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Abstract

:

In this paper, we study free probability on (weighted-)semicircular elements in a certain Banach *-probability space (LS,τ0) induced by measurable functions on p-adic number fields Qp over primes p. In particular, we are interested in the cases where such free-probabilistic information is affected by primes in given closed intervals of the set R of real numbers by defining suitable “truncated” linear functionals on LS.
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1. Introduction


In [1,2], we constructed-and-studied weighted-semicircular elements and semicircular elements induced by p-adic number fields Qp, for all p ∈ P, where P is the set of all primes in the set N of all natural numbers. In this paper, we consider certain “truncated” free-probabilistic information of the weighted-semicircular laws and the semicircular law of [1]. In particular, we are interested in free distributions of certain free reduced words in our (weighted-)semicircular elements under conditions dictated by the primes p in a “suitable” closed interval [t1,t2] of the set R of real numbers. Our results illustrate how the original (weighted-)semicircular law(s) of [1] is (resp., are) distorted by truncations on P.



1.1. Preview and Motivation


Relations between primes and operators have been widely studied not only in mathematical fields (e.g., [3,4,5,6]), but also in other scientific fields (e.g., [7]). For instance, we studied how primes act on certain von Neumann algebras generated by p-adic and Adelic measure spaces in [8,9]. Meanwhile, in [10], primes are regarded as linear functionals acting on arithmetic functions, understood as Krein-space operators under the representation of [11]. Furthermore, in [12,13], free-probabilistic structures on Hecke algebras HGL2(Qp) are studied for p ∈ P. These series of works are motivated by number-theoretic results (e.g., [4,5,7]).



In [2], we constructed weighted-semicircular elements {Qp,j}j∈Z and corresponding semicircular elements {Θp,j}j∈Z in a certain Banach *-algebra LSp induced from the *-algebra Mp consisting of measurable functions on a p-adic number field Qp, for p ∈ P. In [1], the free product Banach *-probability space LS,τ0 of the measure spaces {LSp(j)}p∈P,j∈Z of [2] were constructed over both primes and integers, and weighted-semicircular elements {Qp,j}p∈P,j∈Z and semicircular elements {Θp,j}p∈P,j∈Z were studied in LS, as free generators.



In this paper, we are interested in the cases where the free product linear functional τ0 of [1] on the Banach *-algebra LS is truncated in P. The distorted free-distributional data from such truncations are considered. The main results characterize how the original free distributions on LS,τ0 are affected by the given truncations on P.




1.2. Overview


We briefly introduce the backgrounds of our works in Section 2. In the short Section 3, Section 4, Section 5, Section 6, Section 7 and Section 8, we construct the Banach *-probability space (LS,τ0) and study weighted-semicircular elements Qp,j and corresponding semicircular elements Θp,j in (LS,τ0), for all p ∈ P,j ∈ Z.



In Section 9, we define a free-probabilistic sub-structure LS = LS,τ0 of the Banach *-probability space LS,τ0, having possible non-zero free distributions, and study free-probabilistic properties of LS. Then, truncated linear functionals of τ0 on LS and truncated free-probabilistic information on LS are studied. The main results illustrate how our truncations distort the original free distributions on LS (and hence, on LS).



In Section 10, we study free sums X of LS having their free distribution, the (weighted-)semicircular law(s), under truncation. Note that, in general, if free sums X have more than one summand as operators, then X cannot be (weighted-)semicircular in LS. However, certain truncations make them be.



In Section 11, we investigate a type of truncation (compared with those of Section 9 and Section 10). In particular, certain truncations inducing so-called prime-neighborhoods are considered. The unions of such prime-neighborhoods provide corresponding distorted free probability on LS (different from that of Section 9 and Section 10).





2. Preliminaries


In this section, we briefly introduce the backgrounds of our proceeding works.



2.1. Free Probability


Readers can review free probability theory from [14,15] (and the cited papers therein). Free probability is understood as the noncommutative operator-algebraic version of classical measure theory and statistics. The classical independence is replaced by the freeness, by replacing measures on sets with linear functionals on noncommutative (*-)algebras. It has various applications not only in pure mathematics (e.g., [16,17,18,19,20]), but also in related topics (e.g., see [2,8,9,10,11]). Here, we will use the combinatorial free probability theory of Speicher (e.g., see [14]).



In the text, without introducing detailed definitions and combinatorial backgrounds, free moments and free cumulants of operators will be computed. Furthermore, the free product of*-probability spaces in the sense of [14,15] is considered without detailed introduction.



Note now that one of our main objects, the *-algebra Mp of Section 3, are commutative, and hence, (traditional, or usual “noncommutative”) free probability theory is not needed for studying functional analysis or operator algebra theory on Mp, because the freeness on this commutative structure is trivial. However, we are not interested in the free-probability-depending operator-algebraic structures of commutative algebras, but in statistical data of certain elements to establish (weighted-)semicircular elements. Such data are well explained by the free-probability-theoretic terminology and language. Therefore, as in [2], we use “free-probabilistic models” on Mp to construct and study our (weighted-)semicircularity by using concepts, tools, and techniques from free probability theory “non-traditionally.” Note also that, in Section 8, we construct “traditional” free-probabilistic structures, as in [1], from our “non-traditional” free-probabilistic structures of Section 3, Section 4, Section 5, Section 6 and Section 7 (like the free group factors; see, e.g., [15,19]).




2.2. Analysis of Qp


For more about p-adic and Adelic analysis, see [7]. Let p ∈ P, and let Qp be the p-adic number field. Under the p-adic addition and the p-adic multiplication of [7], the set Qp forms a field algebraically. It is equipped with the non-Archimedean norm .p, which is the inherited p-norm on the set Q of all rational numbers defined by:


xp=pkabp=1pk,








whenever x = pkab in Q, where k,a ∈ Z, and b ∈ Z\{0}. For instance,


832=23×132=123=18,








and:


833=3−1×83=13−1=3,








and:


83q=1q0=1, whenever q∈P\{2,3}.











The p-adic number field Qp is the maximal p-norm closure in Q. Therefore, under norm topology, it forms a Banach space (e.g., [7]).



Let us understand the Banach field Qp as a measure space,


Qp=Qp,σ(Qp),μp,








where σ(Qp) is the σ-algebra of Qp consisting of all μp-measurable subsets, where μp is a left-and-right additive invariant Haar measure on Qp satisfying:


μp(Zp)=1,








where Zp is the unit disk of Qp, consisting of all p-adic integers x satisfying xp≤1. Moreover, if we define:


Uk=pkZp={pkx∈rQp:x∈Zp},



(1)




for all k ∈ Z (with U0 = Zp), then these μp-measurable subsets Uk’s of (1) satisfy:


Qp=∪k∈ZUk,








and:


μpUk=1pk=μpx+Uk,∀x∈Qp,



(2)




and:


···⊂U2⊂U1⊂U0=Zp⊂U−1⊂U−2⊂···.











In fact, the family {Uk}k∈Z forms a basis of the Banach topology for Qp (e.g., [7]).



Define now subsets ∂k of Qp by:


∂k=Uk\Uk+1,forallk∈Z.



(3)







We call such μp-measurable subsets ∂k the kth boundaries of Uk in Qp, for all k ∈ Z. By (2) and (3), one obtains that:


Qp=⊔k∈Z∂k,








and:


μp∂k=μpUk−μpUk+1=1pk−1pk+1,



(4)




and:


∂k1∩∂k2=∂k1ifk1=k2⌀otherwise,,








for all k,k1,k2 ∈ Z, where ⊔ is the disjoint union and ⌀ is the empty set.



Now, let Mp be the algebra,


Mp=C{χS:S∈σ(Qp)},



(5)




where χS are the usual characteristic functions of S ∈ σQp.



Then the algebra Mp of (5) forms a well-defined *-algebra over C, with its adjoint,


∑S∈σ(Gp)tSχS*=def∑S∈σ(Gp)tS¯χS,








where tS ∈ C, having their conjugates tS¯ in C.



Let ∑S∈σ(Gp)tSχS ∈ Mp. Then, one can define the p-adic integral by:


∫Qp∑S∈σ(Qp)tSχSdμp=∑S∈σ(Qp)tSμp(S).



(6)







Note that, by (4), if S ∈ σ(Qp), then there exists a subset ΛS of Z, such that:


ΛS={j∈Z:S∩∂j≠⌀},



(7)




satisfying:


∫QpχSdμp=∫Qp∑j∈ΛSχS∩∂jdμp=∑j∈ΛSμpS∩∂j








by (6)


≤∑j∈ΛSμp∂j=∑j∈ΛS1pj−1pj+1,



(8)




by (4), for all S ∈ σ(Qp), where ΛS is in the sense of (7).



Proposition 1.

Let S ∈ σ(Qp), and let χS ∈ Mp. Then, there exist rj ∈ R, such that:


0≤rj≤1inR,for all j∈ΛS,



(9)




and:


∫QpχSdμp=∑j∈ΛSrj1pj−1pj+1.













Proof. 

The existence of rj = μpS∩∂jμp∂j, for all j ∈ Z, is guaranteed by (7) and (8). The p-adic integral in (9) is obtained by (8). □







3. Free-Probabilistic Model on Mp


Throughout this section, fix a prime p ∈ P, and let Qp be the corresponding p-adic number field and Mp be the *-algebra (5) consisting of μp-measurable functions on Qp. Here, we establish a suitable (non-traditional) free-probabilistic model on Mp implying p-adic analytic data.



Let Uk be the basis elements (1) of the topology for Qp with their boundaries ∂k of (3), i.e.,


Uk=pkZp,for all k∈Z,



(10)




and:


∂k=Uk\Uk+1, for all k∈Z.











Define a linear functional φp: Mp→C by the p-adic integration (6),


φpf=∫Qpfdμp,for all f∈Mp.



(11)







Then, by (9) and (11), one obtains:


φpχUj=1pj and φpχ∂j=1pj−1pj+1,








for all j ∈ Z.



Definition 1.

