values among five metaheuristic algorithms. In terms of mean
outcomes, SRIFA shows better outcomes to test functions G02, G14, G17, G21 and G23 for all four
metaheuristic algorithms (i.e., SAMO-PSO, ECHT-EP2, UFA and NDE). SRIFA obtained worse mean
outcomes to test function G19 than NDE. In the rest of all test functions, SRIFA was superior to all
compared metaheuristic algorithms.

6.6. Statistical Analysis with Wilcoxon’s and Friedman Test

Statistical analysis can be classified as parametric and non-parametric test (also known as
distribution-free tests). In parametric tests, some assumptions are made about data parameters,
while, in non-parametric tests, no assumptions are made for data parameters. We performed statistical
analysis of data by non-parametric tests. It mainly consists of a Wilcoxon test (pair-wise comparison)
and Friedman test (multiple comparisons) [50].

The outcomes of statistical analysis after conducting a Wilcoxon-test between SRIFA and the other
five metaheuristic algorithms are shown in Table 7. The R+ value indicates that the first algorithm
is significantly superior than the second algorithm, whereas R− indicates that the second algorithm
performs better than the first algorithm. In Table 7, it is observed that R+ values are higher than
R− values in all cases. Thus, we can conclude that SRIFA significantly outperforms compared to all
metaheuristic algorithms.

The statistical analysis outcomes by applying Friedman test are shown in Table 8. We have ranked
the given metaheuristic algorithms corresponding to their mean value. From Table 8, SRIFA obtained
first ranking (i.e., the lowest value gets the first rank) compared to all metaheuristic algorithms over the
22 test functions. The average ranking of the SRIFA algorithm based on the Friedman test is described
in Figure 5.

6.7. Computational Complexity of SRIFA

In order to reduce complexity of the given problem, constraints are normalized. Let n
be population size and t is iteration. Generally in NIAs, at each iteration, a complexity is
O(n ∗ FEs + Co f ∗ FEs), where FEs is the maximum amount of function evaluations allowed and
and Co f is the cost of objective function. At the initialization phase of SRIFA, the computational
complexity of population generated randomly by the OBL technique is O(nt). In a searching and
termination phase, the computational complexity of two inner loops of FA and stochastic ranking
using a bubble sort are O(n2t + n(log(n))) +O(nt)). The total computational complexity of SRIFA is
O(n, t)= O(nt)+ O(n2t + nlogn) +O(nt) ≈ O(n2t).
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Table 6. Statistical outcomes achieved by SRPSO, SAMO-PSO, ECHT-EP2, UFA, NDE AND SRIFA.

Fun Features SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G01 Best −15.00 −15.00 −15.000 −15.000 −15.000 −15.000
Mean −15.00 −15.00 −15.000 −15.000 −15.000 −15.000
Worst −15.00 N-A −15.000001 −15.000001 −15.000001 −15.000

SD 5.27 × 10−12 0.00 × 100 0.00 × 100 8.95 × 10−10 0.00 × 100 7.86 × 10−13

G02 Best −0.80346805 0.8036191 −0.8036191 −0.8036191 −0.803480 −0.8036191
Mean −0.788615 −0.79606 −0.7998220 −0.7961871 −0.801809 −0.80251
Worst −0.7572932 N-A −0.7851820 −0.7851820 −0.800495 −0.800909

SD 1.31 × 10−3 5.3420 × 10−3 6.29 × 10−3 7.48 × 10−3 5.10 × 10−4 8.95 × 10−4

G03 Best −0.9997 −1.0005 −1.0005 −1.0005 −1.0005001 −1.0005
Mean −0.9985 −1.0005001 −1.0005 −1.0005 −1.0005001 −1.0005
Worst −0.996532 N-A −1.0005 −1.0005 −1.0005001 −1.0005

SD 8.18 × 10−5 0.02 × 100 0.02 × 100 1.75 × 10−6 0.00 × 100 6.54 × 10−6

G04 Best −30,665.538 −30,665.539 −30,665.53867 −30,665.539 −30,665.539 −30,665.539
Mean −30,665.5386 −30,665.539 −30,665.53867 −30,665.539 −30,665.539 −30,665.539
Worst −30,665.536 N-A −30,665.538 −30,665.539 −30,665.539 −30,665.539

