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Abstract: In this article, we study a modified viscosity splitting method combined with inertial
extrapolation for accretive operators in Banach spaces and then establish a strong convergence
theorem for such iterations under some suitable assumptions on the sequences of parameters.
As an application, we extend our main results to solve the convex minimization problem.
Moreover, the numerical experiments are presented to support the feasibility and efficiency of
the proposed method.
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1. Introduction

Throughout this paper, we let E be a real Banach space with norm ‖.‖ and E∗ be its dual space.
The normalized duality mapping J from E into 2E∗ is defined by the following equation:

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖ f ‖‖x‖ = ‖x‖2} ∀x ∈ E.

we denote the generalized duality pairing between E and E∗ by 〈., .〉 and the single-valued duality
mapping by j.

The inclusion problem is to find x ∈ E such that

0 ∈ (A + B)x

where A : E → E is an operator and B : E → 2E is a set-valued operator. Please note that on
the one hand, this problem takes into account some special cases, such as variational inequalities,
convex programming, minimization problem, and split feasibility problem [1–3]. On the other hand,
as an important branch of nonlinear functional analysis and optimization theory, it has been studied
numerous times in the literature to solve the real-world problem, such as machine learning, image
reconstruction, and signal processing; see [4–7] and the references therein.

In 2012, Takashashi et al. [8] studied a Halpern-type iterative method for an α-inverse strongly
monotone mapping A and a maximal monotone operator B in a Hilbert space as follows:

xn+1 = βnxn + (1− βn)(αnu + (1− αn)JB
rn(xn − rn Axn)),

under certain conditions, the algorithm was showed to converge strongly to a solution of A + B.
Furthermore, Lopez et al. [9] introduced the following method for accretive operators:
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xn+1 = αnu + (1− αn)(JB
rn(xn − rn(Axn + an)) + bn),

they studied strong convergence theorems for Halpern-type splitting methods in Banach spaces.
In 2016, Pholasa et al. [10] extended the above results [8,9] and studied the modified forward-backward
splitting methods in Banach spaces:

xn+1 = βnxn + (1− βn)(αnu + (1− αn)JB
rn(xn − rn Axn)),

it was proved that xn converges strongly to a point z = Q(u) under some mild conditions, where Q is
the sunny nonexpansive retraction.

Inertial extrapolation is an important technique to speed up the convergence rate [11–14].
Recently, the fast-iterative algorithms by using inertial extrapolation studied by some authors [15–17].
For instance, in 2003, Moudafi et al. [18] studied the following inertial proximal point algorithm of a
maximal monotone operator: {

yn = xn + θn(xn − xn−1),

xn+1 = (I + λnT)−1(yn).

If λn is non-decreasing and θn ∈ [0, 1) is chosen such that

∞

∑
n=1

θn‖xn − xn−1‖2 < ∞,

then xn converges to a zero point of T. In 2015, Lorenz et al. [19] applied inertial extrapolation
technique to forward-backward algorithm for monotone operators in Hilbert spaces. They proved that
the iterative process defined by {

yn = xn + θn(xn − xn−1),

xn+1 = (I + rnB)−1(yn − rn Ayn).

converges weakly to a solution of the inclusion 0 ∈ (A + B)(x). In 2018, Cholamjiak et al. [20]
proposed a Halpern-type inertial iterative method for monotone operators in Hilbert spaces and they
proved the strong convergence of the algorithm.

Inspired and motivated by the above-mentioned works, we apply inertial extrapolation algorithms
and viscosity approximation to give an extension, and then we study a modified splitting method
for accretive operators in Banach spaces. The strong convergence theorems for such iterations are
established and some applications including the numerical experiments are presented to support our
main theorem.

2. Preliminaries

Recall that a Banach space E is said to be uniformly convex if for any ε ∈ (0, 2], there exists a
δ = δE(ε) > 0 such that x, y ∈ E with ‖x‖ = ‖y‖ = 1, and ‖x − y‖ ≥ ε, then ‖x + y‖/2 ≤ 1− δ.
We denote the modulus of smoothness ρE : R+ → R+ of E as follows:

ρE(t) = sup{‖x + ty‖+ ‖x− ty‖
2

− 1 : ‖x‖ = 1, ‖y‖ = 1},

for 1 < q ≤ 2, a Banach space E is said to be q-uniformly smooth if there exists a constant cq > 0 such
that ρE(t) ≤ cqtq, t > 0. E is said to be uniformly smooth if limn→∞ ρE(t)/t = 0. It is obvious that
q-uniformly smooth Banach space must be uniformly smooth and E is uniformly smooth if and only if
the norm of E is uniformly Fréchet differentiable.
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Let I be the identity operator. We denote by D(A) = {z ∈ E : Az 6= ∅}, R(A) =
⋃{Az : z ∈

D(A)} the domain and range of an operator A ⊂ E× E, respectively. A is called accretive if for each
x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0, ∀u ∈ Ax, v ∈ Ay.