We call the pair Mp,φp the p-adic (non-traditional) free probability space for p ∈ P, where φp is the linear functional (11) on Mp.





Remark 1.

As we discussed in Section 2.1, we study the measure-theoretic structure Mp,φp as a free-probabilistic model on Mp for our purposes. Therefore, without loss of generality, we regard Mp,φp as a non-traditional free-probabilistic structure. In this sense, we call Mp,φp the p-adic free probability space for p. The readers can understand Mp,φp as the pair of a commutative *-algebra Mp and a linear functional φp, having as its name the p-adic free probability space.





Let ∂k be the kth boundary Uk\Uk+1 of Uk in Qp, for all k ∈ Z. Then, for k1,k2 ∈ Z, one obtains that:


χ∂k1χ∂k2=χ∂k1∩∂k2=δk1,k2χ∂k1,








by (4), and hence,


φpχ∂k1χ∂k2=δk1,k2φpχ∂k1=δk1,k21pk1−1pk1+1,



(12)




where δ is the Kronecker delta.



Proposition 2.

Let (j1, …, jN) ∈ ZN, for N ∈ N. Then:


Πl=1Nχ∂jl=δ(j1,…,jN)χ∂j1 in Mp,








and hence,


φpΠl=1Nχ∂jl=δ(j1,…,jN)1pj1−1pj1+1,



(13)




where:


δ(j1,…,jN)=Πl=1N−1δjl,jl+1δjN,j1.













Proof. 

The proof of (13) is done by induction on (12). □





Thus, one can get that, for any S ∈ σQp,


φpχS=φp∑j∈ΛSχS∩∂j



(14)




where ΛS is in the sense of (7).


=∑j∈ΛSφpχS∩∂j=∑j∈ΛSμpS∩∂j=∑j∈ΛSrj1pj−1pj+1,



(15)




by (13), where 0≤rj≤1 are in the sense of (9) for all j ∈ ΛS.



Furthermore, if S1,S2 ∈ σQp, then:


χS1χS2=∑k∈ΛS1χS1∩∂k∑j∈ΛS2χS2∩∂j=∑(k,j)∈ΛS1×ΛS2δk,jχS1∩S2∩∂j=∑j∈ΛS1,S2χS1∩S2∩∂j,



(16)




where


ΛS1,S2=ΛS1∩ΛS2.











Proposition 3.

Let Sl ∈ σ(Qp), and let χSl ∈ Mp,φp, for l = 1, …, N, for N ∈ N. Let:


ΛS1,…,SN=∩l=1NΛSl in Z,








where ΛSl are in the sense of (7), for l=1, …, N. Then, there exist rj ∈ R, such that:


0≤rj≤1 in R, for j∈ΛS1,…,SN,








and:


φpΠl=1NχSl=∑j∈ΛS1,...,SNrj1pj−1pj+1.



(17)









Proof. 

The proof of (17) is done by induction on (16) with the help of (15). □






4. Representations of Mp,φp


Fix a prime p in P, and let Mp,φp be the p-adic free probability space. By understanding Qp as a measure space, construct the L2-spaceHp,


Hp=defL2Qp,σ(Qp),μp=L2Qp,



(18)




over C. Then, this L2-space Hp of (18) is a well-defined Hilbert space equipped with its inner product <,>2,


h1,h22=def∫Qph1h2*dμp,



(19)




for all h1,h2 ∈ Hp.



Definition 2.

We call the Hilbert space Hp of (18), the p-adic Hilbert space.





By the definition (18) of the p-adic Hilbert space Hp, our *-algebra Mp acts on Hp, via an algebra-action αp,


αp(f)h=fh,for all h∈Hp,



(20)




for all f ∈ Mp.



Notation: Denote αp(f) of (20) by αfp, for all f ∈ Mp. Furthermore, for convenience, denote αχSp simply by αSp, for all S ∈ σQp. □



By (20), the linear morphism αp is indeed a well-determined *-algebra-action of Mp acting on Hp (equivalently, every αfp is a *-homomorphism from Mp into the operator algebra B(Hp) of all bounded operators on Hp, for all f ∈ Mp), since:


αf1f2p(h)=f1f2h=f1f2h=f1αf2p(h)=αf1pαf2p(h),








for all h ∈ Hp, implying that:


αf1f2p=αf1pαf2p,



(21)




for all f1,f2 ∈ Mp; and:


αfp(h1),h22=fh1,h22=∫Qpfh1h2*dμp=∫Qph1fh2*dμp=∫Qph1h2f**dμp=∫Qph1f*h2*dμp=h1,αf*p(h2)2,








for all h1,h2 ∈ Hp, for all f ∈ Mp, implying that:


αfp*=αf*,for all f∈Mp,



(22)




where <,>2 is the inner product (19) on Hp.



Proposition 4.

The linear morphism αp of (20) is a well-defined *-algebra-action of Mp acting on Hp. Equivalently, the pair (Hp,αp) is a Hilbert-space representation of Mp.





Proof. 

The proof is done by (21) and (22). □





Definition 3.

The Hilbert-space representation Hp,αp is said to be the p-adic representation of Mp.





Depending on the p-adic representation (Hp,αp) of Mp, one can construct the C*-subalgebra Mp of the operator algebra B(Hp).



Definition 4.

Define the C*-subalgebra Mp of the operator algebra B(Hp) by:


Mp=defαpMp¯=Cαfp:f∈Mp¯,



(23)




where X¯ mean the operator-norm closures of subsets X of B(Hp). Then, this C*-algebra Mp is called the p-adic C*-algebra of the p-adic free probability space Mp,φp.






5. Free-Probabilistic Models on Mp


Throughout this section, let us fix a prime p ∈ P, and let Mp,φp be the corresponding p-adic free probability space. Let Hp,αp be the p-adic representation of Mp, and let Mp be the p-adic C*-algebra (23) of Mp,φp.



We here construct suitable free-probabilistic models on Mp. In particular, we are interested in a system {φjp}j∈Z of linear functionals on Mp, determined by the jth boundaries {∂j}j∈Z of Qp.



Define a linear functional φjp: Mp→C by a linear morphism,


φjpa=defaχ∂j,χ∂j2,



(24)




for all a ∈ Mp, for all j ∈ Z, where <,>2 is the inner product (19) on the p-adic Hilbert space Hp of (18).



Remark that if a ∈ Mp, then:


a=∑S∈σQptSαSp, in Mp








(with tS ∈ C), where ∑ is a finite or infinite (i.e., limit of finite) sum(s) under the C*-topology for Mp. Thus, the linear functionals φjp of (24) are well defined on Mp, for all j ∈ Z, i.e., for any fixed j ∈ Z, one has that:


φjp(a)=∑S∈σQptSχS∩∂j,χ∂j2=∑S∈σQptSμpχS∩∂j≤μp∂j∑S∈σQptS≤1pj−1pj+1a,



(25)




where:


a=supa(h)2:h∈Hpwithh2=1








is the C*-norm on Mp (inherited by the operator norm on the operator algebra B(Hp)), and .2 is the Hilbert-space norm,


f2=f,f2,∀f∈Hp,








induced by the inner product <,>2 of (19). Therefore, for any fixed integer j ∈ Z, the corresponding linear functional φjp of (24) is bounded on Mp.



Definition 5.

Let j ∈ Z, and let φjp be the linear functional (24) on the p-adic C*-algebra Mp. Then, the pair Mp,φjp is said to be the jth p-adic (non-traditional) C*-probability space.





Remark 2.

As in Section 4, the readers can understand the pairs Mp,φjp simply as structures consisting of a commutative C*-algebra Mp and linear functionals φjp on Mp, whose names are jth p-adic C*-probability spaces for all j∈ Z, for p ∈ P.





Fix j ∈ Z, and take the corresponding jthp-adic C*-probability space Mp,φjp. For S ∈ σQp and a generating operator αSp of Mp, one has that:


φjp(αSp)=αSp(χ∂j),χ∂j2=χS∩∂j,χ∂j2=∫QpχS∩∂jχ∂j*dμp=∫QpχS∩∂jχ∂jdμp



(26)




by (19)


=∫QpχS∩∂jdμp=μpS∩∂j=rS1pj−1pj+1,



(27)




for some 0≤rS≤1 in R, for S ∈ σQp.



Proposition 5.

Let S ∈ σQp and αSp = αχSp ∈ Mp,φjp, for a fixed j ∈ Z. Then, there exists rS ∈ R, such that:


0≤rS≤1 in R,








and:


φjpαSpn=rS1pj−1pj+1,foralln∈N.



(28)









Proof. 

Remark that the generating operator αSp is a projection in Mp, in the sense that:


αSp*=αSp=αSp2, in Mp,








so,


αSpn=αSp, for all n∈N.











Thus, for any n ∈ N, we have:


φjpαSpn=φjp(αSp)=rS1pj−1pj+1,








for some 0≤rS≤1 in R, by (27). □





As a corollary of (28), one obtains the following corollary.



Corollary 1.

Let ∂k be the kth boundaries (10) of Qp, for all k ∈ Z. Then:


φjpα∂kpn=δj,k1pj−1pj+1



(29)




for all n ∈ N, for all j ∈ Z.





Proof. 

The formula (29) is shown by (28). □






6. Semigroup C*-Subalgebras Sp of Mp


Let Mp be the p-adic C*-algebra (23) for an arbitrarily-fixed p ∈ P. Take operators:


Pp,j=α∂jp∈Mp,



(30)




where ∂j are the jth boundaries (10) of Qp, for the fixed prime p, for all j ∈ Z.



Then, these operators Pp,j of (30) are projections on the p-adic Hilbert space Hp in Mp, i.e.,


Pp,j*=Pp,j=Pp,j2,








for all j ∈ Z. We now restrict our interest to these projections Pp,j of (30).



Definition 6.

Fix p ∈ P. Let Sp be the C*-subalgebra:


Sp=C*{Pp,j}j∈Z=C{Pp,j}j∈Z¯ofMp,



(31)




where Pp,j are projections (30), for all j ∈ Z. We call this C*-subalgebra Sp the p-adic boundary (C*-)subalgebra of Mp.