SD 4.05 × 10−5 0.00 × 100 0.00 × 100 6.11 × 10−9 0.00 × 100 6.74 × 10−11

G05 Best 5126.4985 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967
Mean 5129.9010 5126.496 5126.496 5126.496 5126.496 5126.496
Worst 5145.93 N-A 5126.496 5126.496 5126.496 5126.496

SD 5.11 1.3169 × 10−10 0.00 × 100 1.11 × 10−8 0.00 × 100 1.94 × 10−9

G06 Best −6961.8139 −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138
Mean −6916.1370 −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138
Worst −6323.3140 N-A −6961.8138 −6961.8138 −6961.8138 −6961.8138

SD 138.331 0.00 × 100 0.00 × 100 3.87 × 10−8 0.00 × 100 4.26 × 10−8

G07 Best 24.312803 24.306209 24.3062 24.306209 24.306209 24.3062
Mean 24.38 24.306209 24.3063 24.306209 24.306209 24.306
Worst 24.885038 N-A 24.3063 24.306209 24.306209 24.306

SD 1.13 × 10−2 1.9289 × 10−8 3.19 × 10−5 1.97 × 10−9 1.35 × 10−14 2.65 × 10−8

G08 Best −0.09582 −0.095825 −0.09582504 −0.09582504 −0.095825 −0.09582
Mean −0.095823 −0.095825 −0.095825 −0.095825 −0.095825 −0.09582
Worst −0.095825 N-A −0.09582504 −0.09582504 −0.095825 −0.09582

SD 2.80 × 10−11 0.00 × 100 0.00 × 100 1.70 × 10−17 0.00 × 100 5.40 × 10−20

G09 Best 680.63004 680.630057 680.630057 680.630057 680.630057 680.6334
Mean 680.66052 680.6300 680.6300 680.6300 680.6300 680.6300
Worst 680.766 N-A 680.6300 680.6300 680.6300 680.6300

SD 3.33 × 10−3 0.00 × 100 2.61 × 10−8 5.84 × 10−10 0.00 × 100 5.64 × 10−7

G10 Best 7076.397 7049.24802 7049.2483 7049.24802 7049.24802 7049.2484
Mean 7340.6964 7049.2480 7049.249 7049.2480 7049.2480 7049.2480
Worst 8075.92 N-A 7049.2501 7049.24802 7049.24802 7049.2484

SD 255.37 1.5064 × 10−5 6.60 × 10−4 2.26 × 10−7 3.41 × 10−9 5.48 × 10−4

G11 Best 0.75 0.749999 0.749999 0.7499 0.749999 0.7499
Mean 0.75 0.749999 0.749999 0.7499 0.749999 0.7499
Worst 0.75 N-A 0.749999 0.7499 0.749999 0.7499

SD 9.44 × 10−5 0.00 × 100 3.40E-16 9.26E-16 0.00 × 100 8.76 × 10−15

G12 Best −1 −1.000 −1.000 −1.000 −1.000 −1.000
Mean −1 −1.000 −1.000 −1.000 −1.000 −1.000
Worst −1 N-A −1.000 −1.000 −1.000 −1.000

SD 2.62 × 10−11 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 6.00 × 10−3

G13 Best N-A 0.053941 0.053941 0.053941 0.053941 0.053941
Mean N-A 0.0539415 0.0539415 0.0539415 0.0539415 0.053943
Worst N-A N-A 0.0539415 0.0539415 0.0539415 0.053943

SD N-A 0.00 × 100 1.30 × 10−12 1.43 × 10−12 0.00 × 100 0.00 × 100

G14 Best N-A −47.7648 −47.7649 −47.76489 −47.7648 −47.7658
Mean N-A −47.7648 −47.7648 −47.76489 −47.7648 −47.7658
Worst N-A N-A N-A −47.76489 −47.7648 −47.7658

SD N-A 4.043 × 10−2 N-A 2.34 × 10−6 5.14 × 10−15 5.68 × 10−6
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Table 6. Cont.

