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Abstract: This manuscript is devoted to establishing existence theory of solutions to a nonlinear
coupled system of fractional order differential equations (FODEs) under integral boundary conditions
(IBCs). For uniqueness and existence we use the Perov-type fixed point theorem. Further, to
investigate multiplicity results of the concerned problem, we utilize Krasnoselskii’s fixed-point
theorems of cone type and its various forms. Stability analysis is an important aspect of existence
theory as well as required during numerical simulations and optimization of FODEs. Therefore
by using techniques of functional analysis, we establish conditions for Hyers-Ulam (HU) stability
results for the solution of the proposed problem. The whole analysis is justified by providing suitable
examples to illustrate our established results.

Keywords: arbitrary order differential equations; multiple positive solution; Perov-type fixed point
theorem; HU stability

1. Introduction

Fractional order differential equations (FODEs) emerge in the scientific demonstration of
numerous frameworks and different fields of science such as physics, chemistry , economics, polymer
rheology, aerodynamics, electrodynamics of complicated medium, blood flow phenomena, biophysics,
etc. (see [1–5]). Recently, many authors have studied FODEs from different aspects, one is the numerical
and scientific techniques for finding solutions and the other is the theoretical perspective of uniqueness
and existence of solutions. The interest of the researchers in the investigation of FODEs lies in the
incontrovertible fact that fractional-order models (FOM) are found to be highly realistic and practical,
compared to the integer order models. Because there are additional degrees of opportunity in the
FOM, in consequence, the subject of FODEs is gaining more attention from researchers. Another facet
of research, which has been completely studied for integer order differential equations is devoted to
uniqueness and existence of solutions to boundary value problems (BVPs). The mentioned aspect
has been very well studied for FODEs, we refer the readers [6–10]. Uniqueness and existence results
of solutions to multi-point BVPs have been studied via classical fixed point theorems such as the
Schauder fixed point theorem and the Banach contraction principle, see [11–17].
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FODEs under integral boundary conditions (IBCs) have been investigated very well because these
type of equations are increasingly used in fluid-mechanics and dynamical problems. Jankowski [18]
studied the ordinary differential equation under IBCs given by

y′(ϑ) = F(ϑ, y(ϑ)), ϑ ∈ [0,T], T > 0,

y(ϑ)|ϑ=0 = δ
∫ T

0
y(s)ds + d0, d0 ∈ R,

where F ∈ C([0,T] × R,R) and δ = 1 or −1. He developed a sufficient condition for iterative
approximate solutions to the above problem.

Nanware and Dhaigude [19] have investigated the aforementioned BVP under the IBCs for FODE
as given by 

Dσ
+0y(ϑ) = F(ϑ, y(ϑ)), ϑ ∈ [0,T], T > 0,

y(ϑ)|ϑ=0 = δ
∫ T

0
y(s)ds + d0, d0 ∈ R,

where 0 < σ ≤ 1, δ is 1 or −1 and F ∈ C([0,T]× R,R), Dσ
+0 is Riemann-Liouville fractional derivative

of order σ is defined in (2). The aforementioned author also studied the iterative approximate solution
to the above FODEs.

In the same line Cabada and Wang [20] studied the following problem under IBCs as
CDσ

+0y(ϑ) + ϕ(ϑ, y(ϑ)) = 0; ϑ ∈ (0, 1),

y(0) = y′′(0) = 0, y(1) = δ
∫ 1

0
y(s)ds,

where σ ∈ (2, 3], δ ∈ (0, 2) and y : [0, 1]× [0, ∞]→ [0, ∞] are the continuous functions. Also we remark
that CDσ

+0 stands for Caputo’s fractional derivative.
Inspired from the aforementioned work, in this article we investigate a system of nonlinear FODEs

with IBCs as 

Dσ
+0y(ϑ) + ϕ(ϑ, y(ϑ), z(ϑ)) = 0; ϑ ∈ (0, 1); m− 1 < σ ≤ m,

Dæ
+0z(ϑ) + χ(ϑ, y(ϑ), z(ϑ)) = 0; ϑ ∈ (0, 1); m− 1 < æ ≤ m,

y(0) = y′(0) = y′′(0) = · · · = y(m−2)(0) = 0, y(1) = δ
∫ 1

0
y(s)ds,

z(0) = z′(0) = z′′(0) = 0 · · · = z(m−2)(0) = 0, z(1) = $
∫ 1

0
z(s)ds,

(1)

such that m ≥ 3, δ, $ ∈ (0, 2), the functions ϕ, χ : [0, 1] × [0, ∞] × [0, ∞] → [0, ∞] are continuous
functions and Dσ

+0, Dæ
+0 stand for Riemann-Liouville fractional derivatives is defined in (2). We claim

that such a system of FODEs are very rarely considered for stability as well as multiplicity results.
Our analysis is devoted to the existence theory of a solution, multiplicity results and stability analysis
of the suggested problem.

During the last few decades another part of research, which has been considered for FODEs and
got much attention from the researchers is stability analysis. Numerous forms of stabilities have been
studied in literature which are Mittag-Leffer stability, exponential stability, Lyapunov stability etc.,
we refer [21–23].

The Ulam stability was first presented by Ulam in 1940 and then brilliantly explained by Hyers
in 1941. For more information about HU stability, we refer [24,25]. The HU stability results were
generalized and extended by many researchers for FODEs under IBCs. In 1978, Jung studied the
said stability for ODEs. Oblaz, Benchohra, etc., have studied the said stability for FODEs but their
investigation was limited to initial value problems, we refer to [26–28]. To the best of our information
and knowledge, the HU stability has been very rarely studied for coupled system of FODEs under
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IBCs. Therefore in this article we investigate HU stability to the considered problem. Here we remark
that we also provide some necessary results for nonexistence of solution. Finally a series of examples
are provided to support our analysis.

2. Axillary Results

In the current section, we review some fundamental definitions and useful results of functional
analysis, fractional calculus and fixed point theory (see reference [1,2,8,29–32]). Here, first of all, we
define the Banach space which is utilized throughout in this article.

Let us define E = {y(ϑ)|y ∈ C[0, 1]} with the norm ||y|| = maxϑ∈[0,1] |y(ϑ)|. We define the norm
for the product space as ||(y, z)|| = ||y||+ ||z||. Obviously (E× E, || · ||) is a Banach space.
Let K = [θ, 1− θ] for each θ ∈ (0, 1), then, we define the cone C ⊂ E× E by

C = {(y, z) ∈ E× E : min
ϑ∈K

[y(ϑ) + z(ϑ)] ≥ λ||(y, z)||}.

Cr = {(y, z) ∈ C : ‖(y, z)‖ ≤ r}, ∂Cr = {(y, z) ∈ K : ‖(y, z)‖ = r}.

As in [31], we define positive solution as follows.

Definition 1. A pair of functions (y, z) ∈ E× E is called a positive solution of problem (1) under the given
IBCs if Dσ

+0y, Dρ
+0z ∈ L1[0, 1] with (y, z) > (0, 0) on (0, 1]× (0, 1], where the functions y, z satisfy the IBCs

given in (1) respectively, for all ϑ ∈ [0, 1].

