

Article

Hankel and Toeplitz Determinants for a Subclass of *q*-Starlike Functions Associated with a General Conic Domain

Hari M. Srivastava ^{1,2,*}, Qazi Zahoor Ahmad ³, Nasir Khan ⁴, Nazar Khan ³ and Bilal Khan ³

- ¹ Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
- ² Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- ³ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan; zahoorqazi5@gmail.com (Q.Z.A.); nazarmaths@gmail.com (N.K.); bilalmaths789@gmail.com (B.K.)
- ⁴ Department of Mathematics, FATA University, Akhorwal (Darra Adam Khel), FR Kohat 26000, Pakistan; dr.nasirkhan@fu.edu.pk
- * Correspondence: harimsri@math.uvic.ca

Received: 29 January 2019; Accepted: 12 February 2019; Published: 15 February 2019

Abstract: By using a certain general conic domain as well as the quantum (or q-) calculus, here we define and investigate a new subclass of normalized analytic and starlike functions in the open unit disk \mathbb{U} . In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined class of analytic q-starlike functions. We also highlight some known consequences of our main results.

Keywords: analytic functions; starlike and *q*-starlike functions; *q*-derivative operator; *q*-hypergeometric functions; conic and generalized conic domains; Hankel determinant; Toeplitz matrices

MSC: Primary 05A30, 30C45; Secondary 11B65, 47B38

1. Introduction and Definitions

Let the class of functions, which are analytic in the open unit disk

$$\mathbb{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}$$
 ,

be denoted by $\mathcal{L}(\mathbb{U})$. Also let \mathcal{A} denote the class of all functions f, which are analytic in the open unit disk \mathbb{U} and normalized by

$$f(0) = 0$$
 and $f'(0) = 1$.

Then, clearly, each $f \in A$ has a Taylor–Maclaurin series representation as follows:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \qquad (z \in \mathbb{U}).$$
⁽¹⁾

Suppose that S is the subclass of the analytic function class A, which consists of all functions which are also univalent in \mathbb{U} .

A function $f \in A$ is said to be starlike in \mathbb{U} if it satisfies the following inequality:

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0 \qquad (z \in \mathbb{U}).$$

We denote by S^* the class of all such starlike functions in \mathbb{U} .

For two functions f and g, analytic in \mathbb{U} , we say that the function f is subordinate to the function g and write this subordination as follows:

$$f \prec g$$
 or $f(z) \prec g(z)$.

if there exists a Schwarz function w which is analytic in \mathbb{U} , with

$$w(0) = 0$$
 and $|w(z)| < 1$,

such that

$$f(z) = g(w(z)).$$

In the case when the function g is univalent in \mathbb{U} , then we have the following equivalence (see, for example, [1]; see also [2]):

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U})$$

Next, for a function $f \in A$ given by (1) and another function $g \in A$ given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \qquad (z \in \mathbb{U}),$$

the convolution (or the Hadamard product) of *f* and *g* is defined here by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n =: (g * f)(z).$$
⁽²⁾

Let \mathcal{P} denote the well-known Carathéodory class of functions p, analytic in the open unit disk \mathbb{U} , which are normalized by

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,$$
 (3)

such that

$$\Re(p(z)) > 0 \qquad (z \in \mathbb{U})$$

Following the works of Kanas et al. (see [3,4]; see also [5]), we introduce the conic domain Ω_k ($k \ge 0$) as follows:

$$\Omega_k = \left\{ u + iv : u > k\sqrt{(u-1)^2 + v^2} \right\}.$$
(4)

In fact, subjected to the conic domain Ω_k ($k \ge 0$), Kanas and Wiśniowska (see [3,4]; see also [6]) studied the corresponding class k-ST of k-starlike functions in \mathbb{U} (see Definition 1 below). For fixed k, Ω_k represents the conic region bounded successively by the imaginary axis (k = 0), by a parabola (k = 1), by the right branch of a hyperbola (0 < k < 1), and by an ellipse (k > 1).

For these conic regions, the following functions play the role of extremal functions.

Mathematics 2019, 7, 181

$$\begin{cases} \frac{1+z}{1-z} = 1 + 2z + 2z^2 + \cdots & (k=0) \\ 1 + \frac{2}{\pi^2} \left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right]^2 & (k=1) \end{cases}$$

$$p_{k}(z) = \begin{cases} 1 + \frac{2}{1-k^{2}} \sinh^{2} \left[\left(\frac{2}{\pi} \arccos k \right) \arctan \left(h \sqrt{z} \right) \right] & (0 \leq k < 1) \\ 1 + \frac{1}{k^{2} - 1} \left[1 + \sin \left(\frac{\pi}{2K(\kappa)} \int_{0}^{\frac{u(z)}{\sqrt{\kappa}}} \frac{dt}{\sqrt{(1-t^{2})(1-\kappa^{2}t^{2})}} \right) \right] & (k > 1), \end{cases}$$
(5)

where

$$u(z) = rac{z - \sqrt{\kappa}}{1 - \sqrt{\kappa}z}$$
 $(z \in \mathbb{U})$,

and $\kappa \in (0, 1)$ is so chosen that

$$k = \cosh\left(\frac{\pi K'(\kappa)}{4K(\kappa)}\right).$$

Here $K(\kappa)$ is Legendre's complete elliptic integral of first kind and

$$K'(\kappa) = K\left(\sqrt{1-\kappa^2}\right),$$

that is, $K'(\kappa)$ is the complementary integral of $K(\kappa)$ (see, for example, ([7], p. 326, Equation 9.4 (209))). Indeed, from (5), we have

$$p_k(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$$
 (6)

The class k-ST is defined as follows.

