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Abstract: In this paper, we consider a theory of elements u of a groupoid (X, ∗) that are associated
with certain functions û : X → X, pseudo-inverse functions, which are generalizations of the inverses
associated with units of groupoids with identity elements. If classifying the elements u as special
of one of twelve types, then it is possible to do a rather detailed analysis of certain cases, leftoids,
rightoids and linear groupoids included, which demonstrates that it is possible to develop a successful
theory and that a good deal of information has already been obtained with much more possible in
the future.
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1. Introduction

Bruck [1] published a book, A survey of binary systems discussed in the theory of groupoids, loops
and quasigroups, and several algebraic structures. Boru̇vka [2] stated the theory of decompositions
of sets and its application to binary systems. Recently, some interesting results in groupoids were
investigated by several researchers [3–6]. Semigroups are in fact the first and simplest type of algebra
to which the methods of universal algebra must be applied, and any mathematician interested in
universal algebra will find semigroup theory a rewarding study [7]. The notion of d-algebras, which is
another useful generalization of BCK-algebras, was introduced by Neggers and Kim [8], and some
relations between d-algebras and BCK-algebras as well as several other relations between d-algebras
and oriented digraphs were investigated. Several aspects on d-algebras were studied [9–14]. Kim and
Neggers [15] introduced the notion of Bin(X), which is the collection of all groupoids defined on a set
X, and showed that it becomes a semigroup under suitable operation.

In this paper, we consider a theory of elements u of a groupoid (X, ∗) that are associated with
certain functions û : X → X, pseudo-inverse functions, which are generalizations of the inverses
associated with units of groupoids with identity elements. It turns out that if we classify the elements
u as special of one of twelve types, then it is possible to do a rather detailed analysis of certain cases,
leftoids, rightoids and linear groupoids included, which demonstrates that it is possible to develop
a successful theory and that a good deal of information has already been obtained with much more
possible in the future.

2. Preliminaries

A groupoid [1] is a set X with a binary operation “∗" on X, and we denote it by (X, ∗).
A d-algebra [8] is a non-empty set X with a constant 0 and a binary operation “∗" satisfying the
following axioms: (I) x ∗ x = 0, (II) 0 ∗ x = 0, (III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.
For brevity we also call X a d-algebra. In X we can define a binary relation “ ≤ ” by x ≤ y if and
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only if x ∗ y = 0. For general references on d-algebras we refer to [8,9,13]. A BCK-algebra [16–18]
is a d-algebra X satisfying the following additional axioms: (IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0, (V)
(x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Given two groupoids (X, ∗) and (X, •), we define a new binary operation 2 by x2y := (x ∗ y) •
(y ∗ x) for all x, y ∈ X. Then we obtain a new groupoid (X,2), i.e., (X,2) = (X, ∗)2(X, •). We denote
the collection of all groupoids defined on X by Bin(X) [15].

Theorem 1. [15] (Bin(X),2) is a semigroup and the left zero semigroup is an identity.

3. LL-Special and Pseudo Inverse Functions

Given a groupoid (X, ∗), i.e., (X, ∗) ∈ Bin(X), an element u ∈ X is said to be LL-special if there
exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all x ∈ X. Such a function û is said to be a
pseudo inverse function of u and û(x) is called a pseudo inverse of u with respect to x.

Example 1. Let (X, ∗) be a right-zero semigroup. For any u ∈ X, for any û ∈ XX , we have (û(x) ∗ u) ∗ x =

u ∗ x = x for all x ∈ X. This shows that every element u of a right-zero semigroup is LL-special and every
function û : X → X is a pseudo inverse function of u.

Example 1 shows that a pseudo inverse function û need not be unique.

Example 2. Let (X, ∗) be a left-zero semigroup and let u be an LL-special element of X. Then (û(x) ∗u) ∗ x = x
for all x ∈ X. It follows that û(x) = x for all x ∈ X, which means that a pseudo inverse function û of u is the
identity map on X.

Proposition 1. Let (X, ∗, e) be a group. Then

(i) every element of X is LL-special,
(ii) if u is LL-special, then its pseudo inverse function û is a constant map.

Proof. (i) Given u ∈ X, we define a map û : X → X by û(x) := u−1 for all x ∈ X. Then (û(x) ∗ u) ∗ x =

(u−1 ∗ u) ∗ x = e ∗ x = x, which shows that u is LL-special. (ii) Assume u is LL-special. Then there
exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all x ∈ X. Since (X, ∗) is a group, we have
û(x) ∗ u = e, and hence û(x) = u−1 for all x ∈ X, which proves that û is a constant map.