Definition 2. The Riemann-Liouville fractional derivative of order σ > 0 of a continuous function y : (0, ∞)→
R is defined as

Dσ
+0y(ϑ) =

1
Γ(m− σ)

(
d

dϑ

)m ∫ ϑ

0
(ϑ− s)m−σ−1y(s)ds, (2)

where m = [σ] + 1 and [σ] denotes the integer part of σ.

Definition 3. The Riemann-Liouville fractions of integration of order σ > 0 of a continuous function y :
(0, ∞)→ R is defined by

Iσ
+0y(ϑ) =

1
Γ(σ)

∫ ϑ

0
(ϑ− s)σ−1y(s)ds, (3)

where the integral is point-wise defined on (0, ∞).

Lemma 1. Let σ > o, then the FODE
Dσ
+0y(ϑ) = 0 (4)

has a solution given by

y(ϑ) =
m

∑
i=1

yi(0)
i!

ϑ−i. (5)

Lemma 2. Let σ > 0. Then we have

Iσ
+0[D

σ
+0y(ϑ)] = y(ϑ)−

m

∑
i=0

yi(0)
i!

ϑ−i. (6)

Lemma 3. [2] Let σ > o and ϑ ∈ C(0, 1) ∩ L(0, 1), then the FODE

Dσ
+0y(ϑ) = h(ϑ)
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has a solution given by

y(ϑ) = c1ϑσ−1 + c2ϑσ−2 + · · ·+ cmϑσ−m + Iσ
+0h(ϑ),

where ci ∈ R for i = 0, 1, 2, . . . , m and m = [σ] + 1.

Definition 4. [32,33] On the Banach space E defined afore, the mapping d : E× E→ Rn is called a generalized
metric on E if ∀ x, y, and y, z ∈ E with y 6= x, z 6= y, z 6= y, then the following hold

(A1) d(y, z) = 0⇔ y = z, ∀ y, z ∈ E
(A2) d(y, z) = d(z, y), ∀ y, z ∈ E
(A3) d(x, y) = d(x, z) + d(z, y) + d(y, y), ∀ x, y, y, z,∈ E.

Further the pair (E, d) is called a generalized metric space.

Definition 5. [32,33] Let M = {Mm,m ∈ Rm×m
+ }, for any matrix B ∈ M the spectral radius is defined by

æ(B) = sup{|λ̂i|, i = 1, 2, ..., m}, where λ̂i, for i = 1, 2, ..., m are the eigenvalues of the matrix B and the
matrix will converge to zero if æ(B) < 1.

Lemma 4. [32,33] A complete generalized metric space (M, d), with operator B : M→ M such that there ∃ a
matrix B ∈ M with

d(By, Bz) ≤ Bd(y, z), for all y, z ∈ M,

if æ(B) < 1, then B has a fixed point in M.

Lemma 5. [32,33] Consider a Banach space E with cone C ⊆ E and y ⊂ C is relatively open set with 0 ∈ y
and B : y→ y be a completely continuous mapping. Then one of the following hold

(A1) The mapping B has a fixed point in y
(A2) There exist y ∈ ∂y and η ∈ (0, 1) with y = ηBy.

Lemma 6. [33,34] Consider a cone C in the Banach space E and if A1 and A2 be two bounded open sets in E,
such that 0 ∈ A1 ⊂ A1 ⊂ A2. Let B : C∩ (A2 rA1)→ C be completely continuous operator and one of the
following satisfied:

(1) ‖By‖ ≤ ‖y‖ ∀ y ∈ C∩ ∂A1;‖B‖ > ‖y‖, ∀ y ∈ C∩ ∂A2
(2) ‖By‖ > ‖y‖ ∀ y ∈ C∩ ∂A1;‖B‖ ≤ ‖y‖, ∀ y ∈ C∩ ∂A2

Then B has at least one fixed point in C∩ (A2 rA1) .

3. Existence of at Least One Solution

Lemma 7. Let h ∈ C[0, 1], then the BVP
Dσ
+0y(ϑ) + h(ϑ) = 0; ϑ ∈ (0, 1); m− 1 < σ ≤ m,

y(0) = y′(0) = y′′(0) = · · · = y(m−2)(0) = 0, y(1) = δ
∫ 1

0
y(s)ds, ,

(7)

where δ ∈ (0, 2), has the following unique solution

y(ϑ) =
∫ 1

0
Hσ(ϑ, s)h(s)ds,
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where Hσ is the Green’s function given by

Hσ(ϑ, s) =


ϑσ−1(1− s)σ−1(σ− δ + δs)− (σ− δ)(ϑ− s)σ−1

(σ− δ)Γ(δ)
, 0 ≤ s ≤ ϑ ≤ 1,

ϑσ−1(1− s)σ−1(σ− δ + δs)
(σ− δ)Γ(δ)

, 0 ≤ ϑ ≤ s ≤ 1.
(8)

Proof. Thanks to Lemma 3 for (7), one has

y(ϑ) = −Iσ
+0h(ϑ) + c1ϑσ−1 + c2ϑσ−2 + · · ·+ cmϑσ−m. (9)

By using initial condition y(0) = y′(0) = y′′(0) = · · · = y(m−2)(0) = 0, we get c2 = c3 = · · · =
cm = 0. Therefore (9) implies that

y(ϑ) = c1ϑσ−1 − Iσ
+0h(ϑ). (10)

By using boundary condition y(1) = δ
∫ 1

0 y(s)ds in (10), we get

c1 =
∫ 1

0

(ϑ− s)σ−1

Γ(σ)
h(s)ds + δ

∫ 1

0
y(s)ds.

Hence we have the following solution to (1)

y(ϑ) = −
∫ ϑ

0

(ϑ− s)σ−1

Γ(σ)
h(s)ds + ϑσ−1

∫ 1

0

(1− s)σ−1

Γ(σ)
h(s)ds + δϑσ−1

∫ 1

0
y(s)ds. (11)

Let B =
∫ 1

0 y(s)ds, then from Equation (11), we have

B = −
∫ 1

0

∫ ϑ

0

(ϑ− s)σ−1

Γ(σ)
h(s)ds +

∫ 1

0

∫ 1

0

ϑσ−1(ϑ− s)σ−1

Γ(σ)
h(s)ds +

∫ 1

0
δBϑσ−1ds

B = −
∫ 1

0

(1− s)σ

σΓ(σ)
h(s)ds +

∫ 1

0

(1− s)σ−1

σΓ(σ)
h(s)ds +

1
σ

δB (12)

implies Equation (12), so we get

B = − 1
σ− δ

∫ 1

0

(1− s)σ

Γ(σ)
h(s)ds +

1
σ− δ

∫ 1

0

(1− s)σ−1

Γ(σ)
h(s)ds.

Replacing this valve in (11), we get

y(ϑ) =−
∫ t

0

(ϑ− s)σ−1

Γ(σ)
h(s)ds + ϑσ−1

∫ 1

0

(1− s)σ−1

Γ(σ)
h(s)ds− δ

σ− δ

∫ 1

0

ϑσ−1(1− s)σ

σΓ(σ)
h(s)ds

+
δ

σ− δ

∫ 1

0

ϑσ−1(1− s)σ−1

Γ(σ)
h(s)ds.