Definition 1. A function $f \in A$ is said to be in the class k-ST if and only if

$$\frac{zf'\left(z\right)}{f\left(z\right)} \prec p_k\left(z\right) \quad \left(\forall \ z \in \mathbb{U}; \ k \geqq 0\right).$$

We now recall some basic definitions and concept details of the *q*-calculus which will be used in this paper (see, for example, ([7], p. 346 et seq.)). Throughout the paper, unless otherwise mentioned, we suppose that 0 < q < 1 and

$$\mathbb{N}=\{1,2,3\cdots\}=\mathbb{N}_0\setminus\{0\}\qquad (\mathbb{N}_0:=\{0,1,2,\cdots\})\,.$$

Definition 2. *Let* $q \in (0, 1)$ *and define the* q*-number* $[\lambda]_q$ *by*

$$[\lambda]_q = \begin{cases} \frac{1-q^{\lambda}}{1-q} & (\lambda \in \mathbb{C}) \\\\ \sum_{k=0}^{n-1} q^k = 1+q+q^2+\dots+q^{n-1} & (\lambda = n \in \mathbb{N}). \end{cases}$$

Definition 3. Let $q \in (0, 1)$ and define the *q*-factorial $[n]_q!$ by

$$[n]_q! = \begin{cases} 1 & (n=0) \\ \\ \prod_{k=1}^n [k]_q & (n \in \mathbb{N}) \,. \end{cases}$$

Definition 4 (see [8,9]). The q-derivative (or q-difference) operator D_q of a function f defined, in a given subset of \mathbb{C} , by

$$(D_q f) (z) = \begin{cases} \frac{f(z) - f(qz)}{(1-q)z} & (z \neq 0) \\ f'(0) & (z = 0), \end{cases}$$

$$(7)$$

provided that f'(0) exists.

From Definition 4, we can observe that

$$\lim_{q \to 1^{-}} (D_q f)(z) = \lim_{q \to 1^{-}} \frac{f(z) - f(qz)}{(1 - q)z} = f'(z)$$

for a differentiable function f in a given subset of \mathbb{C} . It is also known from (1) and (7) that

$$(D_q f)(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}.$$
 (8)

Definition 5. The *q*-Pochhammer symbol $[\xi]_{n,q}$ ($\xi \in \mathbb{C}$; $n \in \mathbb{N}_0$) is defined as follows:

$$[\xi]_{n,q} = \frac{(q^{\xi};q)_n}{(1-q)^n} = \begin{cases} 1 & (n=0) \\ [\xi]_q [\xi+1]_q [\xi+2]_q \cdots [\xi+n-1]_q & (n \in \mathbb{N}) . \end{cases}$$

Moreover, the q-gamma function is defined by the following recurrence relation:

$$\Gamma_q(z+1) = [z]_q \Gamma_q(z)$$
 and $\Gamma_q(1) = 1$.

Definition 6 (see [10]). For $f \in A$, let the *q*-Ruscheweyh derivative operator \mathcal{R}_q^{λ} be defined, in terms of the Hadamard product (or convolution) given by (2), as follows:

$$\mathcal{R}_{q}^{\lambda}f(z) = f(z) * \mathcal{F}_{q,\lambda+1}(z) \qquad (z \in \mathbb{U}; \lambda > -1),$$

where

$$\mathcal{F}_{q,\lambda+1}\left(z\right) = z + \sum_{n=2}^{\infty} \frac{\Gamma_q\left(\lambda+n\right)}{[n-1]_q! \Gamma_q\left(\lambda+1\right)} z^n = z + \sum_{n=2}^{\infty} \frac{[\lambda+1]_{q,n-1}}{[n-1]_q!} z^n.$$

We next define a certain *q*-integral operator by using the same technique as that used by Noor [11].

Definition 7. For $f \in A$, let the *q*-integral operator $\mathcal{F}_{q,\lambda}$ be defined by

$$\mathcal{F}_{q,\lambda+1}^{-1}(z) * \mathcal{F}_{q,\lambda+1}(z) = z \left(D_q f \right)(z).$$

Then

$$\mathcal{I}_{q}^{\lambda}f(z) = f(z) * \mathcal{F}_{q,\lambda+1}^{-1}(z)$$

= $z + \sum_{n=2}^{\infty} \psi_{n-1}a_{n}z^{n}$ $(z \in \mathbb{U}; \lambda > -1),$ (9)

where

$$\mathcal{F}_{q,\lambda+1}^{-1}(z) = z + \sum_{n=2}^{\infty} \psi_{n-1} z^n$$

and

$$\psi_{n-1} = \frac{[n]_q!\Gamma_q(\lambda+1)}{\Gamma_q(\lambda+n)} = \frac{[n]_q!}{[\lambda+1]_{q,n-1}}.$$

Clearly, we have

$$\mathcal{I}_{q}^{0}f\left(z\right)=z\left(D_{q}f\right)\left(z\right) \quad \text{and} \quad \mathcal{I}_{q}^{1}f\left(z\right)=f\left(z\right).$$

We note also that, in the limit case when $q \to 1-$, the *q*-integral operator $\mathcal{F}_{q,\lambda}$ given by Definition 7 would reduce to the integral operator which was studied by Noor [11].

The following identity can be easily verified:

$$zD_q\left(\mathcal{I}_q^{\lambda+1}f(z)\right) = \left(1 + \frac{[\lambda]_q}{q^{\lambda}}\right)\mathcal{I}_q^{\lambda}f(z) - \frac{[\lambda]_q}{q^{\lambda}}\mathcal{I}_q^{\lambda+1}f(z).$$
(10)

When $q \rightarrow 1-$, this last identity in (10) implies that

$$z\left(\mathcal{I}^{\lambda+1}f(z)\right)' = (1+\lambda)\mathcal{I}^{\lambda}f(z) - \lambda\mathcal{I}^{\lambda+1}f(z),$$

which is the well-known recurrence relation for the above-mentioned integral operator which was studied by Noor [11].