Remark 1. Given (X, ∗) ∈ Bin(X), a condition X = X ∗ X is a necessary condition for the existence of
LL-special elements of (X, ∗). In fact, if u is LL-special in (X, ∗), then there exists a map û : X → X such that
(û(x) ∗ u) ∗ x = x for all x ∈ X. If we let α(x) := û(x) ∗ u, then α(x) ∗ x = x for all x ∈ X, which shows
that X ⊆ X ∗ X.

Proposition 2. Any leftoid (X, ∗), where x ∗ y := f (x) for all x, y ∈ X, f : X → X is not onto, is a groupoid
which does not contain any LL-special element of (X, ∗).

Proof. Since f : X → X is not onto, there exists x0 ∈ X such that x0 6∈ f (X). Assume u is an LL-special
element of X. Then there exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all x ∈ X. It follows
that (û(x0) ∗ u) ∗ x0 = x0. If we let α := û(x0) ∗ u, then x0 = α ∗ x0 = f (α) ∈ f (X), since (X, ∗) is a
leftoid, which leads to a contradiction. This proves the proposition.

Proposition 3. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f (x) for all x, y ∈ X. Let u ∈ X and û : X → X be
a map. Then u is LL-special if and only if f 2(û(x)) = x for all x ∈ X.

Proof. It follows immediately from x = (û(x) ∗ u) ∗ x = f (û(x)) ∗ x = f ( f (û(x))) for all x ∈ X.
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Example 3. Let X := R be the set of all real numbers. We define x ∗ y := x2, i.e., x ∗ y = f (x) = x2 for all
x, y ∈ R. Assume u is LL-special. Then, by Proposition 3, we have x = (û(x) ∗ u) ∗ x = f 2(û(x)) = (û(x))4

for all x ∈ R. If we let x := −1, then (û(−1))4 = −1, a contradiction.

Theorem 2. Let (X, ∗) be a semigroup and let u, v be LL-special elements of (X, ∗). Then (û(x) ∗ u) ∗ v̂(x) is
another pseudo inverse of v with respect to x for all x ∈ X.

Proof. Assume that u, v are LL-special elements of (X, ∗). Then there exist pseudo inverse functions
û, v̂ respectively. For any x ∈ X, we have x = (û(x) ∗ u) ∗ x = (û(x) ∗ u) ∗ [(v̂(x) ∗ v) ∗ x)] =

[(û(x) ∗ u) ∗ (v̂(x) ∗ v)] ∗ x = [{(û(x) ∗ u) ∗ v̂(x)} ∗ v] ∗ x. If we take a map v̂′(x) := (û(x) ∗ u) ∗ v̂(x)
for all x ∈ X, then v̂, v̂′ are pseudo-inverse functions of v with respect to x.

4. Several Special Elements

Let (X, ∗) ∈ Bin(X). An element u of X is said to be

• LL-special : (û(x) ∗ u) ∗ x = x, • RL′-special : (x ∗ û(x)) ∗ u = x,
• LR-special : û(x) ∗ (u ∗ x) = x, • RR′-special : x ∗ (û(x) ∗ u) = x,
• RL-special : u ∗ (û(x) ∗ x) = x, • LL′′-special : (û(x) ∗ x) ∗ u = x,
• RR-special : (u ∗ û(x)) ∗ x = x, • LR′′-special : û(x) ∗ (x ∗ u) = x,
• LL′-special : x ∗ (u ∗ û(x)) = x, • RL′′-special : u ∗ (x ∗ û(x)) = x,
• LR′-special : (x ∗ u) ∗ û(x) = x, • RR′′-special : (u ∗ x) ∗ û(x) = x,

for any x ∈ X, where û : X → X is a map.
We note that if (X, ∗) is a semigroup, then (x ∗ y) ∗ z = x ∗ (y ∗ z) and thus we find that (û(x) ∗

u) ∗ x = û(x) ∗ (u ∗ x), and “LL-special = LR-special". Similarly, we find that “RL-special = RR-special",
“LR′-special = LL′-special", “RL′-special = RR′-special", “LL′′-special = LR′′-special" and “RL′′-special
= RR′′-special". Next, suppose that (X, ∗) is a commutative groupoid, i.e., x ∗ y = y ∗ x for all x, y ∈ X.
Then (û(x) ∗ u) ∗ x = (u ∗ û(x)) ∗ x = x ∗ (u ∗ û(x)) = x ∗ (û(x) ∗ u), and hence “LL-special =
RR-special = LL′-special = RR′-special". Since û(x) ∗ (u ∗ x) = û(x) ∗ (x ∗ u) = (x ∗ u) ∗ û(x)) =

(u ∗ x) ∗ û(x), we have “LR-special = LR′′-special = LR′-special = RR′′-special". Moreover, since
u ∗ (û(x) ∗ x) = u ∗ (x ∗ û(x)) = (x ∗ û(x)) ∗ u = (û(x) ∗ x) ∗ u, we have “RL-special = RL′′-special =
RL′-special = LL′′-special". If (X, ∗) is a commutative semigroup, then all 12 types of special elements
become a single type. In this case, we call u a special element of (X, ∗).