= −
∫ ϑ

0

(ϑ− s)σ−1

Γ(σ)
h(s)ds +

∫ 1

0

ϑσ−1(1− s)σ−1(σ− δ + δs)
(σ− δ)Γ(σ)

h(s)ds

=
∫ ϑ

0

ϑσ−1(1− s)σ−1(σ− δ + δs)− (σ− δ)(ϑ− s)σ−1

(σ− δ)Γ(σ)
h(s)ds

+
∫ 1

ϑ

ϑσ−1(1− s)σ−1(σ− δ + δs)
(σ− δ)Γ(σ)

h(s)ds

=
∫ 1

0
Hσ(ϑ, s)h(s)ds,
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where Hσ(ϑ, s) is the Green’s function of BVP (7). Similarly we can obtain z(ϑ) =
∫ 1

0 Hæ(ϑ, s)h(s)ds,
where Hæ(ϑ, s) is the Green’s function for the second equation of the system (1) and is given by

Hæ(ϑ, s) =


ϑæ−1(1− s)æ−1(æ− $ + $s)− (æ− $)(ϑ− s)æ−1

(æ− $)Γ(æ)
, 0 ≤ s ≤ ϑ ≤ 1,

ϑæ−1(1− s)æ−1(æ− $ + $s)
(æ− $)Γ(æ)

, 0 ≤ ϑ ≤ s ≤ 1.
(13)

Lemma 8. Let H(ϑ, s) = (Hσ(ϑ, s), Hæ(ϑ, s)) be the Green’s function of (1) defined in Equations (8) and (13).
This H(ϑ, s) has the given properties

(F1) H(ϑ, s) is continuous function on the unit square ∀ (ϑ, s) ∈ [0, 1]× [0, 1]
(F2) H(ϑ, s) ≥ 0 ∀ ϑ, s ∈ [0, 1] and H(ϑ, s) > 0 ∀ ϑ, s ∈ (0, 1)
(F3) max

0≤ϑ≤1
H(ϑ, s) = H(1, s), ∀s ∈ [0, 1]

(F4) min
ϑ∈[θ,1−θ]

H(ϑ, s) ≥ λ(s)H(1, s) for each θ, s ∈ (0, 1),

where λ = min{λσ = θσ−1, λæ = θæ−1}.

Now according to Lemma 7, we can write system (1) as follows
y(ϑ) =

1∫
0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds,

z(ϑ) =
1∫

0

Hæ(ϑ, s)χ(s, y(s), z(s))ds.

(14)

Let B : E× E→ E× E be the operator defined as

B(y, z)(ϑ) =

(
1∫

0
Hσ(ϑ, s)ϕ(s, y(s), z(s))ds,

1∫
0

Hæ(ϑ, s)χ(s, y(s), z(s))ds

)
=

(
B1(y, z)(ϑ), B2(y, z)(ϑ)

)
.

. (15)

Then the fixed point of operator B coincides with the solution of the coupled system (1).

Theorem 1. Consider that u, v : [0, 1]× [0, ∞)× [0, ∞)→ [0, ∞) are continuous. Then B(C) ⊂ C and B :
C→ C is completely continuous, where B is defined in (15).

Proof. To prove that B(C) ⊂ C, let (y, z) ∈ C, then by Lemma 8, we have B(y, z) ∈ C and from (F4)

and ∀ ϑ ∈ K, we obtain

B1(y(ϑ), z(ϑ)) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≥ λσ

1∫
0

Hσ(1, s)ϕ(s, y(s)), z(s)ds. (16)

Also from (F3), we obtain

B1(y(ϑ), z(ϑ)) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≤
1∫

0

Hσ(1, s)ϕ(s, y(s)), z(s)ds. (17)
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Thus from (16) and (17), we have

B1(y(ϑ), z(ϑ)) ≥ λ‖B1(y, z)‖, for all ϑ ∈ K.

Similarly, one can write that

B2(y(ϑ), z(ϑ)) ≥ λ‖B2(y, z)‖, for all ϑ ∈ K.

Thus
B1(y(ϑ), z(ϑ)) + B2(y(ϑ), z(ϑ)) ≥ λ‖B(y, z)‖, for all ϑ ∈ K,

min
ϑ∈K

[B1(y(ϑ), z(ϑ)) + B2(y(ϑ), z(ϑ))] ≥ λ‖B(y, z)‖.

Hence we have B(y, z) ∈ C⇒ B(C) ⊂ C. Next, like the proof of Theorem 1 of [35], and applying
the Arzelà-Ascoli’s theorem, it can be easily proven that B : C→ C is completely continuous

Theorem 2. Consider that ϕ and χ are continuous on [0, 1] × [0, ∞) × (0, ∞) → [0, ∞), and there exist
fi(ϑ), Hi(ϑ), (i = 1, 2) : (0, 1)→ [0, ∞) that satisfy

(A1) |ϕ(ϑ, y, z)− ϕ(ϑ, ȳ, z̄)| ≤ u1(ϑ)|y− ȳ|+ v1(ϑ)|z− z̄|, for ϑ ∈ (0, 1) and y, z, ȳ, z̄ ≥ 0

(A2) |χ(ϑ, y, z)− χ(ϑ, ȳ, z̄)| ≤ u2(ϑ)|y− ȳ|+ v2(ϑ)|z− z̄|, for ϑ ∈ (0, 1) and y, z, ȳ, z̄ ≥ 0
(A3) æ(B) < 1, where B ∈ {M2,2 ∈ R2×2

+ } is a matrix given by
∫ 1

0
Hσ(1, s)u1(s)ds

∫ 1

0
Hσ(1, s)v1(s)ds∫ 1

0
Hæ(1, s)u2(s)ds

∫ 1

0
Hæ(1, s)v2(s)ds

 .

Then the system (1) has a unique positive solution (y, z) ∈ C.

Proof. Let us define a generalized metric d : E2 × E2 → R2 by

d((y, z), (ȳ, z̄)) =

(
||y− ȳ||
||z− z̄||

)
, for all (y, z), (ȳ, z̄) ∈ E× E.

Obviously (E× E, d) is a generalized complete metric space. Then for any (y, z), (ȳ, z̄) ∈ E× E
and using property (F3) we get

|B1(y, z)(ϑ)− B1(ȳ, z̄)(ϑ)| ≤ max
ϑ∈[0,1]

1∫
0

|Hσ(ϑ, s)|[|ϕ(s, y(s), z(s))− ϕ(s, ȳ(s), z̄(s))|]ds

≤
∫ 1

0
Hσ(1, s)[u1(s)‖y− ȳ‖+ v1(s)‖z− z̄‖]ds

≤
∫ 1

0
u1(s)Hσ(1, s)ds‖y− ȳ‖+

∫ 1

0
v1(s)Hσ(1, s)ds‖z− z̄‖.

Similarly we can show that

|B2(y, z)− B2(ȳ, z̄)| ≤
∫ 1

0
u2(s)Hæ(1, s)ds‖y− ȳ‖+

∫ 1

0
v2(s)Hæ(1, s)ds‖z− z̄‖.

Thus we have

|B(y, z)− B(ȳ, z̄)| ≤ Bd ((y, z), (ȳ, z̄)) , ∀(y, z), (ȳ, z̄) ∈ E× E,
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where

B =


∫ 1

0
Hσ(1, s)u1(s)ds

∫ 1

0
Hσ(1, s)v1(s)ds∫ 1

0
Hæ(1, s)u2(s)ds

∫ 1

0
Hæ(1, s)v2(s)ds

 .