An accretive operator A is called α-inverse strongly accretive, if for each x, y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ α‖u− v‖2, ∀u ∈ Ax, v ∈ Ay.

It is well-known that an accretive operator A is m-accretive if R(I + rA) = E for all r >0.
If A is an accretive operator which satisfies the range condition, then, for each r > 0, the mapping
JA
r : R(I + rA)→ D(A) is defined by JA

r = (I + rA)−1, which is called the resolvent operator of A.
Let C be a nonempty, closed and convex subset of E, and let D be a nonempty subset of C.

A mapping T : C → D is called a retraction of C onto D, if for all x ∈ D, there is Tx = x. We called T is
sunny if T has the following property: T(tx + (1− t)Tx) = Tx for each x ∈ C and t ≥ 0 whenever
tx + (1− t)Tx ∈ C. It is known that a sunny nonexpansive retraction is a sunny retraction which is
also nonexpansive.

The following lemmas are needed to prove our results.

Lemma 1 ([21]). Let E be a smooth Banach space. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀x, y ∈ E.

Lemma 2 ([22]). For any r > 0, give 0 < s ≤ r and x ∈ E, if

Tr := JB
r (I − rA) = (I + rB)−1(I − rA)

then Fix(Tr) = (A + B)−1(0). In addition, there holds the relation

‖x− Tsx‖ ≤ 2‖x− Trx‖.

Lemma 3 ([23]). If a Banach space E is uniformly smooth, then the duality mapping J is single valued and
norm-to-norm uniformly continuous on each bounded subset of E.

Lemma 4 ([21]). Let E be a uniformly smooth Banach space and T : C → C be a nonexpansive mapping with a
fixed point. Let f : C → C be a contraction with coefficient ρ ∈ (0, 1) and t ∈ (0, 1), the unique fixed point
xt ∈ C of the contraction C 3 x 7→ t f (x) + (1− t)Tx converges strongly as t → 0 to a fixed point of T.
Define a mapping Q : C → D by Qu = s− limt→0 xt. Then Q is the unique sunny nonexpansive retract from
C onto D.

Lemma 5 ([24]). Assume {an} ⊂ R+, {δn} ⊂ (0, 1) and {bn} ⊂ R be the sequences such that

an+1 ≤ (1− δn)an + bn, n ≥ 0,

(i) If Σ∞
n=0δn = ∞; (ii) limsupn→∞

bn
δn
≤ 0 or Σ∞

n=1|bn| < ∞; then limn→∞an = 0.

Lemma 6 ([25]). Assume {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− γn)sn + γnτn, n ≥ 1,

sn+1 ≤ sn − ηn + dn, n ≥ 1,



Mathematics 2019, 7, 156 4 of 12

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers and {τn}, {dn} are real
sequences such that

(i) Σ∞
n=0γn = ∞,

(ii) limn→∞ dn = 0,
(iii) limk→∞ ηnk = 0 implies lim supk→∞ τnk ≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ sn = 0.

Lemma 7 ([26]). Let A be a single-valued α-isa in a real uniformly convex Banach space with Fréchet
differentiable norm. Then, for all x, y ∈ E and given s > 0, there exists a continuous, strictly increasing
and convex function Φ : R+ → R+ with Φ(0) = 0 such that

‖Trx− Try‖2 ≤ ‖x− y‖2 − r(2α− rk)‖Ax− Ay‖2 −Φ(‖(I − JB
r )(I − rA)x− (I − JB

r )(I − rA)y‖)

where k is the uniform smoothness coefficient of E.

Lemma 8 ([27]). Let E be a uniformly convex Banach space. Then, for all x, y ∈ E and t ∈ [0, 1], there exists a
convex continuous and strictly increasing function g : [0, ∞)→ [0, ∞) with g(0) = 0 such that

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖).

3. Main Results

Theorem 1. Let E be a uniformly convex and uniformly smooth Banach space. Let A : E → E be an
α-inverse-strongly accretive mapping and B : E → 2E be an m-accretive operator. Assume that Ω =

(A + B)−1(0) 6= ∅. Let f : E→ E be a contraction with coefficient ρ ∈ [0, 1) and {βn} ⊂ (0, 1), {αn},{δn}
be real number sequences in [0, 1) and rn ⊂ (0,+∞). Define a sequence {xn} in E as follows:

wn = xn + αn(xn − xn−1),

yn = δnwn + (1− δn)JB
rn(wn − rn Awn),

xn+1 = βn f (xn) + (1− βn)yn.

(1)

for all n ∈ N, where x0, x1 ∈ E and JB
rn = (I + rnB)−1. Assume that the following conditions hold:

(i)
∞

∑
n=1

αn‖xn − xn−1‖ < ∞;

(ii) lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞;

(iii) 0 < lim inf
n→∞

rn < lim sup
n→∞

rn <
2α

k
;

(iv) lim sup
n→∞

δn < 1.