Fun Features SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G15 Best 961.7151 961.7150 961.7150 961.7150 961.7150 961.7150
Mean 961.7207 961.7150 961.7150 961.7150 961.7150 961.7150
Worst 961.7712 N-A N-A 961.7150 961.7150 961.7155

SD 1.12 × 10−2 0.00 × 100 N-A 1.46 × 10−11 0.00 × 100 6.34 × 10−11

G16 Best −1.9051 −1.9051 −1.9051 −1.9051 −1.9051 −1.9050
Mean −1.9050 −1.9051 −1.9050 −1.9050 −1.9050 −1.9050
Worst −1.9051 N-A N-A −1.9051 −1.9051 −1.9050

SD 1.12 × 10−11 1.15 × 10−5 N-A 1.58 × 10−11 0.00 × 100 2.55 × 10−10

G17 Best N-A 8853.5338 8853.5397 8853.5338 8853.5338 8853.5338
Mean N-A 8853.5338 8853.8871 8853.5338 8853.5338 8853.5338
Worst N-A N-A N-A 8853.5338 8853.5338 8853.5338

SD N-A 0.00 × 100 N-A 2.18 × 10−8 0.00 × 100 5.80 × 10−3

G18 Best N-A −0.8660 −0.8660 −0.8660 −0.8660 −0.8660
Mean N-A −0.8660 −0.8660 −0.8660 −0.8660 −0.8660
Worst N-A N-A N-A −0.8660 −0.8660 −0.8660

SD N-A 7.0436 × 10−7 N-A 3.39 × 10−10 0.00 × 100 6.54 × 10−10

G19 Best N-A 32.6555 32.6555 32.6555 32.6555 32.6560
Mean N-A 32.6556 36.4274 32.6555 32.6556 32.6560
Worst N-A N-A N-A 32.6555 32.6557 32.6560

SD N-A 6.145 × 10−2 N-A 1.37 × 10−8 3.73 × 10−5 2.22 × 10−6

G20 Best N-A N-A N-A N-A N-A N-A
Mean N-A N-A N-A N-A N-A N-A
Worst N-A N-A N-A N-A N-A N-A

SD N-A N-A N-A N-A N-A N-A

G21 Best N-A 193.7255 193.7251 266.5 193.72451 193.7250
Mean N-A 193.7251 246.0915 255.5590 193.7251 193.7250
Worst N-A N-A N-A 520.1656 193.724 193.7260

SD N-A 1.9643 × 10−2 N-A 9.13 × 101 6.26 × 10−11 4.26 × 10−4

G22 Best N-A N-A N-A N-A N-A N-A
Mean N-A N-A N-A N-A N-A N-A
Worst N-A N-A N-A N-A N-A N-A

SD N-A N-A N-A N-A N-A N-A

G23 Best N-A −400.0551 −355.661 −400.0551 −400.0551 −400.005
Mean N-A −400.0551 −194.7603 −400.0551 −400.0551 −400.0050
Worst N-A N-A N-A −400.0551 −400.0551 −400.0052

SD N-A 1.96 × 101 N-A 5.08 × 10−8 3.45 × 10−9 5.65 × 10−4

G24 Best −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080
Mean −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080
Worst −5.5080 N-A N-A −5.5080 −5.5080 −5.5080

SD 2.69 × 10−11 0.00 × 100 N-A 5.37 × 10−13 0.00 × 100 1.21 × 10−13

Table 7. Results obtained by a Wilcoxon-test for SRIFA against SRPSO, SAMO-PSO, ECHT-EP2,
UFA and NDE.

Algorithms R+ R− p-value Best Equal Worst Decision

SRIFA versus SRPSO 176 3 0.465 17 3 2 +
SRIFA versus SAMO-PSO 167 38 0.363 14 7 1 +
SRIFA versus ECHT-EP2 142 17 0.002 15 3 4 +

SRIFA versus UFA 45 19 0.016 10 8 4 ≈
SRIFA versus NDE 67 25 0.691 14 4 6 ≈
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Table 8. Results obtained Friedman test for all metaheuristic algorithms.