In geometric function theory, several subclasses belonging to the class of normalized analytic functions class \mathcal{A} have already been investigated in different aspects. The above-defined *q*-calculus gives valuable tools that have been extensively used in order to investigate several subclasses of \mathcal{A} . Ismail et al. [12] were the first who used the *q*-derivative operator D_q to study the *q*-calculus analogous of the class \mathcal{S}^* of starlike functions in \mathbb{U} (see Definition 8 below). However, a firm footing of the *q*-calculus in the context of geometric function theory was presented mainly and basic (or *q*-) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, ([13], p. 347 et seq.); see also [14]).

Definition 8 (see [12]). A function $f \in A$ is said to belong to the class S_q^* if

$$f(0) = f'(0) - 1 = 0 \tag{11}$$

and

$$\left|\frac{z}{f(z)}\left(D_{q}f\right)z - \frac{1}{1-q}\right| \leq \frac{1}{1-q}.$$
(12)

It is readily observed that, as $q \rightarrow 1-$, the closed disk:

$$\left|w - \frac{1}{1-q}\right| \le \frac{1}{1-q}$$

becomes the right-half plane and the class S_q^* of *q*-starlike functions reduces to the familiar class S^* of normalized starlike functions in \mathbb{U} with respect to the origin (z = 0). Equivalently, by using the principle of subordination between analytic functions, we can rewrite the conditions in (11) and (12) as follows (see [15]):

$$\frac{z}{f(z)} \left(D_q f \right)(z) \prec \hat{p}(z) \qquad \left(\hat{p}(z) = \frac{1+z}{1-qz} \right).$$
(13)

The notation S_q^* was used by Sahoo and Sharma [16].

Now, making use of the principle of subordination between analytic functions and the above-mentioned *q*-calculus, we present the following definition.

Definition 9. A function p is said to be in the class k- \mathcal{P}_q if and only if

$$p(z) \prec \frac{2p_k(z)}{(1+q)+(1-q)p_k(z)},$$

where $p_k(z)$ is defined by (5).

Geometrically, the function $p(z) \in k-\mathcal{P}_q$ takes on all values from the domain $\Omega_{k,q}$ $(k \ge 0)$ which is defined as follows:

$$\Omega_{k,q} = \left\{ w : \Re\left(\frac{(1+q)w}{(q-1)w+2}\right) > k \left| \frac{(1+q)w}{(q-1)w+2} - 1 \right| \right\}.$$

The domain $\Omega_{k,q}$ represents a generalized conic region. It can be seen that

$$\lim_{q\to 1-}\Omega_{k,q}=\Omega_k,$$

where Ω_k is the conic domain considered by Kanas and Wiśniowska [3]. Below, we give some basic facts about the class $k-\mathcal{P}_q$.

Remark 1. First of all, we see that

$$k-\mathcal{P}_q \subseteq \mathcal{P}\left[\frac{2k}{2k+1+q}\right],$$

where $\mathcal{P}\left[\frac{2k}{2k+1+q}\right]$ is the well-known class of functions with real part greater than $\frac{2k}{2k+1+q}$. Secondly, we have

$$\lim_{q\to 1-}k\mathcal{P}_q=\mathcal{P}\left(p_k\right),$$

where $\mathcal{P}(p_k)$ is the well-known function class introduced by Kanas and Wiśniowska [3]. Thirdly, we have

$$\lim_{q \to 1-} 0 - \mathcal{P}_q = \mathcal{P}_q$$

where \mathcal{P} is the well-known class of analytic functions with positive real part.

Definition 10. A function f is said to be in the class $ST(k, \lambda, q)$ if and only if

$$\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f\left(z\right)}\in k\mathcal{P}_{q} \qquad (k\geqq 0;\;\lambda\geqq 0),$$

or, equivalently,

$$\Re\left(\frac{(1+q)\,\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f(z)}}{(q-1)\,\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f(z)}+2}\right) > k\left|\frac{(1+q)\,\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f(z)}}{(q-1)\,\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f(z)}+2}-1\right|$$

Remark 2. First of all, it is easily seen that

$$\mathcal{ST}\left(0,1,q\right)=\mathcal{S}_{q}^{*},$$

where S_q^* is the function class introduced and studied by Ismail et al. [12]. Secondly, we have

$$\lim_{q \to 1-} \mathcal{ST}(k, 1, q) = k - \mathcal{ST},$$

where k-ST is a function class introduced and studied by Kanas and Wiśniowska [4]. Finally, we have

$$\lim_{q \to 1-} \mathcal{ST}(0,1,q) = \mathcal{S}^*,$$

where S^* is the well-known class of starlike functions in \mathbb{U} with respect to the origin (z = 0).

Remark 3. Further studies of the new q-starlike function class $ST(k, \lambda, q)$, as well as of its more consequences, can next be determined and investigated in future papers.

Let $n \in \mathbb{N}_0$ and $j \in \mathbb{N}$. The following *j*th Hankel determinant was considered by Noonan and Thomas [17]:

$\mathcal{H}_{j}\left(n ight)=$	a _n	a_{n+1}			a_{n+j-1}	
	a_{n+1}	•			•	
	•					
	•					ľ
	•	•			•	
	a_{n+j-1}	•	•	•	$a_{n+2(j-1)}$	

where $a_1 = 1$. In fact, this determinant has been studied by several authors, and sharp upper bounds on $\mathcal{H}_2(2)$ were obtained by several authors (see [18–20]) for various classes of functions. It is well-known that the Fekete–Szegö functional $|a_3 - a_2^2|$ can be represented in terms of the Hankel determinant as $\mathcal{H}_2(1)$. This functional has been further generalized as $|a_3 - \mu a_2^2|$ for some real or complex μ . Fekete and Szegö gave sharp estimates of $|a_3 - \mu a_2^2|$ for μ real and $f \in S$, the class of normalized univalent functions in \mathbb{U} . It is also known that the functional $|a_2a_4 - a_3^2|$ is equivalent to $\mathcal{H}_2(2)$ (see [18]). Babalola [21] studied the Hankel determinant $\mathcal{H}_3(1)$ for some subclasses of normalized analytic functions in \mathbb{U} . The symmetric Toeplitz determinant $\mathcal{T}_i(n)$ is defined by

$$\mathcal{T}_{j}(n) = \begin{vmatrix} a_{n} & a_{n+1} & \dots & a_{n+j-1} \\ a_{n+1} & \ddots & & \ddots \\ \ddots & \ddots & & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n+j-1} & \ddots & \ddots & \ddots & a_{n} \end{vmatrix} ,$$

so that

$$\mathcal{T}_{2}(2) = \begin{vmatrix} a_{2} & a_{3} \\ & & \\ a_{3} & a_{2} \end{vmatrix}, \qquad \mathcal{T}_{2}(3) = \begin{vmatrix} a_{3} & a_{4} \\ & & \\ a_{4} & a_{3} \end{vmatrix}, \qquad \mathcal{T}_{3}(2) = \begin{vmatrix} a_{2} & a_{3} & a_{4} \\ & & \\ a_{3} & a_{2} & a_{3} \\ & & \\ a_{4} & a_{3} & a_{2} \end{vmatrix}$$

and so on.

For $f \in S$, the problem of finding the best possible bounds for $||a_{n+1}| - |a_n||$ has a long history (see, for details, [22]). It is a known fact from [22] that

$$||a_{n+1}| - |a_n|| < c$$

for a constant *c*. However, the problem of finding exact values of the constant *c* for *S* and its various subclasses has proved to be difficult. In a very recent investigation, Thomas and Abdul-Halim [23] succeeded in obtaining some sharp estimates for $\mathcal{T}_j(n)$ for the first few values of *n* and *j* involving symmetric Toeplitz determinants whose entries are the coefficients a_n of starlike and close-to-convex functions.

In the present investigation, our focus is on the Hankel determinant and the Toeplitz matrices for the function class $ST(k, \lambda, q)$ given by Definition 10.

2. A Set of Lemmas

In order to prove our main results in this paper, we need each of the following lemmas.

Lemma 1 (see [20]). *If the function* p(z) *given by* (3) *is in the Carathéodory class* \mathcal{P} *of analytic functions with positive real part in* \mathbb{U} *, then*

$$2c_2 = c_1^2 + x\left(4 - c_1^2\right)$$

and

$$4c_{3} = c_{1}^{3} + 2\left(4 - c_{1}^{2}\right)c_{1}x - c_{1}\left(4 - c_{1}^{2}\right)x^{2} + 2\left(4 - c_{1}^{2}\right)\left(1 - \left|x^{2}\right|\right)z$$

for some $x, z \in \mathbb{C}$ *with* $|x| \leq 1$ *and* $|z| \leq 1$ *.*

Lemma 2 (see [24]). Let the function p(z) given by (3) be in the Carathéodory class \mathcal{P} of analytic functions with positive real part in \mathbb{U} . Also let $\mu \in \mathbb{C}$. Then

$$|c_n - \mu c_k c_{n-k}| \le 2 \max(1, |2\mu - 1|) \qquad (1 \le k \le n - 1).$$

Lemma 3 (see [22]). Let the function p(z) given by (3) be in the Carathéodory class \mathcal{P} of analytic functions with positive real part in \mathbb{U} . Then

$$|c_n| \leq 2 \qquad (n \in \mathbb{N}).$$

This last inequality is sharp.

3. Main Results

Throughout this section, unless otherwise mentioned, we suppose that

$$q \in (0,1)$$
, $\lambda > -1$ and $k \in [0,1]$.

Theorem 1. *If the function* f(z) *given by* (1) *belongs to the class* $ST(k, \lambda, q)$ *, where* $k \in [0, 1]$ *, then*

$$|a_{2}| \leq \frac{(1+q) p_{1}}{2q\psi_{1}},$$
$$a_{3} \leq \frac{1}{2q\psi_{2}} \left(p_{1} + \left| p_{2} - p_{1} + \frac{(q^{2}+1) p_{1}^{2}}{2q} \right| \right)$$

and

$$a_{4} \leq \frac{(1+q)}{4(q+q^{2}+q^{3})\psi_{3}} \left(2p_{1}+4\left|p_{2}-p_{1}+\frac{(2+q^{2})p_{1}^{2}}{4q}\right| + \left|2p_{3}+2p_{1}-4p_{2}-\frac{(2(1+q^{2})-q)p_{1}^{2}}{q}+\frac{(4q^{2}-3q+2)}{q}p_{1}p_{2} + \frac{(q^{2}+2q-1)}{2q^{2}}p_{1}^{3}\right|\right),$$
(14)

where p_j (j = 1, 2, 3) are positive and are the coefficients of the functions $p_k(z)$ defined by (6). Each of the above results is sharp for the function g(z) given by

$$g(z) = \frac{2p_k(z)}{(1+q) + (1-q) p_k(z)}.$$

Proof. Let $f(z) \in ST(k, \lambda, q)$. Then, we have

$$\frac{z\left(D_{q}f\right)\left(z\right)}{f\left(z\right)} = \mathfrak{q}\left(z\right) \prec S_{k}\left(z\right),\tag{15}$$

where

$$S_{k}(z) = \frac{2p_{k}(z)}{(1+q) + (1-q)p_{k}(z)},$$

and the functions $p_k(z)$ are defined by (6).

