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Abstract

:

Fractional calculus image formulas involving various special functions are important for evaluation of generalized integrals and to obtain the solution of differential and integral equations. In this paper, the Saigo’s fractional integral operators involving hypergeometric function in the kernel are applied to the product of Srivastava’s polynomials and the generalized Mathieu series, containing the factor xλ(xk+ck)−ρ in its argument. The results are expressed in terms of the generalized hypergeometric function and Hadamard product of the generalized Mathieu series. Corresponding special cases related to the Riemann–Liouville and Erdélyi–Kober fractional integral operators are also considered.
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1. Introduction and Preliminaries


Recently, the integral representation of the generalized power series of Mathieu-type was studied and defined by Tomovski and Pogány [1] as follows


Sτp;z=∑n≥12nzn(p2+n2)τ+1τ>0,p∈R.



(1)







Some of the special cases of Equation (1) listed as under


Sτp;1=Sτp and S˜τp;−1=−Sτp,










Sτp=∑n≥12n(p2+n2)τ+1,τ>0,p>0,



(2)






S˜τp=∑n≥1(−1)n−12n(p2+n2)τ+1,τ>0,p>0.



(3)







For several interesting special cases of the generalized Mathieu series and their fundamental properties, along with integral representations, one may refer to the works of Cerone and Lenard [2] and Milovanović and Pogány [3]. The Mathieu series has been broadly acknowledged in the theory of mathematical analysis (for instance, see Cerone and Lenard [2], Diananda [4] and Pogány et al. [5]). Further, one can also find numerous applications in recent articles [6,7,8,9,10,11,12,13,14].



The general class of polynomials was defined by Srivastava ([15], p.1, Equation (1)) in the subsequent way:


Swu[x]=∑s=0[w/u](−w)uss!Aw,sxs,w=0,1,2,…,(w∈N0=N∪0;u∈N),



(4)




and the coefficients Aw,sw,s≥0 are arbitrary constants, real or complex.



The generalized Wright hypergeometric function is given by the series ([16,17,18]) (see also, [19]):


pΨq(z)=pΨq(ai,ci)1,p(bj,dj)1,qz=∑r=0∞∏i=1pΓ(ai+cir)zr∏j=1qΓ(bj+djr)r!,



(5)




where ai,bj∈C and ci,dj∈ℜ, (ci,dj≠0;i=1,2,…,p;j=1,2,…,q).



Here, we recall the generalized hypergeometric function (see [20], Section 4.1(1)) as under


pFq(a1,⋯,ap;b1,⋯,bq;z)=∑r=0∞(a1)r⋯(ap)rzr(b1)r⋯(bq)rr!,



(6)




provided the coefficients ai,bj∈C, however bj≠0,−1,⋯(i=1,⋯,p;j=1,⋯,q). The above series converges, if p=q+1 for all z<1 and p≤q for any z. For our investigation, we express the main results in terms of series defined as Equation (6).



Moreover, if we take ϑ1=⋯=ϑp=φ1=⋯=φq=1, then we have


pFq(a1,⋯,ap;b1,⋯,bq;z)=∏j=1qΓ(bj)∏i=1pΓ(ai)pψq(ai,1)1,p(bj,1)1,qz.



(7)







For our purpose, we also need the concept of Hadamard product of two functions. Assume that fz:=∑q=0∞aqzq and gz:=∑q=0∞bqzq are dual power series, whose radii of convergence are given by Rf and Rg, jointly. The power series is defined in the form of Hadamard product (see [21]) as


f∗gz:=∑q=0∞aqbqzq.



(8)







If R is considered as radius of convergence for the above Hadamard product series in Equation (8), it must satisfies the condition Rf·Rg≤R. It is impressive to note that, if one of the power series characterizes as an entire function, then the Hadamard product series also defines an entire function.