As æ(B) < 1, in the light of Lemma 4, system (1) has a unique positive solution.

Theorem 3. Consider that ϕ and χ are continuous on [0, 1] × [0, ∞) × (0, ∞) → [0, ∞) and there exist
ai, bi, ci(i = 1, 2) : (0, 1)→ [0, ∞) satisfying:

(A4) ϕ(ϑ, y(ϑ), z(ϑ)) ≤ a1(ϑ) + b1(ϑ)y(ϑ) + c1(ϑ)z(ϑ), ϑ ∈ (0, 1), y, z ≥ 0

(A5) χ(ϑ, y(ϑ), z(ϑ)) ≤ a2(ϑ) + b2(ϑ)y(ϑ) + c2(ϑ)z(ϑ), ϑ ∈ (0, 1), y, z ≥ 0

(A6) Λ1 =
1∫

0
Hσ(1, s)a1(s)ds < ∞, ∆1 =

1∫
0

Hσ(1, s)[b1(s) + c1(s)]ds < 1
2

(A7) Λ2 =
1∫

0
Hæ(1, s)a2(s)ds < ∞, ∆2 =

1∫
0

Hæ(s, s)[b2(s) + c2(s)]ds < 1
2 .

Then the system (1) has at least one positive solution in{
(y, z) ∈ C : ‖(y, z)‖ ≤ r

}
, where max

{
Λ1

1
2 − ∆1

,
Λ2

1
2 − ∆2

}
< r.

Proof. Define Ω =

{
(y, z) ∈ C : ‖(y, z)‖ < r

}
with max

{
Λ1

1
2 − ∆1

,
Λ2

1
2 − ∆2

}
< r.

According to the Theorem 1, the operator B : Ω → C is completely continuous. Let (y, z) ∈ Ω,
such that ‖(y, z)‖ < r. Then, we have

‖B1(y, z)‖ = max
ϑ∈[0,1]

∣∣∣∣ ∫ 1

0
Hσ(ϑ, s)ϕ(s, y(s), z(s))

∣∣∣∣ds

≤
( ∫ 1

0
Hσ(1, s)a1(s)ds +

∫ 1

0
Hσ(1, s)b1(s)|y(s)|ds +

∫ 1

0
Hσ(1, s)c1(s)|z(s)|ds

)
≤
∫ 1

0
Hσ(1, s)a1(s)ds + r

[ ∫ 1

0
Hσ(1, s)[b1(s) + c1(s)]ds

]
≤ Λ1 + r∆1 <

r
2

,

Similarly, ‖B2(y, z)‖ < r
2 , thus ‖B(y, z)‖ < r. Therefore, thanks to Lemma 5, we have B(y, z) ∈ Ω,

thus B : Ω→ Ω. Let there exist ς ∈ (0, 1) and (y, z) ∈ ∂Ω such that (y, z) = ςB(y, z). Then in the light
of assumptions (A4), (A5) and by (F4) of Lemma 8, we get ∀ ϑ ∈ [0, 1]

|z(ϑ)| ≤ ς
∫ 1

0
Hσ(ϑ, s)|ϕ(s, y(s), z(s))|ds

≤ ς

( ∫ 1

0
Hσ(1, s)a1(s)ds +

∫ 1

0
Hσ(1, s)b1(s)y(s)ds +

∫ 1

0
Hσ(1, s)c1(s)z(s)ds

)
≤ ζ

(
∆1 + rΛ1

)
< ς

r
2
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which implies that ‖y‖ < ς r
2 . Similarly, it can be proved that ‖z‖ < ς r

2 . From which, we have
‖(y, z)‖ < ςr, with ς ∈ (0, 1) which is a contradiction that (y, z) ∈ ∂Ω as r = ‖(y, z)‖. Thus, according
to Lemma 5, B has at least one fixed point (y, z) ∈ Ω.

Next the following assumptions and notations will be used:

(C1) ϕ, χ : [0, 1]× [0, ∞)× [0, ∞) → [0, ∞) are continuous and ϕ(ϑ, 0, 0) = χ(ϑ, 0, 0) = 0 uniformly
with respect to ϑ on [0, 1]

(C2) Hσ(1, s), Hæ(1, s) defined in Lemma 8 satisfy

0 <

1∫
0

Hσ(1, s)ds < ∞, 0 <

1∫
0

Hæ(1, s)ds < ∞

(C3) Let these limits hold

ϕα = lim
(y,z)→(α,α)

sup
ϑ∈[0,1]

ϕ(ϑ, y, z)
y + z

, χα = lim
(y,z)→(α,α)

sup
ϑ∈[0,1]

χ(ϑ, y, z)
y + z

,

ϕα = lim
(y,z)→(α,α)

∈ fϑ∈[0,1]
ϕ(ϑ, y, z)

y + z
, χæ = lim

(y,z)→(α,α)
∈ fϑ∈[0,1]

χ(ϑ, y, z)
y + z

, where α ∈ {0, ∞}.
(18)

ασ = max
ϑ∈[0,1]

1∫
0

Hσ(ϑ, s)ds, αæ = max
ϑ∈[0,1]

1∫
0

Hæ(ϑ, s)ds. (19)

Theorem 4. If the assumptions (C1)− (C2) hold and one of the following conditions is also satisfied:

(D1) ϕ0

(
λ2

1−θ∫
θ

Hσ(1, s)ds

)
> 1, ϕ∞ασ < 1 and χ0

(
λ2

1−θ∫
θ

Hæ(1, s)ds

)
> 1, χ∞αæ < 1.

Moreover, ϕ0 = χ0 = ∞ and ϕ∞ = χ∞ = 0
(D2) There exist two constants η1, η2 with 0 < η1 ≤ η2 such that ϕ(ϑ, ·, ·) and χ(ϑ, ·, ·) are nondecreasing on

[0, η2] ∀ ϑ ∈ [0, 1],

ϕ(ϑ, λση1, λæη1) ≥
η1

2

λσ

1−θ∫
θ

Hσ(1, s)ds

−1

,

χ(ϑ, λση1, λæη1) ≥
η1

2

λæ

1−θ∫
θ

Hæ(1, s)ds

−1

and ϕ(ϑ, η2, η2) ≤
η2

2ασ
, χ(ϑ, η2, η2) ≤

η2

2αæ
, for all ϑ ∈ [0, 1],

where λ, Hσ(1, s), Hæ(1, s) defined in Lemma 8 and ϕ0, χ0, ϕ∞, χ∞, ασ, σα defined in Equations (18) and (19).
Then the coupled system (1) has at least one positive solution.

Proof. B as defined in (15) is completely continuous.

Case I. Let the condition (D1) hold. Taking ϕ0

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
> 1, then there exists a constant

κ1 > 0 such that

ϕ(ϑ, y, z) ≥ (ϕ0 − r1)(y(ϑ) + z(ϑ)), χ(ϑ, y, z) ≥ (χ0 − r2)(y(ϑ) + z(ϑ)), for all ϑ ∈ [0, 1], y, z ∈ [0, κ1],
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where r1 > 0, and satisfies the conditions

(ϕ0 − r1)
λ2

σ

2

1−θ∫
θ

Hσ(1, s)ds ≥ 1, (χ0 − r1)
λ2

æ
2

1−θ∫
θ

Hæ(1, s)ds ≥ 1.