We now define the function p(z) with p(0) = 1 and with a positive real part in \mathbb{U} as follows:

$$p(z) = \frac{1 + S_k^{-1}(\mathfrak{q}(z))}{1 - S_k^{-1}(\mathfrak{q}(z))} = 1 + c_1 z + c_2 z^2 + \cdots .$$
(16)

After some simple computation involving (16), we get

$$\mathfrak{q}(z) = S_k\left(\frac{p(z)+1}{p(z)-1}\right).$$

We thus find that

$$S_{k}\left(\frac{p(z)+1}{p(z)-1}\right)$$

$$=1+\left(\frac{q+1}{2}\right)\left[\frac{p_{1}c_{1}}{2}z+\left\{\frac{p_{1}c_{2}}{2}+\left(\frac{p_{2}}{4}-\frac{p_{1}}{4}+\left(\frac{(q-1)p_{1}^{2}}{8}\right)\right)c_{1}^{2}\right\}z^{2}$$

$$+\left\{\frac{p_{1}c_{3}}{2}+\left(\frac{p_{2}}{2}-\frac{p_{1}}{2}+\left(\frac{(q-1)p_{1}^{2}}{4}\right)\right)c_{1}c_{2}$$

$$+\left(\frac{p_{1}}{8}-\frac{p_{2}}{4}-\frac{(q-1)p_{1}^{2}}{8}+\frac{p_{3}}{8}-\frac{(q-1)p_{1}p_{2}}{8}+\frac{(q-1)^{2}p_{1}^{3}}{32}\right)c_{1}^{3}\right\}z^{3}\right]+\cdots.$$
(17)

Now, upon expanding the left-hand side of (15), we have

$$\frac{z\left(D_{q}\mathcal{I}_{q}^{\lambda}f\right)(z)}{f(z)} = 1 + q\psi_{1}a_{2}z + \left\{\left(q+q^{2}\right)\psi_{2}a_{3} - q\psi_{1}^{2}a_{2}^{2}\right\}z^{2} + \left\{\left(q+q^{2}+q^{3}\right)\psi_{3}a_{4} - \left(2q+q^{2}\right)\psi_{1}\psi_{2}a_{2}a_{3} + q\psi_{1}^{3}a_{2}^{3}\right\}z^{3} + \cdots$$
(18)

Finally, by comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we obtain the result asserted by Theorem 1. \Box

Theorem 2. *If the function f* (*z*) *given by* (1) *belongs to the class* $ST(k, \lambda, q)$ *, then*

$$\begin{aligned} \mathcal{T}_{3}\left(2\right) &\leq \left[\left(\frac{1+q}{2q\psi_{1}}\right) p_{1}^{2} + \left(\frac{1+q}{4\left(q+q^{2}+q^{3}\right)\psi_{3}}\right) \left[\Omega_{1}+\Omega_{2}\right] \right] \\ &\cdot \left[4 \left(\frac{(1+q)^{2}}{16q^{2}\psi_{1}^{2}}\right) p_{1}^{2} + 16\left|\Omega_{3}\right| + \frac{p_{1}^{2}}{4q^{2}\psi_{2}^{2}} + 2\Omega_{5}p_{1}^{2} \left|2 - \frac{\Omega_{4}}{\Omega_{5}p_{1}^{2}}\right| \right], \end{aligned}$$

where

$$\begin{split} \Omega_{1} &= 2p_{1} + 4 \left| p_{2} - p_{1} + \frac{(2+q^{2})}{4q} p_{1}^{2} \right|, \\ \Omega_{2} &= \left| 2p_{3} + 2p_{1} - 4p_{2} - \left(2\left(1+q^{2}\right) - q\right) p_{1}^{2} \right. \\ &+ \left(\frac{4q^{2} - 3q + 2}{q}\right) p_{1}p_{2} + \left(\frac{q^{2} + q + 1}{2q^{2}} p_{1}^{3}\right) \right|, \\ \Omega_{3} &= \frac{1}{2q^{2}\psi_{2}^{2}} \left(\frac{p_{2}}{4} - \frac{p_{1}}{4} + \frac{(q^{2} + 1) p_{1}^{2}}{8q} \right)^{2} - \Omega_{5} \cdot \left[\frac{p_{3}}{4} + \frac{p_{1}}{4} - \frac{p_{2}}{2} \right. \\ &- \frac{\left[2\left(1+q^{2}\right) - q\right] p_{1}^{2}}{8q} + \frac{4q^{2} - 3q + 2}{8q} p_{1}p_{2} + \left(\frac{q^{2} + 2q - 1}{16q^{2}}\right) p_{1}^{3} \right], \\ \Omega_{4} &= \frac{p_{1}}{2q^{2}\psi_{2}^{2}} \left(\frac{p_{2}}{4} - \frac{p_{1}}{4} + \frac{(q^{2} + 1) p_{1}^{2}}{8q} \right) - \Omega_{5}p_{1} \left(p_{2} - p_{1} + \frac{(2+q^{2}) p_{1}^{2}}{4q} \right), \\ \Omega_{5} &= \frac{(1+q)^{2}}{16q^{2}\left(1+q+q^{2}\right) \psi_{1}\psi_{3}} \end{split}$$

and p_{j} (j = 1, 2) are positive and are the coefficients of the functions $p_{k}(z)$ defined by (6).