The p-adic boundary subalgebra Sp of the p-adic C*-algebra Mp satisfies the following structure theorem.



Proposition 6.

Let Sp be the p-adic boundary subalgebra (31) of the p-adic C*-algebra Mp. Then:


Sp=*−iso⊕j∈ZC·Pp,j=*−isoC⊕Z,



(32)




in Mp.





Proof. 

The proof of (32) is done by the mutual orthogonality of the projections {Pp,j}j∈Z in Mp. Indeed, one has:


Pp,j1Pp,j2=α∂j1pα∂j2p=α∂j1∩∂j2p=δj1,j2Pp,j1,








in Sp, for all j1,j2 ∈ Z. □





Define now linear functionals φjp (for a fixed prime p) by:


φj(p)=φjp∣Spon Sp,



(33)




where φjp in the right-hand side of (33) are the linear functionals (24) on Mp, for all j ∈ Z.




7. Weighted-Semicircular Elements


Let Mp be the p-adic C*-algebra, and let Sp be the p-adic boundary subalgebra (31) of Mp, satisfying the structure theorem (32). Fix p ∈ P. Recall that the generating projections Pp,j of Sp satisfy:


φj(p)Pp,j=1pj−1pj+1,∀j∈Z,



(34)




by (33) (also see (28) and (29)).



Now, let ϕ be the Euler totient function, an arithmetic function:


ϕ:N→C,








defined by:


ϕ(n)={k∈N:k≤n,gcd(n,k)=1},



(35)




for all n ∈ N, where X mean the cardinalities of sets X and gcd is the greatest common divisor.



It is well known that:


ϕ(n)=nΠq∈P,q∣n1−1q,








for all n ∈ N, where “q∣n” means “q divides n.” For instance,


ϕ(p)=p−1=p1−1p,∀p∈P.



(36)




Thus:


φj(p)Pp,j=1pj−1pj+1=1pj1−1p=ppj+11−1p=ϕ(p)pj+1,








by (34), (35), and (36), for all Pp,j ∈ Sp. More generally,


φj(p)Pp,k=δj,kϕ(p)pj+1,∀p∈P,k∈Z.



(37)







Now, for a fixed prime p, define new linear functionals τjp on Sp, by linear morphisms satisfying that:


τjp=1ϕ(p)φj(p),on Sp,



(38)




for all j ∈ Z, where φjp are in the sense of (33).



Then, one obtains new (non-traditional) C*-probabilistic structures,


{Sp(j)=Sp,τjp:p∈P,j∈Z},



(39)




where τjp are in the sense of (38).



Proposition 7.

Let Sp(j) = (Sp,τjp) be in the sense of (39), and let Pp,k be generating operators of Sp(j), for p ∈ P, j ∈ Z. Then:


τjpPp,kn=δj,kpj+1,for all n∈N.



(40)









Proof. 

The formula (40) is proven by (37) and (38). Indeed, since Pp,k are projections in Sp(j),


τjpPp,kn=τjpPp,k=δj,k1pj+1,








for all n ∈ N, for all p ∈ P, and j,k ∈ Z. □





7.1. Semicircular and Weighted-Semicircular Elements


Let (A,φ) be an arbitrary (traditional or non-traditional) topological *-probability space (C*-probability space, or W*-probability space, or Banach *-probability space, etc.), consisting of a (noncommutative, resp., commutative) topological *-algebra A (C*-algebra, resp., W*-algebra, resp., Banach *-algebra, etc.), and a (bounded or unbounded) linear functional φ on A.



Definition 7.

Let a be a self-adjoint element in (A,φ). It is said to be even in (A,φ), if all odd free moments of a vanish, i.e.,


φa2n−1=0,for all n∈N.



(41)







Let a be a “self-adjoint,” and “even” element of (A,φ) satisfying (41). Then, it is said to be semicircular in (A,φ), if:


φ(a2n)=cn,for all n∈N,



(42)




where ck are the kth Catalan number,


ck=1k+12kk=1k+1(2k)!k!2=2k!k!(k+1)!,








for all k ∈ N0 = N ∪ {0}.





It is well known that, if kn(…) is the free cumulant on Ain terms of a linear functionalφ (in the sense of [14]), then a self-adjoint element a is semicircular in (A,φ), if and only if:


kna,a,……,a︸n−times=1ifn=20otherwise,



(43)




for all n ∈ N (e.g., see [14]). The above equivalent free-distributional data (43) of the semicircularity (42) are obtained by the Möbius inversion of [14].



Motivated by (43), one can define the weighted-semicircularity.



Definition 8.

Let a ∈ (A,φ) be a self-adjoint element. It is said to be weighted-semicircular in (A,φ) with its weight t0 (in short, t0-semicircular), if there exists t0 ∈ C× = C\{0}, such that:


kna,a,…,a︸n−times=t0ifn=20otherwise,



(44)




for all n ∈ N, where kn(…) is the free cumulant on A in terms of φ.





By the definition (44) and by the Möbius inversion of [14], one obtains the following free-moment characterization (45) of the weighted-semicircularity (44): A self-adjoint element a is t0-semicircular in (A,φ), if and only if there exists t0 ∈ C×, such that:


φ(an)=ωnt0n2cn2,








where:


ωn=1ifniseven0ifnisodd,



(45)




for all n ∈ N, where cm are the mth Catalan numbers for all m ∈ N0.



Thus, from below, we use the weighted-semicircularity (44) and its characterization (45) alternatively.




7.2. Tensor Product Banach *-Algebra LSp


Let Sp(k) = Sp,τkp be a (non-traditional) C*-probability space (39), for p ∈ P,k ∈ Z. Define bounded linear transformations cp and ap “acting on the p-adic boundary subalgebra Sp of Mp,” by linear morphisms satisfying,


cpPp,j=Pp,j+1,








and:


apPp,j=Pp,j−1,



(46)




on Sp, for all j ∈ Z.



By (46), these linear transformations cp and ap are bounded under the operator-norm induced by the C*-norm on Sp. Therefore, the linear transformations cp and ap are regarded as Banach-space operators “acting on Sp,” by regarding Sp as a Banach space (under its C*-norm). i.e., cp and ap are elements of the operator spaceBSp consisting of all bounded operators on the Banach space Sp.



Definition 9.

The Banach-space operators cp and ap of (46) are called the p-creation, respectively, the p-annihilation on Sp, for p ∈ P. Define a new Banach-space operator lp ∈ BSp by:


lp=cp+aponSp.



(47)







We call it the p-radial operator on Sp.





Let lp be the p-radial operator cp+ap of (47) on Sp. Construct a closed subspace Lp of B(Sp) by:


Lp=C[lp]¯⊂B(Sp),



(48)




where Y¯ means the operator-norm-topology closure of every subset Y of the operator space B(Sp).



By the definition (48), Lp is not only a closed subspace, but also a well-defined Banach algebra embedded in the vector space B(Sp). On this Banach algebra Lp, define the adjoint (*) by:


∑k=0∞sklpk∈Lp⟼∑k=0∞sk¯lpk∈Lp,



(49)




where sk ∈ C with their conjugates sk¯ ∈ C.



Then, equipped with the adjoint (49), this Banach algebra Lp of (48) forms a Banach*-algebra inside B(Sp).



Definition 10.

Let Lp be a Banach *-algebra (48) in the operator space B(Sp) for p ∈ P. We call it the p-radial (Banach-*-)algebra on Sp.





Let Lp be the p-radial algebra (48) on Sp. Construct now the tensor product Banach *-algebra LSp by:


LSp=Lp⊗CSp,



(50)




where ⊗C is the tensor product of Banach*-algebras (Remark that Sp is a C*-algebra and Lp is a Banach *-algebra; and hence, the tensor product Banach *-algebra LSp of (50) is well-defined.).



Take now a generating element lpk⊗Pp,j, for some k ∈ N0 = N∪{0}, and j ∈ Z, where Pp,j is in the sense of (30) in Sp, with axiomatization:


lp01Sp, the identity operator on Sp,








in B(Sp), satisfying:


1SpPp,j=Pp,j, for all Pp,j∈Sp,








for all j ∈ Z.



By (50) and (32), the elements lpk⊗Pp,j indeed generate LSp under linearity, because:


lp⊗Pp,jk=lpk⊗Pp,j,








for all k ∈ N0, and j ∈ Z, for p ∈ P, and their self-adjointness. We now focus on such generating operators of LSp.



Define a linear morphism:


Ep:LSp→Sp








by a linear transformation satisfying that:


Eplpk⊗Pp,j=pj+1k+1[k2]+1lpk(Pp,j),



(51)




for all k ∈ N0,j ∈ Z, where k2 is the minimal integer greater than or equal to k2, for all k ∈ N0; for example,


32=2=42.











By the cyclicity (48) of the tensor factor Lp of LSp, and by the structure theorem (32) of the other tensor factor Sp of LSp, the above morphism Ep of (51) is a well-defined bounded surjective linear transformation.



Now, consider how our p-radial operator lp of (47) works on Sp. Observe first that: if cp and ap are the p-creation, respectively, the p-annihilation on Sp, then:


cpapPp,j=Pp,j=apcpPp,j,








for all j ∈ Z,p ∈ P, and hence:


cpap=1Sp=apcponSp.



(52)







Lemma 1.

Let cp,ap be the p-creation, respectively, the p-annihilation on Sp. Then:


cpnapn=cpapn=1Sp=apcpn=apcp,








and:


cpn1apn2=apn2cpn1on Sp,



(53)




for all n,n1,n2 ∈ N0.





Proof. 

The formula (53) holds by (52). □





By (53), one can get that:


lpn=cp+apn=∑k=0nnkcpkapn−k on Sp,








with identities;


cp0=1Sp=ap0,



(54)




for all n ∈ N, where:


nk=n!k!(n−k)!,∀k≤n∈N0.











Thus, one obtains the following proposition.



Proposition 8.