Functions SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G01 4.5 4.5 4.5 4.5 4.5 4.5
G02 6 7 5 4.5 3 3
G03 4 4.5 6 6 4 4
G04 4.5 4.5 4.5 4.5 4.5 4.5
G05 4.5 4.5 4.5 4.5 4.5 3
G06 4.5 6 6 4.5 4.5 4.5
G07 3.5 4.5 3.5 3.5 3.5 3.5
G08 4.5 7 4.5 4.5 4.5 4.5
G09 6 4.5 6 6 4.5 4.5
G10 6 4.5 4.5 4.5 3 3
G11 4.5 7 3.5 4.5 4.5 3
G12 4.5 4.5 4.5 4.5 4.5 4.5
G13 4 4.5 4 4 4 4
G14 3.5 4 3.5 3.5 3.5 3.5
G15 3 7 4.5 4.5 4.5 4.5
G16 4.5 8 4.5 4.5 4.5 4.5
G17 4.5 4.5 4.5 2 2 2
G18 4.5 3.5 3 3.5 3 3
G19 5.5 8 4 5 5 4
G20 N-A N-A N-A N-A N-A N-A
G21 6 6 4.5 2.5 2.5 2.5
G22 N-A N-A N-A N-A N-A N-A
G23 8 7 6 3.5 1.5 1.5
G24 6 8 4.5 4.5 4.5 3.5

Avearge rank 4.8409091 5.613636364 4.5454545 4.25 3.8409091 3.6136
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Figure 5. Average ranking of the proposed algorithm with various metaheuristic algorithms.

7. SRIFA for Constrained Engineering Design Problems

In this section, we evaluate the efficiency and performance of SRIFA by solving five widely used
constrained engineering design problems. These problems are: (i) tension or compression spring
design [51]; (ii) welded-beam problem [52]; (iii) pressure-vessel problem [53]; (iv) three-bar truss
problem [51]; and (v) speed-reducer problem [53]. For every engineering design problem, statistical
outcomes were calculated by executing 25 independent runs for each problem. The mathematical
formulation of all five constrained engineering design problems are given in “Appendix A”.

Every engineering problem has unique characteristics. The best value of constraints, parameter
and objective values obtained by SRIFA for all five engineering problems are listed in Table 9.
The statistical outcomes and number of function-evaluations (NFEs) of SRIFA for all five engineering
design problems are listed in Table 10. These results were obtained by SRIFA over 25 independent runs.
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Table 9. Best outcomes of parameter objective and constraints values for over engineering-problems.

Tension/Compression Welded-Beam Pressure-Vessel Three-Truss-Problem Speed-Reducer

x1 0.0516776638592 0.205729638946844 0.8125 0.788675145296995 3.50000000002504
x2 0.3567324816961 3.47048866663245 0.4375 0.40824826019360 0.70000000000023
x3 11.2881015418157 9.03662391025916 - - 17
x4 - 0.20572963979284 42.0984455958043 - 7.30000000000014
x5 - - 176.63659584313 - 7.71531991152672
x6 - - - - 3.35021466610421
x7 - - - - 5.28665446498064
x8 - - - - -
x9 - - - - -

x10 - - - - -
F(x) 0.012665232805563 1.72485231254328 6059.714335 263.895843376515 2994.47106614799

G1(x) 0 −0.000063371885873 −0.0000000000000873 −0.070525402833398 −0.073915280394101
G2(x) −1.216754326628263 −0.000002714066983 −0.00035880820872 −1.467936135628140 −0.197998527141053
G3(x) −4.0521785529112 −0.000000000839532 −0.000000016701007 −0.602589267205258 −0.499172248101033
G4(x) −0.727728835000534 −3.432983781912125 −0.633634041562312 - −0.904643904554311
G5(x) - −0.080729638942761 - - −0.000000000000654
G6(x) - −0.235540322583421 - - −0.000000000000212
G7(x) - −0.000000209274321 - - −0.702499999999991
G8(x) - - - - −0.000000000000209
G9(x) - - - - −0.795833333333279

G10(x) - - - - −0.051325753542591
G11(x) - - - - −0.000000000001243

Table 10. Statistical outcomes achieved by SRIFA for all five engineering problems over
25 independent runs.