Proof. Upon comparing the corresponding coefficients in (17) and (18), we find that

$$a_2 = \frac{(1+q)\,p_1c_1}{4q\psi_1},\tag{19}$$

$$a_3 = \frac{1}{2q\psi_2} \left[\frac{p_1c_2}{2} + \left(\frac{p_2}{4} - \frac{p_1}{4} + \frac{(q^2+1)p_1^2}{8q} \right) c_1^2 \right],$$
(20)

$$a_{4} = \frac{(1+q)}{4(q+q^{2}+q^{3})\psi_{3}} \left[p_{1}c_{3} + \left(p_{2} - p_{1} + \frac{(2+q^{2})p_{1}^{2}}{4q} \right) c_{1}c_{2} + \left(\frac{p_{3}}{4} + \frac{p_{1}}{4} - \frac{p_{2}}{2} - \frac{(2(1+q^{2})-q)p_{1}^{2}}{8q} + \frac{(4q^{2}-3q+2)}{8q}p_{1}p_{2} + \frac{(q^{2}+2q-1)}{16q^{2}}p_{1}^{3} \right)c_{1}^{3} \right].$$
(21)

By a simple computation, $\mathcal{T}_{3}\left(2\right)$ can be written as follows:

$$\mathcal{T}_{3}(2) = (a_{2} - a_{4}) \left(a_{2}^{2} - 2a_{3}^{2} + a_{2}a_{4}\right).$$

Now, if $f \in \mathcal{ST}(k, \lambda, q)$, then it is clearly seen that

$$\begin{aligned} |a_2 - a_4| &\leq |a_2| + |a_4| \\ &\leq \left(\frac{1+q}{2q\psi_1}\right) p_1^2 + \left(\frac{1+q}{4(q+q^2+q^3)\psi_3}\right) \left(\Omega_1 + \Omega_2\right). \end{aligned}$$

We need to maximize $|a_2^2 - 2a_3^2 + a_2a_4|$ for a function $f \in ST(k, \lambda, q)$. So, by writing a_2, a_3 , and a_4 in terms of c_1, c_2 , and c_3 , with the help of (19)–(21), we get

$$\begin{vmatrix} a_2^2 - 2a_3^2 + a_2 a_4 \end{vmatrix} = \left| \left(\frac{(1+q)^2}{16q^2 \psi_1^2} \right) p_1^2 c_1^2 - \Omega_3 c_1^4 - \Omega_4 c_1^2 c_2 - \frac{p_1^2}{8q^2 \psi_2^2} c_2^2 + \Omega_5 p_1^2 c_1 c_3 \end{vmatrix} .$$
(22)

Finally, by applying the trigonometric inequalities, Lemmas 2 and 3 along with (22), we obtain the result asserted by Theorem 2. \Box

As an application of Theorem 2, we first set $\psi_{n-1} = 1$ and k = 0 and then let $q \to 1-$. We thus arrive at the following known result.

Corollary 1 (see [25]). *If the function* f(z) *given by* (1) *belongs to the class* S^* *, then*

$$\mathcal{T}_{3}(2) \leq 84$$

Theorem 3. If the function f(z) given by (1) belongs to the class $ST(k, \lambda, q)$, then

$$\left|a_{2}a_{4}-a_{3}^{2}\right| \leq \frac{1}{4q^{2}\psi_{2}^{2}} p_{1}^{2}, \tag{23}$$

where $k \in [0, 1]$ and p_j (j = 1, 2, 3) are positive and are the coefficients of the functions $p_k(z)$ defined by (6).

Proof. Making use of (19)–(21), we find that

$$\begin{aligned} a_{2}a_{4} - a_{3}^{2} &= \frac{A\left(q\right)}{16q^{2}\psi_{1}\psi_{3}} \ p_{1}^{2}c_{1}c_{3} + \left(\frac{A\left(q\right)\psi_{2}^{2} - \psi_{1}\psi_{3}}{16q^{2}\psi_{1}\psi_{2}^{2}\psi_{3}} \ p_{1}p_{2} - \frac{A\left(q\right)\psi_{2}^{2} - \psi_{1}\psi_{3}}{16q^{2}\psi_{1}\psi_{2}^{2}\psi_{3}} \ p_{1}^{2} \\ &+ \frac{A\left(q\right)\left(2 + q^{2}\right)\psi_{2}^{2} - 2\left(1 + q^{2}\right)\psi_{1}\psi_{3}}{64q^{2}\psi_{1}\psi_{3}} \ p_{1}^{3}\right)c_{1}^{2}c_{2} + \frac{1}{16q^{2}\psi_{2}^{2}} \ p_{1}^{2}c_{2}^{2} \\ &+ \left[\frac{A\left(q\right)}{64q^{2}\psi_{1}\psi_{3}} \ p_{1}p_{3} + \left(\frac{A\left(q\right)\psi_{2}^{2} - \psi_{1}\psi_{3}}{64q^{2}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}^{2} + \left(\frac{\psi_{1}\psi_{3} - A\left(q\right)\psi_{2}^{2}}{32q^{2}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}p_{2} \\ &+ \left(\frac{2\left(1 + q^{2}\right)\psi_{1}\psi_{3} - \left(2\left(1 + q^{2}\right) - q\right)A\left(q\right)\psi_{2}^{2}}{128q^{3}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}^{3} \\ &+ \left(\frac{A\left(q\right)\left(4q^{2} - 3q + 2\right)\psi_{2}^{2} - 2\left(1 + q^{2}\right)\psi_{1}\psi_{3}}{128q^{3}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}^{4} - \frac{1}{64q^{2}\psi_{2}^{2}} \ p_{2}^{2}\right]c_{1}^{4}, \end{aligned} \tag{24}$$

where

$$A(q) = \frac{(1+q)^2}{1+q+q^2}.$$

We substitute the values of c_2 and c_3 from the above Lemma and, for simplicity, take $Y = 4 - c_1^2$ and $Z = (1 - |x|^2)z$. Without loss of generality, we assume that $c = c_1$ ($0 \le c \le 2$), so that