Following the work of Saxena and Parmar [22], our aim is to study the novel combination of the Saigo’s fractional integral operators involving the product of Srivastava’s polynomials and the generalized Mathieu series. The results are general in nature and expressed in terms of the generalized hypergeometric function and Hadamard product of the generalized Mathieu series. We also include certain special cases of our results as corresponding image formulas for Riemann–Liouville and Erdélyi–Kober fractional integral operators.




2. Generalized Fractional Integration of the Mathieu Series


Let ϑ,φ and η be complex numbers, and further let x∈R+ = (0,∞). Following Saigo [23], the fractional integral ℜϑ>0 and the fractional derivative ℜϑ<0 of the function f(x) on R+ are defined by


I0+ϑ,φ,ηfx=x−ϑ−φΓ(ϑ)∫0x(x−t)ϑ−12F1(ϑ+φ,−η;ϑ;1−ttxx)f(t)dt,ℜϑ>0;



(9)






D0+ϑ,φ,ηf(x)=I0+−ϑ,−φ,ϑ+ηf(x)










=dkdxkI0+−ϑ+k,−φ−k,ϑ+η−kf(x),ℜϑ≤0,k=ℜϑ+1,



(10)






I−ϑ,φ,ηfx=1Γ(ϑ)∫x∞(t−x)ϑ−1t−ϑ−φ2F1(ϑ+φ,−η;ϑ;1−xxtt)f(t)dt,ℜϑ>0;



(11)






D−ϑ,φ,ηf(x)=I−−ϑ,−φ,ϑ+ηf(x)










=(−1)kdkdxkI−−ϑ+k,−φ−k,ϑ+ηf(x),ℜϑ≤0,k=ℜϑ+1.



(12)







It can be easily seen that the Riemann–Liouville and Erdélyi–Kober fractional integral operators are special cases of Saigo’s operators. The symbol Γdef...abc... represents the fraction of the product of gamma functions Γ(a)Γ(b)Γ(c)...Γ(d)Γ(e)Γ(f)....



Now, we begin with the following statement:



If


f(t)=tλ(tk+ck)−ρSwu[ytμ(tk+ck)−υ]Sτp;zth(tk+ck)−δ



(13)




then, we have the following relations:

Theorem 1.

Let ℜ(ϑ)>0,λ>0, k=1,2,3,⋯, where c is a positive number and ρ is a complex number, then there holds the relation


I0+ϑ,φ,ηf(x)=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT−φ










×Γ(T+1)Γ(T+η−φ+1)Γ(T−φ+1)Γ(T+ϑ+η+1)










×2k+1F2kρ+υs−δn,Δ(k,T+1),Δ(k,T−φ+η+1);−xkckΔ(k,T+1−φ),Δ(k,T+ϑ+η+1);,



(14)




where T=λ+μs+hn and R=kρ+kυs−kδn.



The result in Equation (14) is valid for ℜ(ϑ)>0, ℜλ+μs+hn>0. In addition, c is a positive number and ρ,μ,υ,h,δ are complex numbers, k=1,2,3,…,u is an arbitrary positive integer and the coefficients Aw,s(w,s≥0) are arbitrary constants, real or complex. Here, Δ(k,ϑ) represents the sequence of parameters


ϑk,ϑ+1k,...,ϑ+k−1k,








and 2k+1F2k(·) is the generalized hypergeometric function, defined in [24].







Proof. 

Let ℓ be the left-hand side of result in Equation (14). Using Equations (4) and (1) and applying Equations (13)–(9), we have


ℓ=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!










×x−ϑ−φΓ(ϑ)∫0x(x−t)ϑ−12F1(ϑ+φ,−η;ϑ;1−ttxx)tλ+μs+hn(tk+ck)−(ρ+υs−δn)dt.



(15)







Further, on employing the Gauss hypergeometric function and series formula, namely


(tk+ck)−ρ=c−kρ∑q=0∞(ρ)qq!−tkckq








in Equation (15), we get


=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!