Let lp ∈ Lp be the p-radial operator on Sp. Then:


lp2m−1doesnotcontain1Sp−term,and



(55)






lp2mcontainsits1Sp−term,2mm·1Sp,



(56)




for all m ∈ N.





Proof. 

The proofs of (55) and (56) are done by straightforward computations by (53) and (54). See [1] for more details. □






7.3. Weighted-Semicircular Elements Qp,j in LSp


Fix p ∈ P, and let LSp = Lp⊗CSp be the tensor product Banach *-algebra (50) and Ep be the linear transformation (51) from LSp onto Sp. Throughout this section, fix a generating element:


Qp,j=lp⊗Pp,jofLSp,



(57)




for j ∈ Z, where Pp,j is a projection (30) generating Sp. Observe that:


Qp,jn=lp⊗Pp,jn=lpn⊗Pp,j,



(58)




for all n ∈ N, for all j ∈ Z.



If Qp,j ∈ LSp is in the sense of (57) for j∈ Z, then:


EpQp,jn=Eplpn⊗Pp,j=pj+1n+1n2+1lpnPp,j,



(59)




by (51) and (58), for all n ∈ N.



Now, for a fixed j ∈ Z, define a linear functional τp,j0 on LSp by:


τp,j0=τjp∘EponLSp,



(60)




where τjp = 1ϕ(p)φj(p) is the linear functional (38) on Sp.



By the bounded-linearity of both τjp and Ep, the morphism τp,j0 of (60) is a bounded linear functional on LSp.



By (59) and (60), if Qp,j is in the sense of (57), then:


τp,j0Qp,jn=pj+1n+1n2+1τjplpn(Pp,j),



(61)




for all n ∈ N.



Theorem 1.

Let Qp,j = lp⊗Pp,j ∈ LSp,τp,j0, for a fixed j ∈ Z. Then, Qp,j is p2(j+1)-semicircular in LSp,τp,j0. More precisely,


τp,j0Qp,jn=ωnp2(j+1)n2cn2,



(62)




for all n ∈ N, where ωn are in the sense of (45). Equivalently, if kn0,p,j(…) is the free cumulant on LSp in terms of the linear functional τp,j0 of (61) on LSp, then:


kn0,p,jQp,j,Qp,j,…,Qp,j︸n−times=p2(j+1)ifn=20otherwise,



(63)




for all n ∈ N.





Proof. 

The free-moment formula (62) is obtained by (55), (56) and (61). The free-cumulant formula (63) is obtained by (62) under the Möbius inversion of [14]. See [1] for details. □







8. Semicircularity on LS


For all p ∈ P,j ∈ Z, let:


LSp(j)=LSp,τp,j0



(64)




be a Banach *-probabilistic model of the Banach *-algebra LSp of (50), where τp,j0 is the linear functional (60).



Definition 11.

We call the pairs LSp(j) of (64) the jtextth p-adicfilters, for all p ∈ P, j ∈ Z.





Let Qp,k = lp⊗Pp,k be the kth generating elements of the jthp-adic filter LSp(j) of (64), for all k∈ Z, for fixed p ∈ P,j ∈ Z. Then, the generating elements {Qp,k}k∈Z of the jthp-adic filter LSp(j) satisfy that:


kn0,p,jQp,k,…,Qp,k=δj,kp2(j+1)ifn=20otherwise,








and:


τp,j0Qp,kn=δj,kωnp2(j+1)n2cn2,



(65)




for all p ∈ P,j ∈ Z, for all n ∈ N, by (62) and (63), where:


ωn=1ifniseven0ifnisodd,








for all n ∈ N.



For the family:


LSp(j)=LSp,τp,j0:p∈P,j∈Z








of jthp-adic filters of (64), one can define the free product Banach*-probability space,


LS=denoteLS,τ0=def⋆p∈P,j∈ZLSp(j).



(66)




as in [14,15], with:


LS=⋆p∈P,j∈ZLSp, and τ0=⋆p∈P,j∈Zτp,j0.











Note that the pair LS = LS,τ0 of (66) is a well-defined “traditional or noncommutative” Banach *-probability space. For more about the (free-probabilistic) free product of free probability spaces, see [14,15].



Definition 12.

The Banach *-probability space LS = LS,τ0 of (66) is called the free Adelic filtration.





Let LS be the free Adelic filtration (66). Then, by (65), one can take a subset:


Q=Qp,j=lp⊗Pp,j∈LSp(j)p∈P,j∈Z








of LS, consisting of “jth” generating elements Qp,j of the “jth” p-adic filters LSp(j), which are the free blocks of LS, for all j ∈ Z, for all p ∈ P.



Lemma 2.

Let Q be the above family in the free Adelic filtration LS. Then, all elements Qp,j of Q are p2(j+1)-semicircular in the free Adelic filtration LS.





Proof. 

Since all self-adjoint elements Qp,j of the family Q are chosen from mutually-distinct free blocks LSp(j) of LS, they are p2(j+1)-semicircular in LSp(j). Indeed, since every element Qp,j ∈ Q is from a free block LSp(j), the powers Qp,jn are free reduced words with their lengths-N in LSp(j) in LS. Therefore, each element Qp,j ∈ Q satisfies that:


τ0Qp,jn=τp,j0Qp,jn=ωnpn(j+1)cn2,








equivalently,


kn0Qp,j,…,Qp,j=kn0,p,jQp,j,…,Qp,j=p2(j+1)ifn=20otherwise,








for all n ∈ N, by (62) and (63), where kn0(…) is the free cumulant on LS in terms of τ0. Therefore, all elements Qp,j ∈ Q are p2(j+1)-semicircular in LS, for all p ∈ P,j ∈ Z. □





Furthermore, since all p2(j+1)-semicircular elements Qp,j ∈ Q are taken from the mutually-distinct free blocks LSp(j) of LS, they are mutually free from each other in the free Adelic filtration LS of (66), for all p ∈ P,j ∈ Z.



Recall that a subset S={at}t∈Δ of an arbitrary (topological or pure-algebraic) *-probability space (A,φ) is said to be a free family, if, for any pair (t1,t2) ∈ Δ2 of t1≠t2 in a countable (finite or infinite) index set Δ, the corresponding free random variables at1 and at2 are free in (A,φ) (e.g., [7,14]).



Definition 13.

Let S={at}t∈Δ be a free family in an arbitrary topological *-probability space (A,φ). This family S is said to be a free (weighted-)semicircular family, if it is not only a free family, but also a set consisting of all (weighted-)semicircular elements at in (A,φ), for all t ∈ Δ.





Therefore, by the construction (66) of the free Adelic filtration LS, we obtain the following result.



Theorem 2.

Let LS be the free Adelic filtration (66), and let:


Q={Qp,j∈LSp(j)}p∈P,j∈Z⊂LS,



(67)




where LSp(j) are the jth p-adic filters, the free blocks of LS. Then, this family Q of (67) is a free weighted-semicircular family in LS.





Proof. 

Let Q be a subset (67) in LS. Then, all elements Qp,j of Q are p2(j+1)-semicircular in LS by the above lemma, for all p ∈ P,j ∈ Z. Furthermore, all elements Qp,j of Q are mutually free from each other in LS, because they are contained in the mutually-distinct free blocks LSp(j) of LS, for all p ∈ P,j ∈ Z. Therefore, the family Q of (67) is a free weighted-semicircular family in LS. □





Now, take elements:


Θp,j=def1pj+1Qp,j,∀p∈P,j∈Z,



(68)




in LS, where Qp,j ∈ Q, where Q is the free weighted-semicircular family (67) in the free Adelic filtration LS.



Then, by the self-adjointness of Qp,j, these operators Θp,j of (68) are self-adjoint in LS, as well, because:


pj+1∈Q⊂R in C,








satisfying pj+1¯ = pj+1, for all p ∈ P,j ∈ Z.



Furthermore, one obtains the following free-cumulant computation; if kn0(…) is the free cumulant on LS in terms of τ0, then:


kn0Θp,j,…,Θp,j=kn0,p,j1pj+1Qp,j,…,1pj+1Qp,j=1pj+1nkn0,p,jQp,j,...,Qp,j,



(69)




by the bimodule-map property of the free cumulant (e.g., see [14]), for all n ∈ N, where kn0,p,j(…) are the free cumulants (63) on the free blocks LSp(j) in terms of the linear functionals τp,j0 of (60) on LSp, for all p ∈ P,j ∈ Z.



Theorem 3.

Let Θp,j = 1pj+1Qp,j be free random variables (68) of the free Adelic filtration LS, for Qp,j ∈ Q. Then, the family:


Θ=Θp,j∈LSp(j):p∈P,j∈Z



(70)




forms a free semicircular family in LS.





Proof. 

Consider that:


kn0Θp,j,…,Θp,j=1pj+1nkn0,p,jQp,j,…,Qp,j by  (69)=1pj+12k20,p,jQp,j,Qp,jifn=21pj+1nkn0,p,jQp,j,…,Qp,j=0otherwise,








by the p2(j+1)-semicircularity of Qp,j ∈ Q in LS:


=1pj+12pj+12=1ifn=20otherwise,



(71)




for all n ∈ N.



By the free-cumulant computation (71), these self-adjoint free random variables Θp,j ∈ LSp(j) are semicircular in LS by (43), for all p ∈ P,j ∈ Z.



Furthermore, the family Θ of (70) forms a free family in LS, because all elements Θp,j are the scalar-multiples of Qp,j ∈ Q, contained in mutually-distinct free blocks LSp(j) of LS, for all j ∈ Z,p ∈ P.



Therefore, this family Θ of (70) is a free semicircular family in LS. □





Now, define a Banach *-subalgebra LS of LS by:


LS=defC[Q]¯inLS,



(72)




where Q is the free weighted-semicircular family (67) and Y¯ means the Banach-topology closures of subsets Y of LS.



Then, one can obtain the following structure theorem for the Banach *-algebra LS of (72) in LS.



Theorem 4.