So for ϑ ∈ [0, 1], (y, z) ∈ ∂Cκ1 , we have

B1(y, z)(ϑ) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≥ λσ

1∫
0

Hσ(1, s)ϕ(s, y(s), z(s))ds

≥ (ϕ0 − r1)
λ2

σ

2

1∫
0

Hσ(1, s)ds‖(y, z)‖ ≥ ‖(y, z)‖
2

.

Analogously

B2(y, z)(ϑ) =
1∫

0

Hæ(ϑ, s)χ(s, y(s), z(s))ds ≥ λæ

1∫
0

Hæ(1, s)ϕ(s, y(s), z(s))ds

≥ (χ0 − r2)
λ2

æ
2

1∫
0

Hæ(1, s)ds‖(y, z)‖ ≥ ‖(y, z)‖
2

.

Therefore, we have

‖B(y, z)‖ ≥ ‖B1(y, z)‖+ ‖B2(y, z)‖ ≥ ‖(y, z)‖. (20)

Also for ϕ∞ασ < 1 and χ∞αæ < 1, there exists a constant say κ̄2 > 0 such that ϕ(ϑ, y, z) ≤
(ϕ∞ + r2)(y + z), χ(ϑ, y, z) ≤ (χ∞ + r2)(y + z), for ϑ ∈ [0, 1], y, z ∈ (κ̄2, ∞), where r2 > 0 satisfies
the conditions ασ(ϕ∞ + r2) ≤ 1, αæ(χ∞ + r2) ≤ 1. Let J = maxϑ∈[0,1],y,z∈[0,κ̄2]

ϕ(ϑ, y, z), L =

maxϑ∈[0,1],y,z∈[0,κ̄2]
χ(ϑ, y, z), then ϕ(ϑ, y, z) ≤ J + (ϕ∞ + r2)(y, z), χ(ϑ, y, z) ≤ L + (χ∞ + r2)(y, z).

Now setting max{κ1, κ̄2, Jασ(1− ασ(ϕ∞ + r2))
−1} ≤ κ2

2 , max{κ1, κ̄2, Lαæ(1− αæ(χ∞ + r2))
−1} ≤ κ2

2 .
So for any ϑ ∈ [0, 1], (y, z) ∈ ∂Cκ2 , we obtain

B1(y, z)(ϑ) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≤ λσ

1∫
0

Hσ(1, s)ϕ(s, y(s), z(s))ds

≤
1∫

0

Hσ(1, s)(J + (ϕ∞ + r2)[u(s) + z(s)]ds

≤ J
∫ 1

0
Hσ(1, s)ds + (ϕ∞ + r2)

1∫
0

Hσ(1, s)ds‖(y, z)‖

<
κ2

2
− ασ(ϕ∞ + r2)

κ2

2
+ (ϕ∞ + r2)ασ‖(y, z)‖ < κ2

2
.

Similarly B2(y, z)(ϑ) < κ2
2 , as (y, z) ∈ ∂Cκ2 , thus we have

‖B(y, z)‖ < ‖(y, z)‖. (21)
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Case II. If assumptions in (D2) hold, then in light of the definition of C for (y, z) ∈ ∂Cη1 , we have
‖(y, z)‖ = η1, for ϑ ∈ K. Then from (D2), we have

B1(y, z)(ϑ) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≥ λσ

1−θ∫
θ

Hσ(1, s)ϕ(s, y(s), z(s))ds

≥

λσ

1−θ∫
θ

Hσ(1, s)ds

 η1

2

λσ

1−θ∫
θ

Hσ(1, s)ds

−1

=
η1

2
.

Similarly it can also be obtained that B2(y, z)(ϑ) ≥ η1
2 , for (y, z) ∈ ∂Cη1 , and we get

‖B(y, z)‖ = ‖B1(y, z)‖+ ‖B2(y, z)‖ ≥ ‖(y, z)‖. (22)

Also for (y, z) ∈ ∂Cη2 , we get that ‖(y, z)‖ = η2 for ϑ ∈ [0, 1]. Then from (D2), one can get

B1(y, z)(ϑ) =
1∫

0

Hσ(ϑ, s)ϕ(s, y(s), z(s))ds ≤
1∫

0

Hσ(1, s)ϕ(s, y(s), z(s))ds

≤ η2

2ασ

1∫
0

Hσ(1, s)ds =
η2

2
.

Similarly, it can also obtained that B2(y, z)(ϑ) ≤ η2
2 , (y, z) ∈ ∂Cη2 . Hence, we have

‖B(y, z)‖ = ‖B1(y, z)‖+ ‖B2(y, z)‖ ≤ ‖(y, z)‖. (23)

Now according to the application of Lemma 6 to (20) and (21) or (22) and (23) implies that B
has a fixed point (y1, z1) ∈ Cκ,η or (y1, z1) ∈ C̄κi ,ηi (i = 1, 2) such that y1(ϑ) ≥ λσ‖y1‖ > 0 and
z1(ϑ) ≥ λæ‖z1‖ > 0, ϑ ∈ [0, 1]. From which it follows that the coupled system (1) has at least one
positive solution.

Theorem 5. Under the conditions (C1)− (C3) and if the following assumptions hold

(D3) If ϕ0ασ < 1; ϕ∞

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
> 1 and χ0αæ < 1; χ∞

(
λ2

æ

1−θ∫
θ

Hσ(1, s)ds

)
> 1,

then the coupled system (1) has at least one positive solution. Further, if ϕ0 = χ0 = 0 and ϕ∞ = χ∞ = ∞,
where λ, Hσ(1, s), Hæ(1, s) defined in Lemma 8 and ϕ0, χ0, ϕ∞, χ∞, ασ, σα defined in Equations (18) and (19),
then the the considered system (1) has at least one positive solution.

Proof. Proof can be obtained as proof of Theorem 4.

4. Existence of More Than One Solutions

Theorem 6. Consider that (C1)− (C3) hold and the following conditions are satisfied:

(D4) If ϕ0

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
> 1, ϕ∞

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
> 1 and

χ0

(
λ2

æ

1−θ∫
θ

Hæ(1, s)ds

)
> 1, χ∞

(
λ2

æ

1−θ∫
θ

Hσ(1, s)ds

)
> 1.

Moreover, ϕ0 = χ0 = ϕ∞ = χ∞ = ∞ also hold:
(D5) there exists a > 0 such that

maxϑ∈[0,1],(y,z)∈∂Ca ϕ(ϑ, y, z) < a
2ασ

and maxϑ∈[0,1],(y,z)∈∂Ca χ(ϑ, y, z) < a
2αæ

.
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Then the coupled system (1) has at least two positive solutions (y, z), (ȳ, z̄) such that

0 < ‖(y, z)‖ < a < ‖(ȳ, z̄)‖. (24)

Where λ, Hσ(1, s), Hæ(1, s) are defined in Lemma 8 and ϕ0, χ0, ϕ∞, χ∞, ασ, σα defined in
Equations (18) and (19)

Proof. Let (D4) hold. Select κ, η such that 0 < κ < µ < η. Now if ϕ0

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
>

1 and χ0

(
λ2

æ

1−θ∫
θ

Hæ(1, s)ds

)
> 1, then like the proof of Theorem 4, we have

‖B(y, z)‖ ≥ |(y, z)‖, for (y, z) ∈ ∂Cκ . (25)

Now, if ϕ∞

(
λ2

σ

1−θ∫
θ

Hσ(1, s)ds

)
> 1 and χ∞

(
λ2

æ

1−θ∫
θ

Hæ(1, s)ds

)
> 1,

then like the proof of Theorem 4, we have

‖B(y, z)‖ ≥ ‖(y, z)‖, for (y, z) ∈ ∂Cη . (26)

Also from (D5), (y, z) ∈ ∂Cµ, we get

B1(y, z)(ϑ) =
∫ 1

0
Hσ(ϑ, s)ϕ(s, y(s), z(s))ds

≤
∫ 1

0
Hσ(1, s)ϕ(s, y(s), z(s))ds <

µ

2ασ

∫ 1

0
Hσ(1, s)ds =

µ

2
.