Problems Best-Value Mean-Value Worst-Value SD NFEs

Tension/Compression 0.0126652328 0.0126652329 0.0126652333 6.54 × 10−10 2000
Welded-beam 1.7248523087 1.7248523087 1.7248523089 8.940 × 10−12 2000
pressure-vessel 6059.7143350561 6059.7143351 6059.7143352069 6.87 × 10−8 2000
Three-truss 263.8958433765 263.8958433768 263.8958433770 6.21 × 10−11 1500
Speed-reducer 2996.348165 2996.348165 2996.348165 8.95 × 10−12 3000

7.1. Tension/Compression Spring Design

A tension/compression spring-design problem is formulated to minimize weight with respect
to four constraints. These four constraints are shear stress, deflection, surge frequency and outside
diameter. There are three design variables, namely: mean coil (D), wire-diameter d and the amount of
active-coils N.

This proposed SRIFA approach is compared to SRPSO [46], MVDE [54], BA [44], MBA [55],
JAYA [56], PVS [57], UABC [58], IPSO [59] and AFA [33]. The comparative results obtained by SRIFA
for nine NIAs are given in Table 11. It is clearly observed that SRIFA provides the most optimum
results over nine metaheuristic algorithms. The mean, worst and SD values obtained by SRIFA are
superior to those for other algorithms. Hence, we can draw conclusions that SRIFA performs better in
terms of statistical values. The comparison of the number of function evacuations (NFEs) with various
NIAs is plotted in Figure 6.

Table 11. Statistical results of comparison between SRIFA and NIAs for tension/compression spring
design problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 0.012668 0.012678 0.012685 7.05 × 10−6 20,000
MVDE 0.012665272 0.012667324 0.012719055 2.45 × 10−6 10,000

BA 0.01266522 0.01350052 0.0168954 3.09 × 10−6 24,000
MBA 0.012665 0.012713 0.0129 6.30 × 10−5 7650
Jaya 0.012665 0.012666 0.012679 4.90 × 10−4 10,000
PVS 0.01267 0.012838 0.013141 N-A 10,000

UABC 0.012665 0.012683 N-A 3.31 × 10−5 15,000
IPSO 0.01266523 0.013676527 0.01782864 1.57 × 10−3 4000
AFA 0.012665305 0.126770446 0.000128058 0.012711688 50,000

SRIFA 0.0126652328 0.0126652329 0.0126652333 6.54 × 10−10 2000
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Figure 6. NIAs with NFEs for the tension/compression problem.

7.2. Welded-Beam Problem

The main objective of the welded-beam problem is to minimize fabrication costs with respect to
seven constraints. These constraints are bending stress in the beam (σ ), shear stress (τ ), deflection of
beam (δ ), buckling load on the bar (Pc), side constraints, weld thickness and member thickness (L).

Attempts have been made by many researchers to solve the welded-beam-design problem.
The SRIFA was compared with SRPSO, MVDE, BA, MBA, JAYA, MFA, FA, IPSO and AFA. The
statistical results obtained by SRIFA on comparing with nine metaheuristic algorithms are described
in Table 12. It can be seen that statistical results obtained from SRIFA performs better than all
metaheuristic algorithms.

Table 12. Statistical results of comparison between SRIFA and NIAs for welded-beam problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 1.72486658 1.72489934 1.72542212 1.12 × 10−6 20,000
MVDE 1.7248527 1.7248621 1.7249215 7.88 × 10−6 15,000

BA 1.7312065 1.878656 2.3455793 0.2677989 50,000
MBA 1.724853 1.724853 1.724853 6.94 × 10−19 47,340
JAYA 1.724852 1.724852 1.724853 3.30 × 10−2 10,000
MFA 1.7249 1.7277 1.7327 2.40 × 10−3 50,000
FA 1.7312065 1.878665 2.3455793 2.68 × 10−1 50,000

IPSO 1.7248624 1.7248528 1.7248523 2.02 × 10−6 12,500
AFA 1.724853 1.724853 1.724853 0.00 × 100 50,000

SRIFA 1.7248523087 1.7248523087 1.7248523089 8.940 × 10−12 2000

The results obtained by the best optimum value for SRIFA performs superior to almost all of the
seven algorithms (i.e., SRPSO, MVDE, BA, MBA, MFA, FA, and IPSO) but almost the same optimum
value for JAYA and AFA. In terms of mean results obtained by SRIFA, it performs better than all
metaheuristic algorithms except AFA as it contains the same optimum mean value. The standard
deviation (SD) obtained by SRIFA is slightly worse than the SD obtained by MBA. From Table 12, it
can be seen that SRIFA is superior in terms of SD for all remaining algorithms. The smallest NFE result
is obtained by SRIFA as compared to all of the metaheuristic algorithms. The comparisons of NFEs
with all NIAs are shown in Figure 7.
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Figure 7. NIAs with NFEs for welded-beam problem.

