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Abstract: The influence of second-order velocity slip on the MHD flow of nanofluid in a porous
medium under the effects of homogeneous-heterogeneous reactions has been analyzed. The
governing flow equation is exactly solved and compared with those in the literature for the skin
friction coefficient in the absence of the second slip, where great differences have been observed. In
addition, the effects of the permanent parameters on the skin friction coefficient, the velocity, and
the concentration have been discussed in the presence of the second slip. As an important result,
the behavior of the skin friction coefficient at various values of the porosity and volume fraction
is changed from increasing (in the absence of the second slip) to decreasing (in the presence of the
second slip), which confirms the importance of the second slip in modeling the boundary layer flow
of nanofluids. In addition, five kinds of nanofluids have been investigated for the velocity profiles
and it is found that the Ag-water nanofluid is the lowest. For only the heterogeneous reaction, the
concentration equation has been exactly solved, while the numerical solution is applied in the general
case. Accordingly, a reduction in the concentration occurs with the strengthening of the heterogenous
reaction and also with the increase in the Schmidt parameter. Moreover, the Ag-water nanofluid is of
lower concentration than the Cu-water nanofluid. This is also true for the general case, when both of
the homogenous and heterogenous reactions take place.

Keywords: homogeneous-heterogeneous reactions; porous medium; first slip; second slip; exact
solution

1. Introduction

The main characteristic of nanofluid is the significant enhancement of the thermal properties
of the base fluid. The term nanofluid comes back to a pioneering experimental research by Choi [1]
in which a conclusion had been reached that the thermal conductivity of a base fluid is enhanced
up to two times by adding a small amount of nanoparticles. In addition, some authors [2,3] found
that the dispersion of a small amount of copper nanoparticles led to 40% of the thermal conductivity
of the fluid, while adding a small amount of carbon nanotubes in ethylene glycol or oil led to 50%.
Aly and Ebaid [4] considered five metallic and nonmetallic nanoparticles in a base of water, where an
effective approach was introduced to derive the exact solution. One of the important results in the
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field of nanofluid flow has been presented by Majumder [5], in which it was experimentally proven
that nanofluidic flow exhibits partial slip against the solid surface, which can be characterized by
the so-called slip length. Accordingly, the authors in [6] discussed the effect of partial slip boundary
condition on the flow and heat transfer of nanofluids past stretching sheet at constant wall temperature.
Furthermore, the no-slip condition is no longer valid for fluid flows at the micro- and nanoscale and,
instead, a certain degree of tangential slip must be allowed [7,8]. Very recently, Sharma and Ishak [9]
studied the second-order velocity slip effect on the boundary layer flow of Cu-water-based nanofluid
with heat transfer over a stretching sheet. Their numerical results were based on the finite element
method (FEM). A model for isothermal homogeneous-heterogeneous reactions in boundary layer
flow of viscous fluid past a flat plate was studied by Merkin [10]. He presented the homogeneous
reaction by cubic autocatalysis and the heterogeneous reaction by a first-order process and showed
that the surface reaction is the dominant mechanism near the leading edge of the plate. Chaudhary
and Merkin [11] studied the homogenous-heterogeneous reactions in boundary layer flow of viscous
fluid. They found the numerical solution near the leading edge of a flat plate. Bachok et al. [12] focused
on the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions
effects. Effects of homogeneous-heterogeneous reactions on the flow of viscoelastic fluid towards a
stretching sheet were investigated by Khan and Pop [13]. Kameswaran et al. [14] extended the work
of [13] for nanofluid over a porous stretching sheet. In general, porous medium is used for transport
and storage of energy. Analysis of flow through a porous medium has become the core of several
scientific and engineering applications. These applications include the utilization of geothermal energy,
the migration of moisture in fibrous insulation, food processing, casting and welding in manufacturing
processes, the dispersion of chemical contaminants in different industrial processes, the design of
nuclear reactors, chemical catalytic reactors, compact heat exchangers, solar power, and many others.
Further, the use of micro/nano electromechanical systems (MEMS/NEMS) has been increased in many
industries. Such systems have association with velocity slip [15–19]. Very recently, Hayat et al. [20]
studied the MHD flow of nanofluid with homogeneous-heterogeneous reactions of two chemical
species and velocity slip. In this field of research, some pioneer works were introduced in [21–24] in
which several non-Newtonian models have been analyzed. In [21], a novel radiation MHD activation
energy Carreau and nanofluid effects of thermal energy systems have been investigated. The combined
electrical MHD Ohmic dissipation forced and free convection of an incompressible Maxwell fluid on
a stagnation point heat and mass transfer energy conversion problem have been studied in [22]. In
addition, an applied thermal system for heat and mass transfer and energy management problem of
hydromagnetic flow with magnetic and viscous dissipation effects of micropolar nanofluids towards
a stretching sheet has been investigated by [23]. Moreover, the effect of the slip boundary condition
on the stagnation electrical MHD nanofluid mixed convection on a stretching sheet was introduced
in [24].