Similarly, we have B1(y, z)(ϑ) < µ
2 as (y, z) ∈ ∂Cµ. Hence, we have

‖B(y, z)‖ < |(y, z)‖, for (y, z) ∈ ∂Cµ. (27)

Now according to Lemma 6 for (25) and (27), we have gives that B has a fixed point (y, z) ∈ ∂Cκ,µ

and a fixed point in (ȳ, z̄) ∈ ∂Cµ,η . Therefore system (1) has at least two positive solutions (y, z), (ȳ, z̄)
such that ‖(y, z)‖ 6= µ and ‖(ȳ, z̄)‖ 6= µ. Thus the relation (24) holds.

Theorem 7. Consider that (C1)− (C3) hold together with the given conditions

(D6) ασ ϕ0 < 1 and ϕ∞ασ < 1; αæχ0 < 1, and χ∞αæ < 1
(D7) there exist µ > 0 such that

max
ϑ∈K,(y,z)∈∂Cµ

ϕ(ϑ, y, z) >
µ

2

λ2
σ

1−θ∫
θ

Hσ(1, s)ds

−1

,

max
ϑ∈K,(y,z)∈∂Cµ

χ(ϑ, y, z) >
µ

2

λ2
æ

1−θ∫
θ

Hæ(1, s)ds

−1

,

such that
0 < ‖(y, z)‖ < µ < ‖(ȳ, z̄)‖,

where λ, Hσ(1, s), Hæ(1, s) defined in Lemma 8 and ϕ0, χ0, ϕ∞, χ∞, ασ, σα defined in Equations (18) and (19).
Thus the system (1) has at least two positive solutions.

Proof. We left the proof out, as it similar to the proof of Theorem 6.
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In same line for multiple solutions we give the following results.

Theorem 8. Let (C1) − (C3) hold. If there exist 2m positive numbers uL, ûL, L = 1, 2 . . . m with u1 <

λσû1 < û1 < u2 < λσû2 < û2 . . . um < λσûm < ûm and u1 < λæû1 < û1 < u2 < λæû2 < û2 . . . um <

λæûm < ûm, such that

(D8) ϕ(ϑ, y(ϑ), z(ϑ)) ≥ uL

(
λσ

1∫
0

Hσ(1, s)ds

)−1

, for (ϑ, y, z) ∈ [0, 1]× [λσuL, uL]× [λæuL, uL], and

ϕ(ϑ, y(ϑ), z(ϑ)) ≤ α−1
σ ûL, for (ϑ, y, z) ∈ [0, 1]× [λσûL, ûL]× [λæuL, uL], L = 1, 2 . . . m,

(D9) χ(ϑ, y(ϑ), z(ϑ)) ≥ uL

(
λæ

1∫
0

Hæ(1, s)ds)

)−1

, for (ϑ, y, z) ∈ [0, 1]× [λæuL, uL]× [λσuL, uL], and

χ(ϑ, y(ϑ), z(ϑ)) ≤ α−1
æ ûL, for (ϑ, y, z) ∈ [0, 1]× [λσuL, uL]× [λæûL, ûL], L = 1, 2 . . . m.

where λ, Hσ(1, s), Hæ(1, s) defined in Lemma 8.
Then the coupled system (1) has at least m-positive solutions (yL, zL), satisfying

uL ≤ ‖(yL, zL)‖ ≤ ûL, L = 1, 2 . . . m.

Theorem 9. Suppose that (C1)− (C3) holds. If there exist 2m positive numbers uL, ûL, L = 1, 2 . . . m, with
u1 < û1 < u2 < û2 . . . < um < ûm such that

(D10) ϕ and χ are non-decreasing on [0, ûm] ∀ ϑ ∈ [0, 1];

(D11) ϕ(ϑ, y(ϑ), z(ϑ)) ≥ uL

(
λσ

1−θ∫
θ

Hσ(1, s)ds)

)−1

, ϕ(ϑ, y(ϑ), z(ϑ)) ≤ ûL
ασ

, L = 1, 2 . . . m,

χ(ϑ, y(ϑ), z(ϑ)) ≥ uL

(
λæ

1−θ∫
θ

Hæ(1, s)ds)

)−1

, χ(ϑ, y(ϑ), z(ϑ)) ≤ ûL
αæ

, L = 1, 2 . . . m.

Hence we conclude that there exist at least m positive solutions (yL, zL), corresponding to coupled
system (1) which satisfy

uL ≤ ‖(yL, zL)‖ ≤ ûL, L = 1, 2 . . . m.

5. Hyers-Ulam Stability

Definition 6. [30] Let B1, B2 : E× E→ E× E be the two operators. Then the system of operator equations{
y(ϑ) = B1(y, z)(ϑ)

z(ϑ) = B2(y, z)(ϑ)
(28)

is called the HU stability if we can find Ji(i = 1, 2, 3, 4) > 0, with æi(i = 1, 2) > 0 and for each solution
(y∗, z∗) ∈ E× E of the inequalities given by{

||y∗ − ϕ(y∗, z∗)||E×E ≤ æ1,

||z∗ − χ(y∗, z∗)||E×E ≤ æ2,
(29)

there exists a solution (y, z) ∈ E× E of system (28) such that{
||y∗ − y||E×E ≤ k1æ1 + k2æ2,

||z∗ − z||E×E ≤ k3æ1 + k4æ2,
(30)
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Theorem 10. [30] Let B1, B2 : E× E→ E× E be the two operators such that
||B1(y, z)− B1(y∗, z∗)||E×E ≤ k1||y− y∗||E×Eds + k2||z− z∗||E×Eds,

||B2(y, z)− B2(y∗, z∗)||E×E ≤ k3||y− y∗||E×Eds + k4||z− z∗||E×Eds,

f or all (y, z), (y∗, z∗) ∈ E× E,

(31)

and if the matrix

B =

[
k1 k2

k3 k3

]
converges to zero, then the fixed points corresponding to operator system (28) are HU-stable. Further, the given
condition holds (M11) under the continuity of ϕi, i = 1, 2, there exist fi, Hi ∈ C(0, 1), i = 1, 2 and (y, z), (y, z)
such that

|ϕi(ϑ, y, z)− ϕi(ϑ, y, z)| ≤ fi(ϑ)|y− y|+ Hi(ϑ)|z− z|, i = 1, 2.

In this section, we study HU stability for the solutions of our proposed system.