Let LS be the Banach *-subalgebra (72) of the free Adelic filtration LS generated by the free weighted-semicircular family Q of (67). Then:


LS=CΘ¯inLS,



(73)




where Θ is the free semicircular family (70) and where “=” means “being identically same as sets.” Moreover,


LS=*−iso⋆p∈P,j∈ZC{Qp,j}¯=*−isoC⋆p∈P,j∈Z{Qp,j}¯,



(74)




in LS, where “=*−iso” means “being Banach-*-isomorphic,” and:


C{Qp,j}¯ are Banach *-subalgebras of LSp(j),








for all p ∈ P, j ∈ Z, in LS.



Here, (⋆) in the first *-isomorphic relation of (74) is the (free-probability-theoretic) free product of [14,15], and (⋆) in the second *-isomorphic relation of (74) is the (pure-algebraic) free product (generating noncommutative algebraic free words in the family Q).





Proof. 

Let LS be the Banach *-subalgebra (72) of LS. Then, all generating operators Qp,j ∈ Q of LS are contained in mutually-distinct free blocks LSp(j) of LS, and hence, the Banach *-subalgebras C{Qp,j}¯ of LS are contained in the free blocks LSp(j), for all p ∈ P,j ∈ Z. Therefore, as embedded sub-structures of LS, they are free from each other. Equivalently,


LS=*−iso⋆p∈P,j∈ZC{Qp,j}¯inLS,



(75)




by (66).



Since every free block C{Qp,j}¯ of the Banach *-algebra LS of (75) is generated by a single self-adjoint (weighted-semicircular) element, every operator T of LS is a limit of linear combinations of free words in the free family Q of (67), which form noncommutative free “reduced” words (in the sense of [14,15]), as operators in LS of (75). Note that every (pure-algebraic) free word in Q has a unique free reduced word in LS, under operator-multiplication on LS (and hence, on LS). Therefore, the *-isomorphic relation (75) guarantees that:


LS=*−isoC⋆p∈P,j∈Z{Qp,j}¯,



(76)




where the free product (⋆) in (76) is pure-algebraic.



Remark that, indeed, the relation (76) holds well, because all weighted-semicircular elements of Q are self-adjoint; if:


T=Πl=1NQpl,jlnl∈LS








is a free (reduced) word (as an operator), then:


T*=Πl=1NQpN−l+1,jN−l+1nN−l+1∈LS








is a free word of LS in Q, as well. Therefore, by (75) and (76), the structure theorem (74) holds true.



Note now that Qp,j ∈ Q satisfy:


Qp,j=pj+1Θp,j, for all p∈P,j∈Z,








where Θp,j are semicircular elements in the family Θ of (70). Therefore, the free blocks of (75) satisfy that:


C{Qp,j}¯=C{pj+1Θp,j}¯=C{Θp,j}¯,



(77)




for all p ∈ P,j ∈ Z.



Thus, one can get that:


LS=*−iso⋆p∈P,j∈ZC{Θp,j}¯,



(78)




by (75) and (77).



With similar arguments of (75), we have:


LS=C[Θ]¯,set−theoretically,



(79)




by (78).



Therefore, the identity (73) holds true by (79). □





As a sub-structure, one can restrict the linear functional τ0 of (66) on LS to that on LS, i.e., one can obtain the Banach *-probability space,


LS,τ0=denoteτ0∣LC.



(80)







Definition 14.

Let (LS,τ0) be the Banach *-probability space (80). Then, we call (LS,τ0) the semicircular (free Adelic sub-)filtration of LS.





Note that, by (66), all elements of the semicircular filtration (LS,τ0) provide “possible” non-vanishing free distributions in the free Adelic filtration LS. Especially, all free reduced words of LS in the generator set {Qp,j}p∈P,j∈Z have non-zero free distributions only if they are contained in (LS,τ0). Therefore, studying free-distributional data on (LS,τ0) is to study possible non-zero free-distributional data on LS.




9. Truncated Linear Functionals on LS


In number theory, one of the most interesting, but difficult topics is to find a number of primes or a density of primes contained in closed intervals [t1,t2] of the real numbers R (e.g., [3,6,21,22]). Since the theory is deep, we will not discuss more about it here. Hhowever, motivated by the theory, we consider certain “suitable” truncated linear functionals on our semicircular filtration (LS,τ0) of (80) in the free Adelic filtration LS of (66).



Notation: From below, we will use the following notations to distinguish their structural differences;

	
LS=denote the Banach *-subalgebra (72) of LS,



	
LS0=denote the semicircular filtration LS,τ0 of (80).





 □



9.1. Linear Functionals {τ(t)}t∈R on LS


Let LS0 be the semicircular filtration (LS,τ0) of the free Adelic filtration LS. Furthermore, let Q and Θ be the free weighted-semicircular family (67), respectively, the free semicircular family (70) of LS, generating LS by (73) and (74). We here truncate τ0 on LS for a fixed real number t ∈ R.



First, recall and remark that:


τ0=⋆p∈P,j∈Zτp,j0 on LS,








by (66) and (80). Therefore, one can sectionize τ0 over P, as follows;


τ0=⋆p∈Pτp0 on LS,








with:


τp0=⋆j∈Zτp,j0 on LSp,for all p∈P,



(81)




where:


LSp=def⋆j∈ZC[{Θp,j}]¯⊂LS⊂LS,



(82)




for each p ∈ P, under (74).



From below, we understand the Banach *-subalgebras LSp of LS as free-probabilistic sub-structures,


LS(p)=denoteLSp,τp0,for all p∈P.



(83)







Lemma 3.

Let LSpl be in the sense of (82) in the semicircular filtration LS0, for l = 1,2. Then, LSp1 and LSp2 are free in LS0, if and only if p1≠p2 in P.





Proof. 

The proof is directly done by (81) and (82). Indeed,


LS=⋆p∈P,j∈ZC{Θp,j}¯=⋆p∈P⋆j∈ZC{Θp,j}¯=⋆p∈PLSp,








by (80) and (82).



Therefore, LSp1 and LSp2 are free in LS0, if and only if p1≠p2 in P. □





Fix now t ∈ R, and define a new linear functional τ(t) on LS by:


τ(t)=def⋆p≤tτp0on⋆p≤tLSp⊂LSOonLS\⋆p≤tLSp,



(84)




where τp0 are the linear functionals (81) on the Banach *-subalgebras LSp of (82) in LS0, for all p ∈ P, and O means the zero linear functional on LS, satisfying that:


O(T)=0, for all T∈LS.











For convenience, if there is no confusion, we simply write the definition (84) as:


τ(t)=denote⋆p≤tτp0.



(85)







By the definition (84) (with a simpler expression (85)), one can easily verify that, if t< 2 in R, then the corresponding linear functional τ(t) is identical to the zero linear functional O on LS. To avoid such triviality, one may refine τ(t) of (84) by:


τ(t)=defτ(t)of()ift≥2Oift<2,



(86)




for all t∈R.



In the following text, τ(t) mean the linear functionals in (86), satisfying (84) whenever t≥2, for all t∈R. In fact, we are not interested in the cases where t<2.



For example,


τ(32)=O,τ(2.1003)=τ20,and τ(6)=τ20⋆τ30⋆τ50,








on LS, under (85), etc.



Theorem 5.

Let Qp,j ∈ Q and Θp,j∈Θ in the semicircular filtration LS0, for p ∈ P, j ∈ Z, and let t ∈ R and τ(t), the corresponding linear functional (86) on LS. Then:


τ(t)Qp,jn=ωnp2(j+1)cn2ift≥p0ift<p,








and:


τ(t)Θp,jn=ωncn2ift≥p0ift<p,



(87)




for all n ∈ N.





Proof. 

By the p2(j+1)-semicircularity of Qp,j ∈ Q, the semicircularity of Θp,j ∈ Θ in the semicircular filtration LS0, and by the definition (86), if t≥p in R, then:


τ(t)Qp,jn=τp0Qp,jn=τp,j0Qp,jn=ωnp2(j+1)cn2,








and:


τ(t)Θp,jn=τp0Θp,jn=τp,j0Θp,jn=ωncn2,








by (62), (71), and (81), for all n ∈ N.



If t < p, then:


τ(t)=⋆2≤q<t<pinPτq0 or O, on LS.











Therefore, in such cases,


τ(t)Qp,jn=τ(t)Θp,jn=0, for all n∈N,








by (84), (85), and (86).



Therefore, the free-distributional data (87) for the linear functional τ(t) hold on LS. □





The above theorem shows how the original free-probabilistic information on the semicircular filtration LS0 is affected by the new free-probabilistic models on LS, under “truncated” linear functionals τ(t) of τ0 on LS, for t ∈ R.



Definition 15.

Let τ(t) be the linear functionals (86) on LS, for t ∈ R. Then, the corresponding new Banach *-probability spaces,


LS(t)=denoteLS,τ(t),



(88)




are called the semicircular t-(truncated-)filtrations of LS (or, of LS0).





Note that if t is “suitable” in the sense that “τ(t)≠O on LS,” then the free-probabilistic structure LS(t) of (88) is meaningful.



Notation and Assumption 9.1 (NA 9.1, from below): In the following, we will say “t ∈ R is suitable,” if the semicircular t-filtration “LS(t) of (88) is meaningful,” in the sense that: τ(t)≠O fully on LS.□



Now, let us consider the following concepts.



Definition 16.

Let (Ak,φk) be Banach *-probability spaces (or C*-probability spaces, or W*-probability spaces, etc.), for k=1,2. A Banach *-probability space (A1,φ1) is said to be free-homomorphic to a Banach *-probability space (A2,φ2), if there exists a bounded *-homomorphism: Φ:


ΦA1→A2,








such that:


φ2Φ(a)=φ1a,








for all a ∈ A1. Such a *-homomorphism Φ is called a free-homomorphism.



If Φ is both a *-isomorphism and a free-homomorphism, then Φ is said to be a free-isomorphism, and we say that (A1,φ1) and (A2,φ2) are free-isomorphic. Such a free-isomorphic relation is nothing but the equivalence in the sense of Voiculescu (e.g., [15]).