7.3. Pressure-Vessel Problem

The main purpose of the pressure-vessel problem is to minimize the manufacturing cost of
a cylindrical-vessel with respect to four constraints. These four constraints are thickness of head (Th),
thickness of pressure vessel (Ts), length of vessel without head (L) and inner radius of the vessel (R).

The SRIFA is optimized with SRPSO, MVDE, BA, EBA [60], FA [44], PVS, UABC, IPSO and
AFA. The statistical results obtained by SRIFA for nine metaheuristic algorithms are listed in Table 13.
It is clearly seen that SRIFA has the same best optimum value when compared to six algorithms
(MVDE, BA, EBA, PVS, UABC and IPSO). The mean, worst, SD and NFE results obtained by SRIFA
are superior to all NIAs. The comparisons of NFEs with all NIAs are shown in Figure 8.

Table 13. Statistical results of comparison between SRIFA and NIAs for the pressure-vessel problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 6086.20 6042.84 6315.01 8.04 × 101 20,000
MVDE 6059.714387 6059.997236 6090.533528 2.91 × 100 15,000

BA 6059.71 6179.13 6318.95 1.37 × 102 15,000
EBA 6059.71 6173.67 6370.77 1.42 × 102 15,000
FA 5890.383 5937.3379 6258.96825 1.65 × 102 25,000

PVS 6059.714 6063.643 6090.526 N-A 42,100
UABC 6059.714335 6192.116211 N-A 2.04 × 102 15,000
IPSO 6059.7143 6068.7539 6090.5314 1.40 × 101 7500
AFA 6059.71427196 6090.52614259 6064.33605261 1.13 × 101 50,000

SRIFA 6059.7143350561 6059.7143351 6059.7143352069 6.87 × 10−8 2000
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Figure 8. NIAs with NFEs for pressure-vessel problem.
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7.4. Three-Bar-Truss Problem

The main purpose of the given three-bar-truss problem is to minimize the volume of a three-bar
truss with respect to three stress constraints.

The SRIFA is compared with SRPSO, MVDE, NDE [49], MAL-FA [61], UABC, WCA [62] and UFA.
The statistical results obtained by SRIFA in comparison with the seven NIAs are described in Table 14.
It is clearly seen that SRIFA has almost the same best optimum value except with the UABC algorithm.
In terms of mean and worst results obtained, SRIFA performed better compared to all metaheuristic
algorithms except NDE and UFA, which contain the same optimum mean and worst value. The
standard deviation (SD) obtained by SRIFA is superior to all metaheuristic algorithms. The smallest
NFE value is obtained by SRIFA compared to all other metaheuristic algorithms. The comparisons of
NFEs with all other NIAs are shown in Figure 9.

Table 14. Statistical results of comparison between SRIFA and NIAs for the three-bar truss problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 263.8958440 263.8977800 263.9079550 3.02 × 10−5 20,000
MVDE 263.8958434 263.8958434 263.8958548 2.55 × 10−6 7000
NDE 263.8958434 263.8958434 263.8958434 0.00 × 100 4000

MAL-FA 263.895843 263.896101 263.895847 9.70 × 10−7 4000
UABC 263.895843 263.895843 N-A 0.00 × 100 12,000
WCA 263.895843 263.896201 263.895903 8.71 × 10−5 5250
UFA 263.8958433765 263.8958433768 263.8958433770 1.92 × 10−10 4500

SRIFA 263.8958433765 263.8958433768 263.8958433770 6.21 × 10−11 1500
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Figure 9. NIAs with NFEs for three-bar-truss problem.

7.5. Speed-Reducer Problem

The goal of the given problem is to minimize the speed-reducer of weight with respect to eleven
constraints. This problem has seven design variables that are gear face, number of teeth in pinion,
teeth module, length of first shaft between bearings. diameter of first shaft, length of second shaft
between bearings, and diameter of second shaft.