Theorem 11. Suppose that the assumption (M11) along with condition that matrix

B =


∫ 1

0
Hσ(1, s)u1(s)ds

∫ 1

0
Hσ(1, s)v1(s)ds∫ 1

0
Hæ(1, s)u2(s)ds

∫ 1

0
Hæ(1, s)v2(s)ds

 .

is converging to zero. Then, the solutions of (1) are HU-stable.

Proof. Thanks to Theorem 2, we have
||B1(y, z)− B1(y∗, z∗)||E×E ≤

∫ 1

0
Hσ(1, s)u1(s)||y− y∗||E×Eds +

∫ 1

0
Hσ(1, s)v1(s)||z− z∗||E×Eds,

||B2(y, z)− B2(y∗, z∗)||E×E ≤
∫ 1

0
Hæ(1, s)u2(s)||y− y∗||E×Eds +

∫ 1

0
Hæ(1, s)v2(s)||z− z∗||E×Eds.

From which we get


||B1(y, z)− B1(y∗, z∗)||E×E ≤

[∫ 1

0
Hσ(1, s)u1(s)ds

]
||y− y∗||E×E +

[∫ 1

0
Hσ(1, s)v1(s)ds

]
||z− z∗||E×E,

||B2(y, z)− B2(y∗, z∗)||E×E ≤
[∫ 1

0
Hæ(1, s)u2(s)ds

]
||y− y∗||E×E +

[∫ 1

0
Hæ(1, s)v2(s)ds

]
||z− z∗||E×E.

(32)

Analogously one has

||P(y, z)− P(y∗, z∗)||E×E ≤ B||(y, z)− (y∗, z∗)||E×E, (33)

such that

B =


∫ 1

0
Hσ(1, s)u1(s)ds

∫ 1

0
Hσ(1, s)v1(s)ds∫ 1

0
Hæ(1, s)u2(s)ds

∫ 1

0
Hæ(1, s)v2(s)ds

 .

Hence, we get the required results.

6. Example

To verify the aforesaid established analysis we provide some test problems here in the
given sequel.
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Example 1. Take the system of given BVPs with IBCs as

D
7
2
+0y(ϑ) +

ϑ + 1
4

[Γ
(5

2
)
|y(ϑ)|+ cos |z(ϑ)|] = 0, ϑ ∈ [0, 1], y, z ≥ 0

D
7
2
+0z(ϑ) +

ϑ2 + 1
4

[sin |y(ϑ)|+ |z(ϑ)|] = 0, ϑ ∈ [0, 1], y, z ≥ 0

y(0) = y′(0) = y′′(0) = 0 y(1) =
1
2

∫ 1

0
y(s)ds,

z(0) = z′(0) = z′′(0) = 0 z(1) =
1
3

∫ 1

0
z(s)ds.

(34)

Since ϕ(ϑ, y(ϑ), z(ϑ)) =
ϑ + 1

4
[Γ( 5

2 )|y(ϑ)|+ cos |z(ϑ)|], χ(ϑ, y(ϑ), z(ϑ)) =
ϑ2 + 1

4
[sin |y(ϑ)|+

|z(ϑ)|].
Also as m = [3.5] + 1 = 4,δ = 1

2 and $ = 1
3 .

Then

|ϕ(ϑ, y2, z2)− ϕ(ϑ, y1, z1)| ≤ Γ(
5
2
)

ϑ + 1
4
|y2 − y1|+

ϑ + 1
4
|z2 − z1|,

|χ(ϑ, y2, z2)− χ(ϑ, y1, z1)| ≤
ϑ2 + 1

4
|y2 − y1|+

ϑ2 + 1
4
|z2 − z1|.

where u1(ϑ) =
ϑ+1

4 Γ( 5
2 ), v1(ϑ) =

ϑ+1
4 , u2(ϑ) = v2(ϑ) =

ϑ2 + 1
4

, so one can get

B =



1∫
0

Hσ(1, s)u1(s)ds
1∫

0

Hσ(1, s)v1(s)ds

1∫
0

Hæ(1, s)u2(s)ds
1∫

0

Hæ(1, s)v2(s)ds

 =


8
11

8
165
√

π

496
11583

√
π

496
11583

√
π

 .

det(B− λ̂I) =


8
11
− λ̂

8
165
√

π

496
11583

√
π

496
11583

√
π
− λ̂

 .

We get λ̂1 = 0.728 and λ̂2 = 0.024 since æ(B) = sup{|λ̂i|, i = 1, 2} = 0.728 < 1. Therefore due to
Theorem 2, BVPs (34) has a unique positive solution given by

y(ϑ) =
1∫

0

H 7
2
(ϑ, s)

s + 1
4

[Γ(
5
2
)|y(s)|+ cos |z(s)|]ds,

z(ϑ) =
1∫

0

H 7
2
(ϑ, s)

s2 + 1
4

[sin |y(s)|+ |z(s)|]ds,

(35)

where H 7
2
(ϑ, s) and H 7

2
(ϑ, s) are the Green’s functions given by

H 7
2
(ϑ, s) =


ϑ

5
2 (1− s)

5
2 (3 + 1

2 s)− 3(ϑ− s)
5
2

3Γ( 7
2 )

, 0 ≤ s ≤ ϑ ≤ 1,

ϑ
5
2 (1− s)

5
2 (3 + 1

2 s)

3Γ( 7
2 )

, 0 ≤ ϑ ≤ s ≤ 1.
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H 7
2
(ϑ, s) =


ϑ

5
2 (1− s)

5
2 ( 19

6 + 1
3 s)− 19

6 (ϑ− s)
5
2

19
6 Γ( 7

2 )
, 0 ≤ s ≤ ϑ ≤ 1,

ϑ
5
2 (1− s)

5
2 ( 19

6 + 1
3 s)

19
6 Γ( 7

2 )
, 0 ≤ ϑ ≤ s ≤ 1.

Further, by the use of Theorem 11, the solution is HU-stable.

Example 2. Taking a system of FODEs with IBCs as

D
10
3
+0y(ϑ) + a(ϑ)

√
y(ϑ) + z(ϑ) = 0, D

7
2
+0z(ϑ) + b(ϑ) 3

√
y(ϑ) + z(ϑ) = 0, ϑ ∈ (0, 1),

y(0) = y′(0) = y′′(0) = y′′′(0) = 0 y(1) =
∫ 1

0
y(s)ds,

z(0) = z′(0) = z′′(0) = z′′′(0) = 0 z(1) =
∫ 1

0
z(s)ds.

(36)

From the given system one has

ϕ(ϑ, y, z) = a(ϑ)
√

y(ϑ) + z(ϑ)

and
χ(ϑ, y, z) = b(ϑ) 3

√
y(ϑ) + z(ϑ), m = 4, δ = $ = 1.

Also a, b : [0, 1]→ [0, ∞) are continuous. Now ϕ0 = lim
(y,z)→0

ϕ(ϑ, y, z)
y + z

= ∞, similarly χ0 = ∞.

Obviously we compute ϕ∞ = 0 = χ∞. Hence due to Theorem 4, system (36) has at least one
positive solution.

Example 3. Taking another test problem with IBCs as

D
9
2
+0y(ϑ) + (1− ϑ2)[y(ϑ) + z(ϑ)]2 = 0, D

14
3
+0z(ϑ) + [y(ϑ) + z(ϑ)]3 = 0, ϑ ∈ (0, 1),

y(0) = y′(0) = y′′(0) = y′′′(0) = y′′′′(0) = 0, y(1) =
3
2

∫ 1

0
y(s)ds,

z(0) = z′(0) = z′′(0) = z′′′(0) = z′′′′(0) = 0, z(1) =
3
2

∫ 1

0
z(s)ds.