The objective of this work is to extend the model investigated by Hayat et al. [20] by considering
the second-order slip velocity. Therefore, the extended model is given as

f ′′′ (η) =
(

λ + (1− φ)2.5M
)

f ′(η)− φ1

(
f (η) f ′′ (η)−

(
f ′(η)

)2
)

, (1)

1
Sc

g′′ (η) = Kg(η)(h(η))2 − f (η)g′(η), (2)

δ

Sc
h′′ (η) = −Kg(η)(h(η))2 − f (η)h′(η), (3)

subject to
f (0) = 0, f ′(0) = 1 + γ f ′′ (0) + µ f ′′′ (0), f ′(∞) = 0, (4)

g′(0) = Ksg(0), g(∞) = 1, (5)

δh′(0) = −Ksg(0), h(∞) = 0, (6)
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where

φ1 = (1− φ)2.5

(
1− φ + φ

(ρCp)s
(ρCp) f

)
, (7)

and φ is the solid volume fraction of the nanoparticles, λ is the porosity parameter, M is the Hartman
number, Sc is the Schmidt parameter, K is the measure of the strength of the homogeneous reaction, Ks

is the measure of the strength of the heterogeneous reaction, δ is the ratio of the diffusion coefficient, ρs

and ρf are respectively the densities of nanoparticles and base fluid, γ and µ are respectively the first
and the second velocity slip parameters, and f ′(η), g(η) and h(η) are respectively the fluid velocity
and the concentrations of the two chemical species.

Following [20], the parameter δ can be taken as unity especially when the diffusion coefficients of
two chemical species are the same. In this case, we have [20]

h(η) + g(η) = 1, (8)

and hence Equations (2) and (3) reduce to

1
Sc

g′′ (η) = Kg(η)(1− g(η))2 − f (η)g′(η), (9)

subject to the same boundary conditions given in Equation (5). In [20], the authors applied the
homotopy analysis method to solve the set of boundary value problems (1)–(6) in the absence of the
second slip parameter (i.e., when µ = 0). However, Equation (1) with the boundary conditions (3) can
be exactly solved, even in the presence of the second slip parameter µ, as will be introduced in the next
section. This exact solution for f (η) will be then compared with the results obtained by [20] at a special
case. Further, this exact formula for f (η) is to be inserted into Equation (9) to form with the boundary
conditions (5) a single nonlinear differential equation in the unknown g(η). Details of the suggested
procedure are presented in the next section.

2. Methodology

Following [25,26], f (η) can be obtained as

f (η) =
1

β(1 + γβ− µβ2)

(
1− e−βη

)
, (10)

where β is the positive root of the following nonlinear equation:

µβ4 − γβ3 −
(

1 + λµ + µM(1− φ)2.5
)

β2 +
(

γλ + Mγ(1− φ)2.5
)

β +
(

φ1 + λ + M(1− φ)2.5
)
= 0. (11)

On inserting Equation (11) into Equation (9), we obtain the following nonlinear ordinary
differential equation (ODE) for g(η):

g′′ (η) + Ω
(

1− e−βη
)

g′(η)− KScg(η)(1− g(η))2 = 0, (12)

where Ω is defined as
Ω =

Sc
β(1 + γβ− µβ2)

. (13)

The skin friction coefficient is defined in [20] by Equation (14) and hence Equation (15) is obtained
by using the exact expression for f (η) in Equation (10).

Skin friction coefficient = − 2

(1− φ)2.5 f ′′ (0), (14)
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Skin friction coefficient =
2β

(1− φ)2.5(1 + γβ− µβ2)
. (15)

At the special case, K→ 0, the analytic solution of Equation (12) is given as

g(η) =
1 + εΓ

(
Ω/β, Ω/βe−βη , Ω/β

)
1 + εΓ(Ω/β, 0, Ω/β)

, (16)

where ε is defined by

ε = Ks(β)Ω/β−1
(

eβ2
/Ω
)Ω/β

. (17)

This case may be of a physical meaning when only the heterogenous reactions occur. The
concentration is therefore given as

g(0) =
1

1 + εΓ(Ω/β, 0, Ω/β)
. (18)

3. Discussion

In the beginning, it should be noted that the exact formula for the skin friction coefficient given
by Equation (15) will be invested here and used to validate the numerical results obtained in [20] by
applying the homotopy analysis method (HAM) when the second slip vanishes (i.e., at µ = 0). The
thermophysical properties of water and nanoparticles are introduced in Table 1. These properties have
been implemented to conduct the numerical results in Table 2. In view of these comparisons, it may be
concluded that the outputs of [20] need some revisions, especially since the differences between the
current exact values and the approximate ones seem to be obvious. Besides, the same values of the
physical parameters [20] have been selected to hold these comparisons.

Table 1. Properties of water and nanoparticles.