Example 4. Let X := [0, ∞) and let x ∗ y := x + y for all x, y ∈ X where “+" is the usual addition in real
numbers. Assume û(x) + u + x = x. Then û(x) + u = 0 for all x ∈ X. It follows that û(x) = u = 0 for all
x ∈ X. Hence u = 0 is the only special element of (X, ∗) and û(x) = 0 for all x ∈ X, i.e., the zero map on X.

Example 5. Let X := (0, ∞) and let x ∗ y := x + y for all x, y ∈ X where “+" is the usual addition in real
numbers. Assume û(x) + u + x = x. Then û(x) + u = 0 for all x ∈ X. It follows that û(x) = u = 0 6∈ X.
Hence (X, ∗) has no special elements whatsoever.

Proposition 4. If (X, ∗, 0) is a BCK-algebra, then “LL-special = LL′′-special", “RR-special = RR′′-special"
and “LL′-special = RL′-special".

Proof. If (X, ∗, 0) is a BCK-algebra, then (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X, and the proposition
can be proved.

Theorem 3. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α + βx + γy for all x, y ∈ K. If (x ∗ y) ∗ z =

(x ∗ z) ∗ y for all x, y, z ∈ K, then either x ∗ y = α + βx or x ∗ y = α + x + γy for all x, y ∈ K.
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Proof. Given x, y, z ∈ K, we have (x ∗ y) ∗ z = α + β(x ∗ y) + γz = α + β(α + βx + γy) + γz =

α(1 + β) + β2x + βγy + γz. Similarly, we obtain (x ∗ z) ∗ y = α(1 + β) + β2x + βγz + γy. It follows
that 0 = (x ∗ y) ∗ z− (x ∗ z) ∗ y = βγ(y− z) + γ(z− y) = γ(β− 1)(y− z) for all y, z ∈ K. This implies
that either γ = 0 or β = 1, proving the theorem.

Corollary 1. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α + βx + γy for all x, y ∈ K. If
(x ∗ y) ∗ z = (x ∗ z) ∗ y and x ∗ y = y ∗ x for all x, y, z ∈ K, then either x ∗ y = α or x ∗ y = α + x + y for
all x, y ∈ K.

Proof. In the case of x ∗ y = α + βx, if x ∗ y = y ∗ x for all x, y ∈ K, then α + βx = α + βy and
hence β(x − y) = 0 for all x, y ∈ K. This shows that β = 0, proving that x ∗ y = α. In the case
of x ∗ y = α + x + γy, if x ∗ y = y ∗ x for all x, y ∈ K, then α + x + γy = α + y + γx and hence
(1− γ)(x− y) = 0 for all x, y ∈ K. This shows that γ = 1, proving that x ∗ y = α + x + y.

Proposition 5. If (X, ∗, 0) is a groupoid satisfying the conditions:

(i) x ∗ y = y ∗ x for all x, y ∈ X,
(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X,

then it is a commutative semigroup and has a unique special element in (X, ∗) if it exists.

Proof. Given x, y, z ∈ X, we have (x ∗ y) ∗ z = (x ∗ z) ∗ y = (z ∗ x) ∗ y = (z ∗ y) ∗ x = x ∗ (z ∗ y) =
x ∗ (y ∗ z), proving that (X, ∗) is a commutative semigroup. Assume u1, u2 are special elements of (X, ∗).
Let ûi(x) := α(∈ X) for all x ∈ X (i = 1, 2). Then u1 = (û1(u1) ∗ u2) ∗ u1 and u2 = (û2(u2) ∗ u1) ∗ u2.
It follows that u1 = (û1(u1) ∗ u2) ∗ u1 = (α ∗ u2) ∗ u1 = (α ∗ u1) ∗ u2 = (û2(u2) ∗ u1) ∗ u2 = u2, proving
the proposition.

Corollary 2. Let K be a field and let α ∈ K. A groupoid (K, ∗), where x ∗ y := α or x ∗ y := α + x + y for all
x, y ∈ K, has a special element if it exists.

Proof. It follows from Corollary 1 and Proposition 5.