By (87), we obtain the following free-probabilistic-structural theorem.



Theorem 6.

Let LSq = ⋆j∈ZC{Qq,j}¯ be Banach *-subalgebras (82) of LS, for all q ∈ P. Let t ∈ R be suitable in the sense ofNA 9.1and LS(t) be the corresponding semicircular t-filtration (88). Construct a Banach *-probability space LSt by a Banach *-probabilistic sub-structure of the semicircular filtration LS0,


LSt=def⋆p≤tLSp,τp0=⋆p≤tLSp,⋆p≤tτp0,



(89)




where τp0 = ⋆j∈Zτp,j0 are in the sense of (81). Then:


LStisfree−homomorphictoLS(t).



(90)









Proof. 

Let LS(t) be the semicircular t-filtration (88) of LS, and let LSt be a Banach *-probability space (89), for a suitably fixed t ∈ R.



Define a bounded linear morphism:


Φt:LSt→LS(t),








by the natural embedding map,


ΦtT=TinLS(t),forall T∈LSt.



(91)







Then, this morphism Φt is an injective bounded *-homomorphism from LSt into LS(t), by (72), (75), (82), (89), and (91).



Therefore, one obtains that:


τ(t)Φ(T)=τ(t)(T)=⋆p≤tinPτp0(T)=τtT,








for all T ∈ LSt, by (87).



It shows that the Banach *-probability space LSt of (89) is free-homomorphic to the semicircular t-filtration LS(t) of (88). Therefore, the statement (90) holds under the free-homomorphism Φt of (91). …





The above theorem shows that the Banach *-probability spaces LSt of (89) are free-homomorphic to the semicircular t-filtrations LS(t) of (88), for all t ∈ R. Note that it “seems” they are not free-isomorphic, because:


⋆q≤tinPLSq⫋⋆p∈PLSp=LS,








set-theoretically, for t ∈ R. However, we are not sure at this moment that they are free-isomorphic or not, because we have the similar difficulties discussed in [19].



Remark 3.

The famous main result of [19] says that: if L(Fn) are the free group factors (group von Neumann algebras) of the free groups Fn with n-generators, for all:


n∈N>1∞=(N\{1})∪{∞},








then either (I) or (II) holds true, where:

	(I) 

	
L(Fn)=*−isoL(F∞), for all n ∈ N>1∞,




	(II) 

	
L(Fn1)≠*−isoL(Fn2), if and only if n1≠n2 ∈ N>1∞,






where “=*−iso” means “being W*-isomorphic.” Depending on the author’s knowledge, he does not know which one is true at this moment.



We here have similar troubles. Under the similar difficulties, we are not sure at this moment that LSt and LS(t) (or LSt and LS) are *-isomorphic or not (and hence, free-isomorphic or not).



However, definitely, LSt is free-homomorphic “into” LS(t) in the semicircular filtration LS0, by the above theorem.





The above free-homomorphic relation (90) lets us understand all



“non-zero” free distributions of free reduced words of LS(t) as those of LSt, for all t ∈ R, by the injectivity of a free-homomorphism Φt of (91).



Corollary 2.

All free reduced words T of the semicircular t-filtration LS(t) in Q∪Θ, having non-zero free distributions, are contained in the Banach *-probability space LSt of (89), whenever t is suitable. The converse holds true, as well.





Proof. 

The proof of this characterization is done by (87), (89), and (90). In particular, the injectivity of the free-homomorphism Φt of (91) guarantees that this characterization holds. □





Therefore, whenever we consider a non-zero free-distribution having free reduced words T of semicircular t-filtrations LS(t), they are regarded as free random variables of the Banach *-probability spaces LSt of (89), for all suitable t ∈ R.




9.2. Truncated Linear Functionals τt1<t2 on LS


In this section, we generalize the semicircular t-filtrations LS(t) by defining so-called truncated linear functionals on the Banach *-algebra LS.



Throughout this section, let [t1,t2] be a closed interval in R, satisfying:


t1−t2≠0, for t1<t2∈R.











For such a fixed closed interval [t1,t2], define the corresponding linear functional τt1<t2 on the semicircular filtration LS by:


τt1<t2=def⋆t1≤p≤t2inPτp0on⋆t1≤p≤t2inPLSp⊂LSOonLS\⋆t1≤p≤t2inPLS,



(92)




where τp0 are the linear functionals (81) on the Banach *-subalgebras LSp of (82) in LS, for p ∈ P. Similar to Section 9.1, if there is no confusion, then we simply write the definition (92) as:


τt1<t2=denote⋆t1≤p≤t2τp0 on LS.



(93)







To make the linear functionals τt1<t2 of (92) be non-zero-linear functionals on LS, the interval [t1,t2] must be taken “suitably.” For example,


τt1<t2=O, whenever t2<2,








and:


τ8<10=O,τ14<16=O, and τ37<32=O,etc.,








but:


τ32<8=τ(8)=τ20⋆τ30⋆τ50⋆τ70








and:


τ7<14=τ70⋆τ110⋆τ130,








under (93) on LS.



It is not difficult to check that the definition (92) of truncated linear functionals τt1<t2 covers the definition of linear functionals τ(t) of (86). In particular, τ(t) is “suitable” in the sense of NA 9.1, then:


τ(t)=τ2<t=τs<t, for all 2≥s∈R.











For our purposes, we will axiomatize:


τp<p=τp0, for all p∈P∈R,








notationally, where τp0 are the linear functionals (81), for all p ∈ P, under (93). Remark that the very above axiomatized notations τp<p will be used only when p are primes.



Definition 17.

Let [t1,t2] be a given interval in R and τt1<t2, the corresponding linear functional (92) on LS. Then, we call it the [t1,t2](-truncated)-linear functional on LS. The corresponding Banach *-probability space:


LSt1<t2=(LS,τt1<t2)



(94)




is said to be the semicircular a [t1,t2](-truncated)-filtration.





As we discussed in the above paragraphs, the semicircular [t1,t2]-filtration LSt1<t2 of (94) will be “meaningful,” if t1<t2 are suitable in R, as in NA 9.1.



Notation and Assumption 9.2 (NA 9.2, from below): In the rest of this paper, if we write “t1<t2 are suitable,” then this means “LSt1<t2 is meaningful,” in the sense that τt1<t2≠O fully on LS, with additional axiomatization:


τp<p=τp0, for p∈P in R,








in the sense of (93). □



Theorem 7.

Let t1≤ 2 and t2 be suitable in R in the sense ofNA 9.1.


Thesemicircular[t1,t2]−filtrationLSt1<t2isnotonlysuitableinthesenseofNA9.2,butalso,itisfree−isomorphictothesemicirculart2−filtrationLS(t2)of(88).



(95)






TheBanach*−probabilityspaceLSt2of(89)isfree−homomorphictoLSt1<t2.



(96)









Proof. 

Suppose t1≤2, and t2 are suitable in R in the sense of NA 9.1. Then, t1<t2 are suitable in R in the sense of NA 9.2. Therefore, both the semicircular t2-filtration LS(t2) and the semicircular [t1,t2]-filtration LSt1<t2 are meaningful.



Since t1 is assumed to be less than or equal to two, the linear functional τt1<t2 = τ(t2), by (86) and (92), including the case where τ2<2=τ20, in the sense of (93). Therefore,


LSt1<t2=LS,τt1<t2=LS,τ(t2)=LS(t2).











Therefore, LSt1<t2 and LS(t2) are free-isomorphic under the identity map on LS, acting as a free-isomorphism. Therefore, the statement (95) holds.



By (90), the Banach *-probability space LSt2 of (89) is free-homomorphic to LS(t2). Therefore, under the hypothesis, LSt2 is free-homomorphic to LSt1<t2 by (95). Equivalently, the statement (96) holds. □





The above theorem characterizes the free-probabilistic structures for semicircular [t1,t2]-filtrations LSt1<t2, whenever t1≤2, and t2 are suitable, by (95) and (96). Therefore, we now restrict our interests to the cases where:


t1≥2 in R.











Therefore, we focus on the semicircular [t1,t2]-filtration LSt1<t2, where:


2≤t1<t2 are suitable in R








in the sense of NA 9.2.



Theorem 8.

Let 2≤t1<t2 be suitable in R, and let LSt1<t2 be the semicircular [t1,t2]-filtration (94). Then, the Banach *-probability space:


LSt1<t2=def⋆t1≤p≤t2inPLSp,τp0,



(97)




equipped with its linear functional τt1<t2 = ⋆t1≤p≤t2τp0, is free-homomorphic to LSt1<t2 in LS, i.e., if 2 ≤t1<t2 are suitable in R,


LSt1<t2isfree−homomorphictoLSt1<t2inLS0.



(98)









Proof. 

Let LSt1<t2 be in the sense of (97) in the semicircular filtration LS0, i.e.,


LSt1<t2=⋆t1≤p≤t2LSp,τt1<t2=⋆t1≤p≤t2τp0,








as a free-probabilistic sub-structure of the semicircular filtration LS0.



By (94), one can define the embedding map Φ from LSt1<t2 into LS, satisfying:


Φ(T)=T, for all T∈LSt1<t2.











Then, for any T ∈ LSt1<t2, one can get that:


τt1<t2T=τt1<t2(T)=τ0(T).











Therefore, the Banach *-probability space LSt1<t2 is free-homomorphic to LSt1<t2 in LS. Therefore, the relation (98) holds. □





Remark again that we are not sure if LSt1<t2 and LSt1<t2 are free-isomorphic, or not, at this moment (see Remark 9.1 above). However, similar to (90), one can verify that all free reduced words T of LSt1<t2 have non-zero free distributions embedded in LSt1<t2, and conversely, all free reduced words of LSt1<t2 having non-zero free distributions are contained in LSt1<t2.



Corollary 3.