Cp (J/kg·K) ρ (kg/m3) K (W/m·K)

Pure Water 4179 4179 0.613
Copper (Cu) 385 8933 401
Silver (Ag) 235 10500 429
Alumina (Al2O3) 765 3970 40
Titanium Oxide(TiO2) 686.2 4250 8.9538
Silicon Dioxide (SiO2) 765 3970 36

Table 2. Comparisons between the numerical results of skin friction coefficient [20] and the present
exact values for copper and silver at µ = 0 and λ = 0.4.

φ M γ Cu Ag

HAM [20] Exact
(Present) HAM [20] Exact

(Present)

0.05 0.5 1.0 1.278 1.23278 1.284 1.23843
0.1 1.465 1.41390 1.475 1.42485
0.2 1.955 1.88407 1.973 1.90636
0.2 0.1 1.897 1.81545 1.917 1.84209

0.3 1.928 1.85097 1.945 1.87529
0.7 1.981 1.91500 1.996 1.93552
0.5 0.1 4.542 4.31610 4.672 4.45659

0.5 2.827 2.70491 2.865 2.75469
0.9 2.079 2.00347 2.098 2.02905

In the presence of the second slip, exact values for the skin friction coefficient for the Ag-water
and the Cu-water nanofluids are listed in Table 3 at various values of φ, M, and γ when λ = 0.4.
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The results reveal that the skin friction coefficient for both nanofluids increases with an increase in the
volume fraction φ and the Hartman number M; however, it decreases with the increase in the first slip
γ and with the decrease in the second slip µ. Further, the variation of the skin friction coefficient is
depicted in Figure 1 against the porosity parameter λ at various values of the solid volume fraction
φ when µ = 0. It is clear from this figure that the skin friction increases with increases in both λ

and φ. However, in [20], it was found that this behavior is different than the current one. This also
confirms the conclusion made above that the method applied in [20] needs further improvement. In
addition, the results in Figure 2 indicate that the skin friction decreases with increases in both λ and φ

in the presence of the second slip parameter. Therefore, the behavior is changed from increasing in
Figure 1 (µ = 0) to decreasing in Figure 2 (µ = −0.5), which confirms the importance of the second slip
in modeling the boundary layer flow of nanofluids.

Table 3. Values of skin friction coefficient for copper and silver at various values of φ, M, γ and µ at
λ = 0.4.

φ M γ µ Cu Ag

0.01 0.5 1.0 −0.5 0.83677 0.83698
0.03 0.85850 0.85891
0.05 0.92832 0.92930
0.02 0.1 0.83658 0.83755

0.3 0.84949 0.85013
0.7 0.86457 0.86483
0.5 0.1 1.37395 1.37485

0.5 1.08412 1.08475
0.9 0.89573 0.89618
1.0 −0.1 1.06481 1.06653

−0.5 0.85850 0.85891
−0.9 0.72553 0.72545
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The effect of the first slip parameter γ on the velocity of the nanofluids suspended with five
nanoparticles is displayed through Figures 3–5. Figures 3 and 4 show that the velocities of the
Ag/Cu/TiO2-water nanofluids satisfy f ′(η)|Ag < f ′(η)|Cu < f ′(η)|TiO2 . Figure 5 indicates that f ′(η)|SiO2

≈ f ′(η)|Al2O3 ≈ f ′(η)|TiO2 . Therefore, it can be concluded from Figures 3–5 that the Ag-water nanofluid
is of lower velocity than any of the four other types. This later conclusion is also observed and
confirmed through Figures 6–8 for the effect of the second slip µ on the velocity of the present five
types of nanofluids.
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In the absence of the homogenous reaction (i.e., at K = 0), the exact solution for the concentration
g(η) is available and given by Equation (16). In that case, the effects of Ks and Sc on g(η) are plotted
in Figures 9 and 10, respectively. It is shown that a reduction in the concentration occurs with the
strengthening of the heterogenous reaction Ks and also with the increase in the Schmidt parameter
Sc. Moreover, the Ag-water nanofluid is of lower concentration than the Cu-water nanofluid. This is
also true for the general case, when both of the homogenous and heterogenous reactions take place in
Figure 11, where the NDSolve command in Mathematica 7.0 (Wolfram Research, Champaign, IL, USA)
has been used to solve the systems (5) and (12).
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4. Conclusions

In this paper, the effect of second velocity slip on the MHD flow of nanofluid in a porous medium
with homogeneous-heterogeneous reactions has been analyzed. In the absence of the second slip,
remarkable differences have been detected between the current exact results and those in the literature
for the skin friction coefficient. For velocity, it has been found that the Ag-water nanofluid is lower
than the other four kinds of nanofluids. For concentration, the exact solution has been given when
only the heterogeneous reaction occurs. When both of the homogenous and heterogenous reactions
take place, the concentration equation has been numerically solved. The concentration reduces with
the strengthening of the heterogenous reaction and also with the increase in the Schmidt parameter,
where the Ag-water nanofluid is of lower concentration than the Cu-water nanofluid.
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