(37)

From the considered problem (37), one has δ = $ = 3
2 , as m = 5. It is easy to see that ϕ0 = χ0 = 0 and

ϕ∞ = χ∞ = ∞. Therefore thanks to Theorem 5, the given system (37) has a positive solution.

Example 4. Further we take another system of FODEs with IBCs as

D
11
2
+0y(ϑ) +

(1 + ϑ2)[u2(ϑ) + z(ϑ)]
(4ϑ2 + 4)ασ

= 0, ϑ ∈ (0, 1),

D
16
3
+0z(ϑ) +

(ϑ3 + 1)[y(ϑ) + v2(ϑ)]

(4ϑ3 + 4)αæ
= 0, ϑ ∈ (0, 1),

y(0) = y′(0) = y′′(0) = y′′′(0) = y′′′′(0) = 0, y(1) =
3
2

∫ 1

0
y(s)ds,

z(0) = z′(0) = z′′(0) = z′′′(0) = z′′′′(0) = 0, z(1) =
3
2

∫ 1

0
z(s)ds.

(38)

where δ = $ = 3
2 and m = 6. It is easy to obtain ϕ0 = χ0 = ∞ and ϕ∞ = χ∞ = ∞.
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Further ∀ (ϑ, y, z) ∈ [0, 1]× [0, 1]× [0, 1], we have

ϕ(ϑ, y, z) ≤ (ϑ2 + 1)2
4(ϑ2 + 1)ασ

=
α−1

σ

2
, χ(ϑ, y, z) ≤ (ϑ3 + 1)2

4(ϑ3 + 1)αæ
=

α−1
æ
2

.

Hence all the conditions of Theorem 6 hold. Thanks to Theorem 6, the given system (38) has at least two
positive solutions (y1, z1) and (y2, z2) which satisfy

0 < ‖(y1, z1)‖ < 1 < ‖(y2, z2)‖.

7. Non-Existence of Positive Solution

Here some conditions are developed under which the coupled system (1) with given IBCs has
no solution.

Theorem 12. Consider that (C1) − (C3) hold and ϕ(ϑ, y, z) <
‖(y,z)‖

2ασ
and χ(ϑ, y, z) <

‖(y,z)‖
2αæ

for all
ϑ ∈ [0, 1], y > 0, z > 0, then there is no positive solution for BVPs (1).

Proof. Consider (y, z) to be the positive solution of BVPs (1). Then, (y, z) ∈ C for 0 < ϑ < 1 and

‖(y, z)‖ = ‖y‖+ ‖z‖
= max

ϑ∈[0,1]
|y(ϑ)|+ max

ϑ∈[0,1]
|z(ϑ)|

≤ max
ϑ∈[0,1]

1∫
0

Hσ(ϑ, s)|ϕ(s, y(s), z(s))|ds + max
ϑ∈[0,1]

1∫
0

Hæ(ϑ, s)|χ(s, y(s), z(s)|ds

<

1∫
0

Hσ(1, s)
‖(y, z)‖

2αæ
ds +

1∫
0

Hæ(1, s)
‖(y, z)‖

2αæ
ds

⇒ ‖(y, z)‖ < ‖(y, z)‖,

which is contradiction. Hence the considered system (1) has no solution.

Theorem 13. Let the hypothesis (C1)− (C3) hold along with the conditions

ϕ(ϑ, y(ϑ), z(ϑ)) >
‖(y, z)‖

2

λ2
α

1−θ∫
θ

Hσ(1, s)ds

−1

,

χ(ϑ, y(ϑ), z(ϑ)) >
‖(y, z)‖

2

λ2
β

1−θ∫
θ

Hæ(1, s)ds

−1

, for all ϑ ∈ [0, 1], y > 0and z > 0.

Then there does not exist positive solution to BVPs (1).

To demonstrate the results of Theorems 12 and 13 respectively, we give the following example.



Mathematics 2019, 7, 223 18 of 20

Example 5. Taking the given system of FODEs with given IBCs as

D
5
2
+0y(ϑ) = 5− 4

(
y + z +

π

3

)−5
2

, ϑ ∈ [0, 1],

D
5
2
+0z(ϑ) =

(
30 +

30√
y + z

)−3
2

+
1

50
, ϑ ∈ [0, 1],

y(0) = y′(0) = y′′(0) = 0, y(1) =
1
2

∫ 1

0
y(ϑ)dϑ,

z(0) = z′(0) = z′′(0) = 0, z(1) =
1
2

∫ 1

0
z(ϑ)dϑ.

(39)

Also as (C1)− (C3) hold, where m = [2.5] + 1 = 3 and δ = $ = 1
2 . We calculate

ϕ0 = 5−
(

3
π

) 5
2

, χ0 =
1

50
, ϕ∞ = 5, χ∞ = 51,

(
5−

(
3
π

) 5
2
)
‖(y, z)‖ < ϕ(ϑ, y(ϑ), z(ϑ)) < 5‖(y, z)‖,

1
50
‖(y, z)‖ < χ(ϑ, y(ϑ), z(ϑ)) < 51‖(y, z)‖.

Therefore we have

5−
(

3
π

) 5
2

‖(y, z)‖ < ϕ(ϑ, y(ϑ), z(ϑ)) < 5‖(y, z)‖ and χ(ϑ, y(ϑ), z(ϑ)) < 5‖(y, z)‖ < ‖(y, z)‖
ασ

,

where ασ ≈ 0.32239 and αæ ≈ 0.32239.
Case I: Now

ϕ(ϑ, y(ϑ), z(ϑ)) <
‖(y, z)‖

ασ
≈ 1.1413‖(y, z)‖

yields that
ϕ(ϑ, y(ϑ), z(ϑ)) < 5‖(y, z)‖ ≈ 3.1018‖(y, z)‖

and
χ(ϑ, y(ϑ), z(ϑ)) < 51‖(y, z)‖ ≈ 3.1018‖(y, z)‖.

Hence under the condition of Theorem 12, there is no solution corresponding to problem (39).
Case II: Also

ϕ(ϑ, y(ϑ), z(ϑ)) >
(

5−
(

3
π

) 5
2
)
‖(y, z)‖ > ‖(y, z)‖

(
λ2

α

∫ 99
100

1
100

Hα(1, s)ds

)−1

≈ 0.615‖(y, z)‖

and

χ(ϑ, y(ϑ), z(ϑ)) >
1

50
‖(y, z)‖ > ‖(y, z)‖

(
λ2

æ

∫ 99
100

1
100

Hæ(1, s)ds

)−1

≈ 0.615‖(y, z)‖.

Hence under the condition of Theorem 13, there is no solution corresponding to coupled system (39).
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8. Conclusions

In the above research work we have successfully investigated a coupled system of nonlinear
FODEs with IBCs for multiplicity results. Further, the aforesaid investigation has been strengthened by
developing some conditions under which the solutions of the proposed system are HU-stable. Further
some results which demonstrate the conditions of nonexistence of solutions have been established.
The whole results have been verified by considering some examples where needed.
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