$$a_{2}a_{4} - a_{3}^{2} = \left[\frac{q\left(1-q\right)A\left(q\right)\psi_{2}^{2}}{128q^{2}\psi_{1}\psi_{3}}p_{1}^{3} + \frac{A\left(q\right)}{64q^{2}\psi_{1}\psi_{3}}p_{1}p_{3} + \left(\frac{A\left(q\right)\left(4q^{2}-3q+2\right)\psi_{2}^{2}-2\left(1+q^{2}\right)\psi_{1}\psi_{3}}{128q^{3}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}^{2}p_{2} + \left(\frac{A\left(q\right)\left(q^{2}+2q-1\right)\psi_{2}^{2}-\left(1+q^{2}\right)^{2}\psi_{1}\psi_{3}}{256q^{4}\psi_{1}\psi_{2}^{2}\psi_{3}}\right)p_{1}^{4} - \frac{1}{64q^{2}\psi_{2}^{2}}p_{2}^{2}\right]c^{4} + \left[\frac{A\left(q\right)\psi_{2}^{2}-\psi_{1}\psi_{3}}{32q^{2}\psi_{1}\psi_{2}^{2}\psi_{3}}p_{1}p_{2} + \frac{A\left(q\right)\left(2+q^{2}\right)\psi_{2}^{2}-2\left(1+q^{2}\right)\psi_{1}\psi_{3}}{128q^{2}\psi_{1}\psi_{3}}p_{1}^{3}\right]c^{2}xY \\ \cdot \left[-\frac{A\left(q\right)}{64q^{2}\psi_{1}\psi_{3}}p_{1}^{2}c^{2}Yx^{2} - \frac{1}{64q^{2}\psi_{2}^{2}}p_{1}^{2}x^{2}Y^{2} + \frac{A\left(q\right)}{32q^{2}\psi_{1}\psi_{3}}p_{1}^{2}cYZ\right].$$
(25)

Upon setting $Z = (1 - |x|^2)z$ and taking the moduli in (25) and using trigonometric inequality, we find that

$$\begin{aligned} \left| a_{2}a_{4} - a_{3}^{2} \right| &\leq \left| \lambda_{1} \right| c^{4} + \left| \lambda_{2} \right| \left| x \right| Yc^{2} + \frac{A\left(q\right)}{64q^{2}\psi_{1}\psi_{3}} p_{1}^{2}Y \left| x \right|^{2}c^{2} \\ &+ \frac{1}{64q^{2}\psi_{2}^{2}} p_{1}^{2} \left| x \right|^{2}Y^{2} + \frac{A\left(q\right)}{32q^{2}\psi_{1}\psi_{3}} p_{1}^{2}c^{2}Y \left(1 - \left| x \right|^{2} \right) \\ &= \Lambda\left(c, \left| x \right| \right), \end{aligned}$$

$$(26)$$

where

$$\begin{split} \lambda_1 &= \frac{q \left(1-q\right) A \left(q\right) \psi_2^2}{128 q^2 \psi_1 \psi_3} \ p_1^3 + \frac{A \left(q\right)}{64 q^2 \psi_1 \psi_3} \ p_1 p_3 \\ &+ \left(\frac{A \left(q\right) \left(4 q^2 - 3 q + 2\right) \psi_2^2 - 2 \left(1+q^2\right) \psi_1 \psi_3}{128 q^3 \psi_1 \psi_2^2 \psi_3}\right) p_1^2 p_2 \\ &+ \left(\frac{A \left(q\right) \left(q^2 + 2 q - 1\right) \psi_2^2 - \left(1+q^2\right)^2 \psi_1 \psi_3}{256 q^4 \psi_1 \psi_2^2 \psi_3}\right) p_1^4 - \frac{1}{64 q^2 \psi_2^2} \ p_2^2 \\ \lambda_2 &= \frac{A \left(q\right) \psi_2^2 - \psi_1 \psi_3}{32 q^2 \psi_1 \psi_2^2 \psi_3}; p_1 p_2 + \frac{A \left(q\right) \left(2+q^2\right) \psi_2^2 - 2 \left(1+q^2\right) \psi_1 \psi_3}{128 q^2 \psi_1 \psi_3} \ p_1^3. \end{split}$$

Now, trivially, we have

$$\Lambda'\left(|x|\right) > 0$$

on [0, 1], and so

$$\Lambda\left(\left|x\right|\right) \leqq \Lambda\left(1\right).$$

Hence, by puting $Y = 4 - c_1^2$ and after some simplification, we have

$$\begin{aligned} \left| a_{2}a_{4} - a_{3}^{2} \right| &= \left(\left| \lambda_{1} \right| - \left| \lambda_{2} \right| + \frac{\psi_{1}\psi_{3} - A\left(q\right)\psi_{2}^{2}}{64q^{2}\psi_{1}\psi_{3}} p_{1}^{2} \right) c^{4} \\ &+ \left(4\left| \lambda_{2} \right| + \left(\frac{A\left(q\right)\psi_{2}^{2} - \psi_{1}\psi_{3}}{16q^{2}\psi_{1}\psi_{3}} p_{1}^{2} \right) \right) c^{2} + \frac{1}{4q^{2}\psi_{2}^{2}} p_{1}^{2} \\ &= G\left(c\right). \end{aligned}$$

$$(27)$$

For optimum value of G(c), we consider G'(c) = 0, which implies that c = 0. So G(c) has a maximum value at c = 0. We therefore conclude that the maximum value of G(c) is given by

$$\frac{1}{4q^2\psi_2^2}p_1^2,$$

which occurs at c = 0 or

$$c^{2} = -\frac{128 |\lambda_{2}| q^{2} \psi_{1} \psi_{3} + 4A(q) \psi_{2}^{2} - 2\psi_{1} \psi_{3} p_{1}^{2}}{(64q^{2} (|\lambda_{1}| - |\lambda_{2}|) \psi_{1} \psi_{3} + \psi_{1} \psi_{3} - A(q) \psi_{2}^{2} p_{1}^{2})}$$

This completes the proof of Theorem 3. \Box

If we put $\psi_{n-1} = 1$ and let $q \to 1-$ in Theorem 3, we have the following known result.