Let T be a free reduced word of the semicircular [t1,t2]-filtration LSt1<t2 in Q∪Θ, and assume that the free distribution of T is non-zero for τt1<t2. Then, T is an element of the Banach *-probability space LSt1<t2 of (97). The converse holds true. □






9.3. More about Free-Probabilistic Information on LSt1<t2


In this section, we discuss more about free-probabilistic information in semicircular [t1,t2]-filtrations LSt1<t2, for t1<t2 ∈ R (which are not necessarily suitable in the sense of NA 9.2).



First, let us mention about the following trivial cases.



Proposition 9.

Let LSt1<t2 be the semicircular [t1,t2]-filtration for t1<t2 in R.


Ift2<2inR,thenallelementsofLSt1<t2havethezerofreedistribution.



(99)






Lett1,t2≥2inR.Iftheclosedinterval[t1,t2]doesnotcontainaprimeinR,thenallelementsofLSt1<t2havethezerofreedistribution.



(100)









Proof. 

The proofs of the statements (99) and (100) are done immediately by (90), (95), (96), and (98). □





Even though the above results (99) and (100), themselves, are trivial, they illustrate how our original (non-zero) free-distributional data on the semicircular filtration LS0 are distorted under our “unsuitable” truncations.



Now, suppose t1<t2 are suitable in R, and:


t1→∞ in R,








in the sense that: t1 is big “enough” in R. The existence of such suitable intervals [t1,t2] in R is guaranteed by the prime number theorem (e.g., [5,6]).



More precisely, let us collect all suitable pairs (t1,t2) in R2, i.e.,


{(t1,t2)∈R2:t1<t2 are suitable in R},








and consider its boundary.



First, consider that if p→∞ in P (under the usual total ordering on P, inherited by that on R), then:


limp→∞inPp2(j+1)=0ifj<−11ifj=−1∞,undefinedifj>−1,



(101)




for an arbitrarily-fixed j ∈ Z.



Theorem 9.

Let tnn=1∞ and (sn)n=1∞ be monotonically “strictly”-increasing R-sequences, satisfying:


tn<sn are suitable in R,








for all n ∈ N. By the suitability, there exists at least one prime pn ∈ P, such that:


tn≤pn≤sn,for all n∈N,



(102)




where the corresponding R-sequence pnn=1∞ is monotonically increasing.



Let Qpn,j be the corresponding pn2(j+1)-semicircular element in the free weighted-semicircular family Q, as a free random variable of the semicircular [tn,sn]-filtration LStn<sn, where pn are the primes of (102), for all n ∈ N, for any j ∈ Z. Then:


limn→∞τtn<snQpn,jk=0ifj<−1ωkck2ifj=−1∞ifj>−1,



(103)




for all k ∈ N.





Proof. 

Suppose pn are the primes satisfying (102) for given suitable:


tn<sn in R,








in the sense of NA 9.2, for all n ∈ N. Then, for the pn2(j+1)-semicircular elements Qpn,j ∈ Q (in LS0), one has that:


τtn<snQpn,jk=⋆tn≤q≤sninPτq0Qpn,jk=τpn0Qpn,jk








by (102)


=τpn,j0Qpn,jk=ωkpn2(j+1)ck2,



(104)




for all k ∈ N.



Thus, we have that:


limn→∞τtn<snQpn,jk=limn→∞ωkpn2(j+1)ck2








by (104);


=limp→∞ωkp2(j+1)ck2=ωkck2limp→∞p2(j+1)=0ifj<−1ωkck2ifj=−1∞ifj>−1,








by (101), for all k ∈ N. Therefore, the estimation (103) holds. □





The above estimation (103) illustrates the asymptotic free-distributional data of our p2(j+1)-semicircular elements {Qp,j∈Q}p∈P (for a fixed j∈Z), under our suitable truncations, as p→∞ in P.



Corollary 4.

Let t1<t2 be suitable in R underNA 9.2, t1 be suitably big (i.e., t1→∞) in R, and j≤−1 be arbitrarily fixed in Z. Then, there exists t0 ∈ R, such that:


τt1<t2Qp,jn−t0⊒0,








where:


t0=0ifj<−1ωncn2ifj=−1,



(105)




for all n ∈ N.



Under the same hypothesis, if j>−1 in Z, then:


τt1<t2Qp,jn→∞,



(106)




for all n ∈ N.





Proof. 

The estimations (105) and (106), for suitably big t1 ∈ R, are obtained by (103). □







10. Semicircularity of Certain Free Sums in LSt1<t2


As in Section 9, we will let LS be the Banach *-subalgebra (72) of the free Adelic filtration LS, and let LS0 be the semicircular filtration (LS,τ0) of (80).



Let (A,φ) be an arbitrary topological *-probability space and a ∈ (A,φ). We say a free random variable a is a free sum in (A,φ), if:


a=∑l=1Nxl, with xl∈(A,φ),








and the summands x1, …, xN of a are free from each other in (A,φ), for N ∈ N\{1}.



Let t1<t2 be suitable in R in the sense of NA 9.2, and let LSt1<t2 be the corresponding semicircular [t1,t2]-filtration. Now, we define free random variables X and Y of LS,


X=∑l=1NQpl,jlnland Y=∑l=1NΘpl,jlnl,



(107)




for Qpl,jl ∈ Q and Θpl,jl ∈ Θ, for all l=1, …, N, for N ∈ N\{1}.



Remark that, the operator X (or Y) of (107) is a free sum in LS, if and only if the summands Qpl,jlnl (resp., Θpl,jlnl), which are the free reduced words with their lengths one, are free from each other in LS, if and only if Qpl,jl (resp., Θpl,jl) are contained in the mutually-distinct free blocks C[{Qpl,jl}]¯ of LS by (74), if and only if the pairs (pl,jl) are mutually distinct from each other in the Cartesian product P×Z, for all l=1, …, N. i.e., the given operators X and Y of (107) are free sums in LS, if and only if:


(pl1,jl1)≠(pl2,jl2)inP×Z,



(108)




for all l1≠l2 in {1, …, N}.



Lemma 4.

Let X and Y be in the sense of (107) in the semicircular filtration LS0. Assume that the pairs pl,jl are mutually distinct from each other in P×Z, for all l=1, …, N, for N ∈ N\{1}. Then:


τ0X=∑l=1Nωnlpl2(jl+1)cnl2,








and:


τ0(Y)=∑l=1Nωnlcnl2.



(109)









Proof. 

Let X and Y be given as above in LS0. By the assumption that the pairs pl,jl are mutually distinct from each other in P×Z, these operators X and Y satisfy the condition (108); equivalently, they are free sums in LS0.



Therefore, one has that:


τ0(X)=∑l=1Nτ0Qpl,jlnl=∑l=1Nτpl,jl0Qpl,jlnl=∑l=1Nωnlpl2(jl+1)cnl2,








by the pl2(jl+1)-semicircularity of Qpl,jl ∈ Q, for all l=1, …, N.



Similarly, one can get that:


τ0(Y)=∑l=1Nτpl,jl0Θpl,jlnl=∑l=1Nωnlcnl2,








by the semicircularity of Θpl,jl ∈ Θ, for all l=1, …, N. □





Now, for the operators X and Y of (107), we consider how our truncation distorts the free-distributional data (109).



For a given closed interval [t1,t2] in R, where t1<t2 are suitable in R, we define:


P[t1,t2]={p∈P:t1≤p≤t2}=P∩[t1,t2],








and:


P[t1,t2]c=P\P[t1,t2],



(110)




in P.



By (110), the family {P[t1,t2],P[t1,t2]c} forms a partition of the set P of all primes for the fixed interval [t1,t2]. Of course, if t1<t2 are not suitable, then:


P[t1,t2]=⌀, and hence ,P=P[t1,t2]c.











Theorem 10.

Let X and Y be the operators (107), and assume they are free sums in the semicircular filtration LS0; and let LSt1<t2 be the semicircular [t1,t2]-filtration for suitable t1<t2 in R. Then:


τt1<t2X=∑pl∈P[t1,t2]:(p1,…,pN)ωnlpl2(jl+1)cnl2,








and:


τt1<t2(Y)=∑pl∈P[t1<t2]:(p1,…,pN)ωnlcnl2,



(111)




where:


P[t1,t2]:(p1,…,pN)=P[t1,t2]∩{p1,…,pN} in P,








where P[t1,t2] is in the sense of (110) in P. Clearly, if P[t1,t2]:(p1,…,pN) is empty in P, then the formulas in (111) vanish.





Proof. 

The proof of (111) is done by (95), (96), (98), and (109). Indeed, if:


P[t1,t2]:(p1,…,pN)=P[t1,t2]∩{p1,…,pN} in P,








where P[t1,t2] is in the sense of (110), and if:


P[t1,t2]:(p1,…,pN)≠⌀,








then:


τt1<t2X=∑pl∈P[t1,t2]:(p1,…,pN)τpl,jl0Qpl,jlnl








by (98)


=∑pl∈P[t1,t2]:(p1,…,pN)ωnlpl2(jl+1)cnl2,








by the p2(j+1)-semicircularity of Qp,j ∈ Q.



Similarly, one can get that:


τt1<t2(Y)=∑pl∈P[t1,t2]:(p1,…,pN)ωnlcnl2,








by the semicircularity of Θp,j ∈ Θ. Therefore, the free-distributional data (111) holds, whenever:


P[t1,t2]:(p1,…,pN)≠⌀ in P,











Definitely, if:


P[t1,t2]:(p1,…,pN)=⌀,








then:


τt1<t2(X)=O(X)=0=O(Y)=τt1<t2(Y).











Therefore, the truncated free-distributional data (111) hold. □





Remark 4.

Let us compare the free-distributional data (109) and (111). One can check the differences between them dictated by the choices of [t1,t2] in R. Thus, the formula (111) also illustrates how our truncations on P distort the original free-probabilistic information on the semicircular filtration LS0.





Let q0 be a fixed prime in P. Choose t0<s0 ∈ R such that: (i) these quantities t0 and s0 satisfy:


t0≤q0≤s0 in P,








and (ii) q0 is the only prime in the closed interval [t0,s0] in R.