×x−ϑ−φΓ(ϑ)∑l=0∞ϑ+φl−ηlϑll!x−l∑q=0∞(ρ+υs−δn)qq!c−k(ρ+υs−δn)−1ckq










×∫0xtλ+μs+hn+kq(x−t)ϑ+l−1dt.











On interchanging the order of integration and summation, which is valid under the given conditions, evaluating the inner integral by means of the formula


∫0xtλ+kqx−tϑ+p−1dt=xϑ+λ+p+kqΓϑ+pΓλ+kq+1Γϑ+p+λ+kq+1,



(16)




and performing some simplification, we get


=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT−φ










×∑l=0∞ϑ+φl−ηlT+ϑ+kq+1ll!∑q=0∞(ρ+υs−δn)qq!ΓT+1+kqΓT+ϑ+kq+1−xkckq.



(17)







Now, by employing the Gauss theorem and multiplication formula (see, Rainville ([25], pp. 49, 24–29)) in Equation (17), we arrive at the right-hand side of Equation (14). □





Again, by considering the another function in the form


f(t)=tλ(tk+ck)−ρSwu[ytμ(tk+ck)−υ]Sτp;zt−h(tk+ck)−δ



(18)




we deduce the following result:

Theorem 2.

Let ℜ(ϑ)>0,λ>0, k=1,2,3,⋯, where c is a positive number and ρ is a complex number, then there holds the relation


I−ϑ,φ,ηf(x)=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT′−φ










×Γ(φ−T′)Γ(η−T′)Γ(−T′)Γ(ϑ+φ+η−T′)










×2k+1F2kρ+υs−δn,Δ(k,T′+1),Δ(k,T′−ϑ−φ−η+1);−xkckΔ(k,T′−η+1),Δ(k,T′−φ+1);.



(19)







Here, c is a positive number and ρ,μ,υ,h,δ are complex numbers, k=1,2,3,⋯, and T′=λ+μs−hn. The result in Equation (19) is valid for ℜ(ϑ)>0, ℜλ+μs−hn>0,u is an arbitrary positive integer and the coefficients Aw,s(w,s≥0) are arbitrary constants, real or complex.







Proof. 

Suppose ℓ is the left-hand side of Equation (19), then we can write


ℓ=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!










×1Γ(ϑ)∫x∞(t−x)ϑ−1t−ϑ−φ2F1(ϑ+φ,−η;ϑ;1−xxtt)tλ+μs−hn(tk+ck)−(ρ+υs−δn)dt.



(20)







Following a similar fashion as in the proof of Theorem 1, expressing the series expansion for the Gauss hypergeometric function and binomial series tk+ck−ρ, interchanging the order of integration and summation, evaluating the inner integral by means of the formula


∫x∞tλ−ϑ−φ−n+kqt−xϑ+n−1dt=xλ−φ+kqΓϑ+nΓφ−λ−kqΓϑ+φ+n−λ−kq,



(21)




using the relation ϑn=−1n1−ϑn, and further employing the Gauss theorem and multiplication formula, we easily obtain the right-hand side of Equation (19). □





In a different manner, on setting ρ=υ=δ=0, y=z=1 and λ=λ−1 in Equations (13) and (18), and using the Hadamard product in Equation (8), then in view of Equations (1) and (5), we attain the following typical cases of Theorems 1 and 2, respectively.



Corollary 1.

Let ϑ,φ,γ,λ∈C and λ>0, τ>0p∈R be such that ℜ(ϑ)>0 and ℜ(λ)>max[0,ℜ(φ−γ)]. Then, the following result holds true:


I0+ϑ,φ,γf(x)=xλ+h−φ−1∑s=0[w/u](−w)usAw,sxμss!Sτp;xh










×3ψ2(λ+μs+h,h),(λ+η−φ+μs+h,h),(1,1);xh(λ−φ+μs+h,h),(λ+ϑ+η+μs+h,h);.



(22)









Corollary 2.