Corollary 2 (see [26]). *If the function* f(z) *given by* (1) *belongs to the class* k-ST*, where* $k \in [0, 1]$ *, then*

$$\left|a_2a_4-a_3^2\right| \leq \frac{p_1^2}{4}.$$

If we put

$$p_1 = 2$$
 and $\psi_{n-1} = 1$,

by letting $q \rightarrow 1-$ in Theorem 3, we have the following known result.

Corollary 3 (see [18]). *If* $f \in S^*$, *then*

$$\left|a_2a_4-a_3^2\right| \leq 1.$$

By letting k = 1, $\psi_{n-1} = 1$, $q \rightarrow 1$ – and

$$p_1 = \frac{8}{\pi^2}, \quad p_2 = \frac{16}{3\pi^2} \quad \text{and} \quad p_3 = \frac{184}{45\pi^2}$$

in Theorem 3, we have the following known result.

Corollary 4 (see [27]). If the function f(z) given by (1) belong to the class SP, then

$$\left|a_2a_4-a_3^2\right| \leq \frac{16}{\pi^4}.$$

4. Concluding Remarks and Observations

Motivated significantly by a number of recent works, we have made use of a certain general conic domain and the quantum (or q-) calculus in order to define and investigate a new subclass of normalized analytic functions in the open unit disk \mathbb{U} , which we have referred to as q-starlike functions. For this q-starlike function class, we have successfully derived several properties and characteristics. In particular, we have found the Hankel determinant and the Toeplitz matrices for this newly-defined class of q-starlike functions. We also highlight some known consequences of our main results which are stated and proved as theorems and corollaries.

Author Contributions: conceptualization, Q.Z.A. and N.K. (Nazar Khan); methodology, N.K. (Nasir Khan); software, B.K.; validation, H.M.S.; formal analysis, H.M.S.; writing—original draft preparation, H.M.S.; writing—review and editing, H.M.S.; supervision, H.M.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. *Mich. Math. J.* 1981, 28, 157–171. [CrossRef]
- 2. Miller, S.S.; Mocanu, P.T. *Differential Subordination: Theory and Applications;* Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000.
- 3. Kanas, S.; Wiśniowska, A. Conic regions and *k*-uniform Convexity. *J. Comput. Appl. Math.* **1999**, *105*, 327–336. [CrossRef]
- 4. Kanas, S.; Wiśniowska, A. Conic domains and starlike Functions. *Rev. Roum. Math. Pures Appl.* **2000**, *45*, 647–657.
- 5. Kanas, S.; Srivastava, H.M. Linear operators associated with *k*-uniformly convex functions. *Integral Transform. Spec. Funct.* **2000**, *9*, 121–132. [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of *q*-starlike functions associated with conic domain defined by *q*-derivative. *J. Funct. Spaces* 2018, 2018, 8492072. [CrossRef]
- 7. Srivastava, H.M.; Karlsson, P.W. *Multiple Gaussian Hypergeometric Series*; Ellis Horwood Limited: Chichester, UK, 1985.
- 8. Jackson, F.H. On *q*-definite integrals. *Quart. J. Pure Appl. Math.* **1910**, *41*, 193–203.
- 9. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [CrossRef]
- 10. Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. *Math. Slov.* **2014**, *64*, 1183–1196. [CrossRef]
- 11. Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71-80.
- 12. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. *Complex Var. Theory Appl.* **1990**, 14, 77–84. [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In *Univalent Functions, Fractional Calculus and Their Applications;* Srivastava, H.M., Owa, S., Eds.; Ellis Horwood Limited: Chichester, UK, 1989; pp. 329–354.
- 14. Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of *q*-Mittag-Leffer functions. *J. Nonlinear Var. Anal.* **2017**, *1*, 61–69.
- 15. Uçar, H.E.Ö. Coefficient inequality for *q*-starlike Functions. *Appl. Math. Comput.* **2016**, *76*, 122–126.
- Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. *Ann. Polon. Math.* 2015, 113, 93–108. [CrossRef]
- 17. Noonan, J.W.; Thomas, D.K. On the second Hankel derminant of areally mean *p*-valent functions. *Trans. Am. Math. Soc.* **1976**, *223*, 337–346.
- 18. Janteng, A.; Abdul-Halim, S.; Darus, M. Hankel determinant for starlike and convex functions. *Int. J. Math. Anal.* 2007, *1*, 619–625.
- 19. Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. *Internat. J. Math. Math. Sci.* 2008, 2008, 153280. [CrossRef]
- 20. Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. *J. Math. Sci. Appl.* **2014**, *2*, 1–3.
- Babalola, K.O. On H₃(1) Hankel determinant for some classes of univalent functions. *Inequal. Theory Appl.* 2007, *6*, 1–7.
- 22. Duren, P.L. Univalent Functions (Grundlehren der Mathematischen Wissenschaften 259); Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
- 23. Thomas, D.K.; Abdul-Halim, S. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. *Bull. Malays. Math. Sci. Soc.* 2017, 40, 1781–1790. [CrossRef]
- 24. Efraimidis, I. A generalization of Livingston's coefficient inequalities for functions with positive real part. *J. Math. Anal. Appl.* **2016**, 435, 369–379. [CrossRef]
- 25. Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose element are the coefficients of univalent functions. *Bull. Aust. Math. Soc.* **2018**, *97*, 253–264. [CrossRef]

- 26. Ramachandran, C.; Annamalai, S. On Hankel and Toeplitz determinants for some special class of analytic functions involving conical domains defined by subordination. *Internat. J. Engrg. Res. Technol.* **2016**, *5*, 553–561.
- 27. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. *J. Inequal. Appl.* **2013**, 2013, 281–297. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).