Proposition 6. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α + βx + γy for all x, y ∈ K. If (K, ∗) is
a semigroup, then x ∗ y = α, x ∗ y = α + x, x ∗ y = α + y or x ∗ y = α + x + y for all x, y ∈ K.

Proof. It was proved that (x ∗ y) ∗ z = α(1 + β) + β2x + βγy + γz. Similarly we obtain x ∗ (y ∗ z) =
α(1 + γ) + βx + γβy + γ2z. It follows that α(1 + β) = α(1 + γ), β2 = β and γ2 = γ, which proves the
proposition.

Remark 2. The property (x ∗ y) ∗ z = (x ∗ z) ∗ y also holds for BCK-algebras and hence there is no guarantee
in general for either commutativity or associativity as is the setting of the corollaries of the theorem.

5. Universally Completely Special Elements

A groupoid (X, ∗) is said to be completely LL-special if u is LL-special for all u ∈ X. A
groupoid (X, ∗) is said to be universally completely special if (X, ∗) is completely α-special for any
α ∈ {LL, LR, RL, RR, LL′, LR′, RL′, RR′, LL′′, LR′′, RL′′, RR′′}.

Example 6. Define a binary operation “∗" by x ∗ y := x2 for all x, y ∈ X := [0, ∞), i.e., (X, ∗) is a leftoid
for f (x) = x2. If u is LL-special in X, then x = (û(x) ∗ u) ∗ x = f 2(û(x)) for all x ∈ X. It follows that
û(x) = 4

√
x for all x ∈ X. Hence (X, ∗) is completely LL-special.
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Example 7. Let X := R, the set of all real numbers. Define a binary operation “∗" on X by x ∗ y := 1
2 (x + y)

for all x, y ∈ X. Given any u ∈ X, if we define û(x) := 2x − u for all x ∈ X, then (û(x) ∗ u) ∗ x =
1
2 [

1
2 (2x− u + u) + x] = x, proving that u is LL-special. Hence (X, ∗) is completely LL-special.

Note that every abelian group is universally completely special. Let (X, ∗, e) be an abelian group.
Then all 12 types of special elements coincide into a single type. Given u ∈ X, we let (û(x) ∗ u) ∗ x = x
for all x ∈ X. It follows that û(x) ∗ u = e, i.e., û(x) = u−1 for all x ∈ X. Hence u is completely
LL-special for all u ∈ X.

Proposition 7. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f (x) for all x, y ∈ X. Let u ∈ X and û : X → X be
a map. Then u is LR-special if and only if f (û(x)) = x for all x ∈ X.

Proof. It follows immediately from x = û(x) ∗ (u ∗ x) = f (û(x)) for all x ∈ X.

Example 8. Let X := R be the set of all real numbers. We define x ∗ y := x3, i.e., x ∗ y = f (x) = x3 for all
x, y ∈ R. Assume u is LR-special. Then, by Proposition 8, we have x = f (û(x)) = (û(x))3 for all x ∈ R.
Hence û(x) = 3

√
x for all x ∈ X. This shows that (R, ∗, 0) is completely LR-special.

Proposition 8. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f (x) for all x, y ∈ X. Let u ∈ X and û : X → X be
a map. Then u is LR′-special if and only if f 2(x) = x for all x ∈ X.

Proof. It follows immediately from x = (x ∗ u) ∗ û(x) = f (x) ∗ û(x) = f ( f (x)) for all x ∈ X.

Example 9. Let (X, ·) be a group. We define a binary operation “∗" on X by x ∗ y := x−1, i.e., f (x) = x−1,
for all x, y ∈ X. It follows that f ( f (x)) = (x−1)−1 = x for any x ∈ X, showing that (X, ∗) is a leftoid for f
and it is completely LR′-special.

Let K be a field and let α, β, γ ∈ K. A groupoid (K, ∗) is said to be a linear groupoid if x ∗ y :=
α + βx + γy for all x, y ∈ K. If β = 0, then x ∗ y = α + γy determines a rightoid, and if γ = 0, then
x ∗ y = α + βx determines a leftoid. Let (X, ∗) be a groupoid. A mapping û : X → X is said to have a
fixed point x ∈ X if û(x) = x.

Theorem 4. Let (K, ∗) be a linear groupoid, i.e., x ∗ y := βx + γy for all x, y ∈ K where β, γ ∈ K. Let u be
an LL-special element of (K, ∗) and û be a pseudo inverse of u. If û has a fixed point of u, then either

(i) x ∗ y = −x + γy, γ 6= 0 and û(x) = (1− γ)x + γu, for all x, y ∈ K, or

(ii) x ∗ y = βx + (1− β)y, β 6= 0 and û(x) = 1
β (x− (1− β)u), for all x, y ∈ K.