The proposed SRIFA approach is compared with SRPSO, MVDE, NDE, MBA, JAYA, MBA, UABC,
PVS, IPSO and AFA. The statistical results obtained by SRIFA for nine metaheuristic algorithms are
listed in Table 15. It can be observed that the SRIFA provides the best optimum value among all eight
metaheuristic algorithms except JAYA (they have the same optimum value). The statistical results
(best, mean and worst) value obtained by SRIFA and JAYA algorithm is almost the same, while SRIFA
requires less NFEs for executing the algorithm. Hence, we can conclude that SRIFA performed better
in terms of statistical values. Comparisons of number of function evacuations (NFEs) with various
metaheuristic algorithm are plotted in Figure 10.
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Table 15. Statistical results of comparison between SRIFA and NIAs for the speed-reducer problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 2514.97 2700.10 2860.13 8.73 × 101 20,000
MVDE 2994.471066 2994.471066 2994.471069 2.819316 × 10−7 30,000
NDE 2994.471066 2994.471066 2994.471066 4.17 × 10−12 18,000
MBA 2994.482453 2996.769019 2999.652444 1.56 × 100 6300
JAYA 2996.348 2996.348 2996.348 0.00 × 100 10,000

UABC 2994.471066 2994.471072 N-A 5.98 × 10−6 15,000
PVS 2994.47326 2994.7253 2994.8327 N-A 6000
IPSO 2994.471066 2994.471066 2994.471066 2.65 × 10−9 5000
AFA 2996.372698 2996.514874 2996.514874 9.00 × 10−2 50,000

SRIFA 2996.348165 2996.348165 2996.348165 8.95 × 10−12 3000
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Figure 10. NIAs with NFEs for the speed-reducer problem.

8. Conclusions

This paper proposes a review of constrained handling techniques and a new hybrid algorithm
known as a Stochastic Ranking with an Improved Firefly Algorithm (SRIFA) to solve a constrained
optimization problem. In population-based problems, stagnation and premature convergence occurs
due to imbalance between exploration and exploitation during the development process that traps the
solution in the local optimal. To overcome this problem, the Opposite Based Learning (OBL) approach
was applied to basic FA. This OBL technique was used at an initial population, which leads to increased
diversity of the problem and improves the performance of the proposed algorithm.

The random scale factor was incorporated into basic FA, for balancing intensification and
diversification. It helps to overcome the premature convergence and increase the performance of the
proposed algorithm. The SRIFA was applied to 24 CEC benchmark test functions and five constrained
engineering design problems. Various computational experiments were conducted to check the
effectiveness and quality of the proposed algorithm. The statistical results obtained from SRIFA when
compared to those of the FA clearly indicated that our SRIFA outperformed in terms of statistical values.

Furthermore, the computational experiments demonstrated that the performance of SRIFA was
better compared to five NIAs. The performance and efficiency of the proposed algorithm were
significantly superior to other metaheuristic algorithms presented from the literature. The statistical
analysis of SRIFA was conducted using the Wilcoxon’s and Friedman test. The results obtained
proved that efficiency, quality and performance of SRIFA was statistically superior compared to NIAs.
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Moreover, SRIFA was also applied to the five constrained engineering design problems efficiently.
In the future, SRIFA can be modified and extended to explain multi-objective problems.
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Appendix A

Appendix A.1. Tension/Compression Spring Design Problem

f
(
~Z
)
= (z3 + 2) z2z2

1,

subject to:

G1 (~z) = 1−
z3

2z3

71,785x4
1

,

G2 (~z) = 4z2
2 − z1z2/12,566

(
z2z3

1 − z4
1

)
+

1/5108x2
1 − 1 ≤ 0,

G3 (~z) = 1− 140.45z1/z2
2z3 ≤ 0,

G4 (~z) = z2 + z1/1.5 − 1 ≤ 0,

0.05 ≤ z1 ≤ 2,

0.25 ≤ z2 ≤ 1.3,

2 ≤ z3 ≤ 15.
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Appendix A.2. Welded-Beam-Design Problem

f
(
~Z
)
= 1.10471z2

1z2 + 0.04811z3z4 (14 + z2) ,

subject to:

G1 (~z) = τ (~z)− τmax ≤ 0,

G2 (~z) = σ (~z)− σmax ≤ 0,

G3 (~z) = z1 − z4 ≤ 0,

G4 (~z) = 0.10471z2
1 + 0.4811z3z4 (14 + z2)− 5 ≤ 0,

G5 (~z) = 0.125− z1 ≤ 0,

G6 (~z) = δ (~z)− δmax ≤ 0,

G7 (~z) = P− Pc (~z) ≤ 0,

0.1 ≤ zi ≤ 2 i = 1, 4,

0.1 ≤ zi ≤ 10 i = 2, 3,

where

τ (~z) =
√
(τι) + 2τιτιι

z2

2R
τιι , τι =

P√
2z1z2

, τιι =
MR

J
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M = P
(

L +
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2

)
, R =

√
x2

2
4

+

(
z1 + z2

2

)2
,

J = 2

√2z1z2

√ z2
2

4
+

(
z1 + z2

2

)2
 , σ (~z) =

6PL
z4z2

3
,

δ (~z) =
4PL3

Ex3
3z4

, Pc (~z) =
4.013E

√
x2

3x6
4

36
L2

(
1− z3

2L

√
E

4G

)
,

P = 6000 lb, L = 14 in, E = 30× 106 psi,

G = 12× 106 psi,

τmax = 13, 600 psi, σmax = 30,000 psi, δmax = 0.25 in.

Appendix A.3. Pressure-Vessel Design Problem

f
(
~Z
)
= 0.6224z1z3z4 + 1.7781z2z2

3 + 3.1661z2
1z4+

19.84z2
1z3,

subject to:

G1 (~z) = −z1 + 0.0193z,

G2 (~z) = −z2 + 0.00954z3 ≤ 0,

G3 (~z) = −πz2
3z4 −

4
3

πz2
3 + 12, 96, 000 ≤ 0,

G4 (~z) = z4 − 240 ≤ 0,

0 ≤ z1 ≤ 100 i = 1, 2,

10 ≤ z1 ≤ 200 i = 3, 4.
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Appendix A.4. Three-Bar-Truss Design Problem

f
(
~Z
)
=
(

2 +
√

2z1z2

)
× l,

subject to:

G1 (~z) =
√

2z1 + z2√
2z1

2 + 2z1z2
p− ρ ≤ 0,

G2 (~z) =
z2√

2z1
2 + 2z1z2

p− ρ ≤ 0,

G1 (~z) =
1√

2z1
2 + 2z1z2

p− ρ ≤ 0,

0 ≤ z1 ≤ 1 i = 1, 2,

l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm3.

Appendix A.5. Speed-Reducer-Design Problem

f
(
~Z
)
= 0.7854z1z2

2

(
3.3333z2

3 + 14.933z3 − 43.0934
)
−

1.508z1

(
z2

6 + z2
7

)
+ 7.4777

(
z3

6 + z3
7

)
+ 0.7854

(
z4x2

6 + z5z2
7

)
,

subject to

G1 (~z) =
27

z1z2
2z3
− 1 ≤ 0,

G2 (~z) =
397.5
z1z2

2z2
3
− 1 ≤ 0,

G3 (~z) =
1.93z3

4
z2z4

6z3
− 1 ≤ 0,

G4 (~z) =
1.93z3

5

z2z4
7z3
− 1 ≤ 0,

G5 (~z) =

[
(745z4/z2z3 )2 + 16.9× 106

]1/2

110x3
6

− 1 ≤ 0,

G6 (~z) =

[
(745z5/z2z3 )2 + 157.5× 106

]1/2

85z3
7

− 1 ≤ 0,

G7 (~z) =
z2z3

40
− 1 ≤ 0,

G8 (~z) =
5z2

z1
− 1 ≤ 0,

G9 (~z) =
z1

12z2
− 1 ≤ 0,

G10 (~z) =
15z6 + 1.9

z4
− 1 ≤ 0,

G11 (~z) =
11z7 + 1.9

z5
− 1 ≤ 0,

where

2.6 ≤ z1 ≤ 3.6, 0.7 ≤ z2 ≤ 0.8, 17 ≤ z3 ≤ 28,

7.3 ≤ z4, z5 ≤ 8.3, 2.9 ≤ z6 ≤ 3.9, 5 ≤ z7 ≤ 5.5.
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