Let ϑ,φ,γ,λ∈C and λ>0, τ>0p∈R be such that ℜ(ϑ)>0 and ℜ(λ)<1+min[ℜ(φ),ℜ(γ)]. Then, the following result holds true:


I−ϑ,φ,γf(x)=xλ+h−φ−1∑s=0[w/u](−w)usAw,sxμss!Sτp;x−h










×3ψ2(1−λ−μs+φ+h,h),(1−λ−μs+η+h,h),(1,1);1xh(1−λ−μs+h,h),(1−λ+ϑ+φ+η−μs+h,h);.



(23)









Remark 1.

If we set w=0, A0,0=1 then S0ux→1 in Corollaries 1 and 2, we can deduce the known result given by Sexana and Parmar ([22], Equations (31) and (33)).






3. Interesting Special Cases


(I) When φ=−ϑ, the operators in Equations (9) and (11) coincide with the classical Riemann–Liouville fractional integrals of order ϑ∈C with x>0 (see, e.g., [26]) as follows


I0+ϑ,−ϑ,ηfx=I0+ϑfx=1Γ(ϑ)∫0x(x−t)ϑ−1f(t)dt,



(24)






I−ϑ,−ϑ,ηfx=I−ϑfx=1Γ(ϑ)∫x∞(t−x)ϑ−1f(t)dt.



(25)







In view of the above, we can write


I0+ϑf(x)=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT+ϑ










×Γ(T+1)Γ(T+ϑ+1)k+1Fkρ+υs−δn,Δ(k,T+1);−xkckΔ(k,T+1+ϑ);



(26)




and


I−ϑf(x)=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT′+ϑ










×Γ(−T′−ϑ)Γ(−T′)k+1Fkρ+υs−δn,Δ(k,T′+1);−xkck(k,T′+ϑ+1);.



(27)







(II) For φ=0, the operators in Equations (9) and (11) yield the so-called Erdélyi–Kober integrals of order ϑ∈C with x>0 (see, e.g., [26]) as under:


I0+ϑ,0,ηfx=Iη,ϑ+fx=x−ϑ−ηΓ(ϑ)∫0x(x−t)ϑ−1tηf(t)dt,



(28)






I−ϑ,0,ηfx=Kη,ϑ−fx=xηΓ(ϑ)∫x∞(t−x)ϑ−1t−ϑ−ηf(t)dt.



(29)







Following the above relations, we have


Iη,ϑ+fx=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT










×Γ(T+η+1)Γ(T+ϑ+η+1)k+1Fkρ+υs−δn,Δ(k,T+η+1);−xkckΔ(k,T+ϑ+η+1);



(30)




and


Kη,ϑ−fx=∑s=0[w/u]∑n≥12n(−w)usAw,syszn(p2+n2)τ+1s!cRxT′










×Γ(η−T′)Γ(ϑ+η−T′)k+1Fkρ+υs−δn,Δ(k,T′−ϑ−η+1);−xkckΔ(k,T′−η+1);.



(31)








4. Conclusions


The concept of fractional calculus has been singled out as an outstanding mathematical tool for modelling of relevant systems in various fields of science and engineering. Particularly, the image formulas involving various special functions plays an important role for evaluating the integrals and for providing solution of fractional differential and integral equations. Here, certain generalized fractional integrals of Saigo’s type connected with the product of Srivastava’s polynomials and the Mathieu series have been investigated. Analogous results associated with Riemann–Liouville and Erdélyi–Kober fractional integral operators, which have been depicted in corollaries, are also discussed. The results presented in this article are easily converted in terms of a similar type of new interesting integrals with different arguments after some suitable parametric replacements. Further, we conclude with the remark that suitably assigning values to the bounded sequence Aw,sw,s≥0, the image formulas given in Theorem 1 and 2 being of general nature, will lead to several integrals involving product of variety orthogonal polynomials and generalized Mathieu series.
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