Proof. Let (K, ∗) be a linear groupoid, i.e., x ∗ y := βx + γy for all x, y ∈ K where β, γ ∈ K. Let
u be an LL-special element of (K, ∗). Then x = (û(x) ∗ u) ∗ x for all x ∈ K. It follows that x =

β(û(x) ∗ u) + γx = β(βû(x) + γu) + γx = β2û(x) + βγu + γx. This shows that

û(x) =
1− γ

β2 x− uβγ

β2 (1)

If we let x := u in (1), then

û(u) =
1
β2 [1− γ(1 + β)]u (2)

Since u is a fixed point of û, i.e., û(u) = u, we have 1− γ(1 + β) = β2. It follows that γ(1 + β) =

(1− β)(1 + β), and hence we have either β = −1 or γ = 1− β. If β = −1, i.e., x ∗ y = −x + γy, γ 6= 0,
then (1) leads to û(x) = (1 − γ)x + γu for all x ∈ K, which is the case (i). If γ = 1 − β, i.e.,
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x ∗ y = βx + (1− β)y, β 6= 0, then (1) leads to û(x) = 1
β x− 1−β

β u, which is the case (ii). This completes
the proof.

Proposition 9. Let (K, ∗) be a linear groupoid with x ∗ y := βx + γy for all x, y ∈ K where β 6= 0, γ ∈ K.
Let u be an LR-special element of (K, ∗) and û be a pseudo inverse of u. If û has a fixed point of u, then
x ∗ y = βx + (1− β)y for all x, y ∈ K and û(x) = (2− β)x + (β− 1)u for all x ∈ K.

Proof. Let (K, ∗) be a linear groupoid with x ∗ y := βx + γy for all x, y ∈ K where β 6= 0, γ ∈ K.
Let u be an LR-special element of (K, ∗). Then x = û(x) ∗ (u ∗ x) for all x ∈ K. It follows that
x = βû(x) + γ(u ∗ x) = βû(x) + γ(βu + γx) = βû(x) + βγu + γ2x. From this equation we obtain

û(x) =
1
β
(1− γ2)x− γu (3)

If we let û(u) = u, then β + γ = 1, i.e., x ∗ y = βx + (1− β)y for all x, y ∈ K and û(x) = 1
β [(1− (1−

β)2)x− β(1− β)u] = (2− β)x + (β− 1)u for all x ∈ K.

Example 10. Let β = γ = 1
2 in Proposition 9. Then x ∗ y = 1

2 (x + y) for all x, y ∈ K and û(x) = 2
3 x− 1

2 u
is the pseudo inverse function of u for all x ∈ K. Hence (K, ∗) is completely LR-special.

Remark 3. In Theorem 4, assume (K, ∗) has an RL-special element u ∈ K. Then there exists a map û : K → K
such that u ∗ (û(x) ∗ x) = x for all x ∈ K. It follows that x = u ∗ (û(x) ∗ x) = α + βu + γ(û(x) + x) =
α + βu + γ(α + βû(x) + γx) = α + βu + αγ + βγû(x) + γ2x and

û(x) =
1

βγ
[(1− γ2)x− α(1 + γ)− βu] (4)

Assume m be a fixed element of û, i.e., û(m) = m. Then, by (4), we obtain m = û(m) = 1
βγ [(1− γ2)m−

α(1 + γ)− βu]. It follows that

m =
α(1 + γ) + βu
1− γ2 − βγ

(5)

when 1− γ2 − βγ 6= 0, i.e., 1 6= γ(β + γ). If α = 0, β = γ = 1
2 in (5), then m = u, i.e., û(u) = u and

x ∗ y = 1
2 (x + y). If α = 0, β = γ = 1 in (5), then m = −u, i.e., û(u) = u and x ∗ y = x + y.

6. Conclusions

Although the idea of what an inverse of an element means is restricted by circumstances , where
these are often unique, or unique “on the left" or “on the right", such as in the theory of groups, or the
multiplicative semigroups of rings; for example, there has not been a detailed study of “inverse types"
that may exist for arbitrary binary systems. Again, it is true that the idea of “inverses" has been touched
upon in more general circumstances [1], even in the ancestral age of such studies, but it has been
limited by the abstractions caused by excess universality, which has not promoted the progress one
desires in a more detailed development such as attempted here. In particular, we have dealt with a
number of classes of binary systems beyond the standard ones, which generate subsemigroups of
(Bin(X),2) or that are otherwise of significance, e.g., groups. The methods developed in this paper
can easily be applied to other classes of binary systems, and if necessary to other systems of “higher”
universal algebra classified types as well.
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