By the Archimedean property on R (or the axiom of choice), the existence of such interval [t0,s0], satisfying (i) and (ii) for the fixed prime q0, is guaranteed; however, the choices of the quantities t0<s0 are of course not unique.



Definition 18.

Let q0 ∈ P, and let t<s ∈ R be the real numbers satisfying the conditions (i) and (ii) of the above paragraph. Then, the suitable closed interval [t,s] is called a q0-neighborhood.





Depending on prime-neighborhoods, one can obtain the following semicircularity condition on our semicircular truncated-filtrations.



Corollary 5.

Let p ∈ P,[t,s] be a p-neighborhood in R, and LSt<s be the corresponding semicircular [t,s]-filtration. If X and Y are free sums formed by (107) in the semicircular filtration LS0, then:


τt<s(X)=∑l=1Nδp,plωnlpl2(jl+1)cnl2,








and:


τt<s(Y)=∑l=1Nδp,plωnlcnl2,



(112)




where δ is the Kronecker delta.





Proof. 

The free-distributional data (112) are a special case of (111), under the prime-neighborhood condition. Indeed, in this case,


P[t,s]:(p1,…,pN)={p}∩{p1,…,pN}={p}or⌀,








where P[t,s]:(p1,…,pN) is in the sense of (111). □





More general to (112), we obtain the following result.



Proposition 10.

Let p ∈ P and [t,s] be a p-neighborhood in R, and let LSt<s be the corresponding semicircular [t,s]-filtration. Then, a free random variable T ∈ LSt<s has its non-zero free distribution, if and only if there exists a non-zero summand T0 of T, such that:


T0∈LSpinLSt<s,



(113)




where LSp = ⋆j∈ZC[{Θp,j}]¯ is a Banach *-subalgebra (82) of LS.





Proof. 

By (98), if T ∈ LSt<s has its non-zero free distribution, then there exists a non-zero summand T0 of T which can be a linear combination of free reduced words contained in ⋆t≤q≤sinPLSq, and hence,


T0∈⋆t≤q≤sinPLSq,



(114)




where LSq are in the sense of (82), for q ∈ P.



Since [t,s] is a p-neighborhood, the relation (114) is equivalent to:


T0∈LSp.



(115)







Clearly, the converse holds true as well, by (98).



Therefore, a free random variable T ∈ LSt<s has its non-zero free distribution, if and only if T contains its non-zero summand T0 ∈ LSp, by (115); equivalently, the statement (113) holds true. □





By (112) and (113), we obtain the following interesting result.



Theorem 11.

Let X1 = ∑l=1NQpl,jl and Y1 = ∑l=1NΘpl,jl be in the sense of (107) in the semicircular filtration LS0, and assume that pl,jl are mutually distinct in P×Z, for l=1, …, N, for N ∈ N\{1}. Suppose we fix:


pl0∈{p1,…,pN},








and take a pl0-neighborhood [t0,s0] in R. Then:


X1ispl02(jl0+1)−semicircularinLSt0<s0,



(116)






Y1issemicircularinLSt0<s0,



(117)




where LSt0<s0 is the semicircular [t0,s0]-filtration.





Proof. 

Let X1 and Y1 be given as above in LS, and fix pl0 ∈ {p1, …, pN}. Note that, by the assumption, these operators X1 and Y1 form free sums in the semicircular filtration LS0, having N-many summands. Note also that they are self-adjoint in LS by the self-adjointness of their summands.



By (113), if an operator T has its non-zero free distribution in the semicircular [t0,s0]-filtration LSt0<s0, where [t0,s0] is a pl0-neighborhood in R, then it must have its non-zero summand T0,


T0∈LSpl0 in LSt0<s0.











By the very construction of X1 and Y1, they contain their summands,



Qpl0,jl0,Θpl0,jl0 ∈ LSpl0 in LSt0<s0.



Consider now that:


X1n=∑(i1,…,in)∈{1,…,N}nΠk=1NQpik,jik=Qpl0,jl0n+∑(i1,…,in)≠(l0,…,l0)Πk=1NQpkl,jkl=Qpl0,jl0n+[RestTerms],








and similarly,


Y1n=Θpl0,jl0n+[RestTerms]′,



(118)




for all n ∈ N.



It is not difficult to check that:


τt0<s0[RestTerms]=0=τt0<s0[RestTerms]′,



(119)




by (98) and (113), where [Rest Terms], and [Rest Terms]′ are from (118).



Therefore, one obtains that:


τt0<s0X1n=τt0<s0Qpl0,jl0n=τpl00Qpl0,jl0n=τpl0,jl00Qpl0,jl0n=ωnpl02(jl0+1)cn2,








and, similarly,


τt0<s0Y1n=τpl0,jl00Θpl0,jl0n=ωncn2,



(120)




for all n ∈ N, by (119).



Therefore, the free sum X1 ∈ LS is pl02(jl0+1)-semicircular in LSt0<s0; and the free sum Y1 ∈ LS is semicircular in LSt0<s0, by (120). Therefore, the statements (116) and (117) hold true. □





The above theorem shows that, if there is a free sum T in the semicircular filtration LS0 and if we “nicely” truncate the linear functional τ0 on LS, then one can focus on the non-zero summand T0 of T, whose the free distribution not only determines the truncated free distribution of T, but also follows the (weighted-)semicircular law.




11. Applications of Prime-Neighborhoods


In Section 9, we considered the semicircular truncated-filtrations LSt<s for t<s ∈ R and studied how [t,s]-truncations on P affect, or distort, the original free-distributional data on the semicircular filtration LS0 = LS,τ0. As a special case, in Section 10, we introduced p-neighborhoods for primes p and considered corresponding truncated free distributions on LS.



In this section, by using prime-neighborhoods, we provide a completely “new” model of truncated free probability on LS and study how the original free-distributional data on LS0 are distorted under this new truncation model.



Let us now regard the set P of all primes as a totally ordered set (a TOset),


P={q1<q2<q3<q4<q5<...}



(121)




under the usual inequality (≤) on P, i.e.,


q1=2,q2=3,q3=5,q4=7,q5=11,etc.











For each qk ∈ P of (121), determine a qk-neighborhood Bk


Bk=denote[tk,sk]inR,



(122)




for all k ∈ N.



Let τBk be our truncated linear functionals τtk<sk of (92) on the Banach *-algebra LS, i.e.,


τBk=τtk<sk,forallk∈N.



(123)







Then, by the truncated linear functionals of (123), one can have the corresponding semicircular Bk-filtrations,


LSBk=LStk<sk=LS,τBk,



(124)




for all k ∈ N.



We now focus on the system:


T={τBk}k=1∞



(125)




of qk-neighborhood-truncated linear functionals (123) for all k ∈ N.



Let F be a “finite” subset of the TOset P of (121), and for such a set F, define a new linear functional τF on LS induced by the system T of (125), by:


τF=∑qk∈FτBkonLS.



(126)







Before proceeding, let us consider the following result obtained from (113).



Lemma 5.

Let p ∈ P and [t,s] be a p-neighborhood in R, and let LSt<s be the semicircular [t,s]-filtration. Let τp0 = ⋆j∈Zτp,j0 be the linear functional (81) on the Banach *-subalgebra LSp of (82) in the semicircular filtration LS0. Define a linear functional τp on the Banach *-algebra LS by:


τpT=defτp0(T)ifT∈LSpinLSO(T)=0otherwise,








for all T ∈ LS. Then, the Banach *-probability space LS,τp is free-isomorphic to LSt<s, i.e.,


[t,s]isap−neighborhood⇒LSt<sandLS,τparefree−isomorphic.



(127)









Proof. 

Under the hypothesis, it is not hard to check:


τt<s=τp on LS.











Therefore, the identity map on LS becomes a free-isomorphism from LSt<s onto LS,τp. □





If a finite subset F is a singleton subset of P, then the free probability on LS determined by the corresponding linear functional τF of (126) is already considered in Section 10 and in (127). Therefore, we now restrict our interests to the cases where finite subsets F have more than one element in P.



Lemma 6.

Let F be a finite subset of the TOset P of (121), and let τF be the corresponding linear functional (126) on LS. Then:


τF=∑qk∈FτqkonLS,



(128)




where τqk are in the sense of (127).





Proof. 

The proof of (128) is done by (126) and (127) because:


LS,τqk and LSBk








are free-isomorphic for all qk ∈ F. Therefore, the linear functional τF of (126) satisfies that:



τF = ∑qk∈FτBk = ∑qk∈Fτqk on LS.





By (113), (116), (117), and (128), one obtains the following result.



Theorem 12.

Let T = Πl=1NQpl,jlnl or S = Πl=1NΘpl,jlnl be a free reduced word of LS with its length-N, for N ∈ N. If:


F∩{p1,…,pN}=⌀ in P,








then:


τF(T)=0=τF(S).



(129)







While, if F∩{p1,…,pN}≠⌀ in P, then:


τF(T)=∑q∈F∩{p1,…,pN}ωnq2(j+1)cn2,








respectively,


τF(S)=F∩{p1,…,pN}ωncn2,



(130)




where X mean the cardinalities of sets X.





Proof. 

Let T and S be given free reduced words with their length-N in LS, for N ∈ N. If:


F∩{p1,…,pN}=⌀ in P,








then we obtain the formula (129) by (127) and (128). Indeed,


τFT=∑q∈FτqT=0=∑q∈Fτq(S)=τF(S).











Now, assume that:


F∩{p1,…,pN}={pi1,…,pik} in P,








for some k ∈ N, such that 1 ≤k≤N. Then:


τF(T)=∑l=1kτpil0T=∑l=1kτpil0(T)








by (126) and (128)


=∑l=1kτpil0Qpil,jilnil=∑l=1kτpil,jil0Qpil,jilnil=∑l=1kωnlpil2(jil+1)cnl2.



(131)







Similarly,


τF(S)=∑l=1kωnlcnl2=k·ωnlcnl2.











Therefore, the free-distributional data (130) hold.





The above free-distributional data (129) and (130) characterize the free-probabilistic information on Banach *-probability spaces


LS,τF,








for any finite subsets F of P.
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