Then the sequence {xn} converges strongly to z = Q( f (z)), where Q is the sunny nonexpansive retraction
of E onto Ω.

Proof. Let Tn = JB
rn(I − rn A), z = Q( f ). Then, we have

‖yn − z‖ = ‖δnwn + (1− δn)Tnwn − z‖
≤ δn‖wn − z‖+ (1− δn)‖Tnwn − z‖
≤ δn‖wn − z‖+ (1− δn)‖wn − z‖
≤ ‖wn − z‖
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≤ ‖xn + αn(xn − xn−1)− z‖
≤ ‖xn − z‖+ αn‖(xn − xn−1)‖.

In view of Lemma 2, we have

‖xn+1 − z‖ = ‖βn f (xn) + (1− βn)yn − z‖
≤ βn‖ f (xn)− z‖+ (1− βn)‖yn − z‖
≤ βn‖ f (xn)− f (z)‖+ βn‖ f (z)− z‖+ (1− βn)‖yn − z‖
≤ βnρ‖xn − z‖+ βn‖ f (z)− z‖+ (1− βn)(‖xn − z‖+ αn‖(xn − xn−1)‖)
= [1− βn(1− ρ)]‖xn − z‖+ βn‖ f (z)− z‖+ (1− βn)αn‖(xn − xn−1)‖.

From the restriction and Lemma 5, we find that {xn} is bounded. Hence {wn}, {yn} are
also bounded.

Using the inequality in Lemma 1 and Lemma 8, we find that

‖wn − z‖2 = ‖xn + αn(xn − xn−1)− z‖2

≤ ‖xn − z‖2 + 2αn〈xn − xn−1, j(wn − z)〉,
(2)

and

‖xn+1 − z‖2 = ‖βn f (xn) + (1− βn)yn − z‖2

= ‖βn( f (xn)− f (z)) + (1− βn)(yn − z) + βn( f (z)− z)‖2

≤ ‖βn( f (xn)− f (z)) + (1− βn)(yn − z)‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉
≤ βn‖ f (xn)− f (z)‖2 + (1− βn)‖yn − z‖2

− βn(1− βn)g(‖( f (xn)− f (z))− (yn − z)‖) + 2βn〈 f (z)− z, j(xn+1 − z)〉
≤ βnρ2‖xn − z‖2 + (1− βn)‖yn − z‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉.

(3)

In view of Lemmas 7 and 8, we get

‖yn − z‖2 = ‖δnwn + (1− δn)Tnwn − z‖2

≤ δn‖wn − z‖2 + (1− δn)‖Tnwn − z‖2

≤ δn‖wn − z‖2 + (1− δn)[‖wn − z‖2

− rn(2α− rnk)‖Awn − Az‖2 −Φ(‖(I − JB
rn)(I − rn A)wn − (I − JB

rn)(I − rn A)z‖)]
= ‖wn − z‖2 − (1− δn)rn(2α− rnk)‖Awn − Az‖2

− (1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖).

(4)

Substitute (2), (4) into (3), we get

‖xn+1 − z‖2 ≤ βnρ2‖xn − z‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉
+ (1− βn)‖wn − z‖2 − (1− βn)(1− δn)rn(2α− rnk)‖Awn − Az‖2

− (1− βn)(1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖)
≤ βnρ2‖xn − z‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉+ (1− βn)‖xn − z‖2

+ 2(1− βn)αn〈xn − xn−1, j(wn − z)〉 − (1− βn)(1− δn)rn(2α− rnk)‖Awn − Az‖2

− (1− βn)(1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖)
= (1− βn(1− ρ2))‖xn − z‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉
+ 2(1− βn)αn〈xn − xn−1, j(wn − z)〉 − (1− βn)(1− δn)rn(2α− rnk)‖Awn − Az‖2

− (1− βn)(1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖).

(5)
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We can check that βn(1− ρ2)is in (0, 1), by the condition (iii), we can show that (1− βn)(1−
δn)rn(2α− rnk) is positive. Then, we have

‖xn+1 − z‖2 ≤ (1− βn(1− ρ2))‖xn − z‖2 + 2βn〈 f (z)− z, j(xn+1 − z)〉
+ 2(1− βn)αn〈xn − xn−1, j(wn − z)〉,

(6)

and

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1− βn)(1− δn)rn(2α− rnk)‖Awn − Az‖2

− (1− βn)(1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖)
+ 2βn〈 f (z)− z, j(xn+1 − z)〉+ 2(1− βn)αn〈xn − xn−1, j(wn − z)〉.

(7)

For each n ≥ 1, let

sn = ‖xn − z‖2, γn = βn(1− ρ2),

τn =
2

1− ρ2 〈 f (z)− z, j(xn+1 − z)〉+ 2αn(1− βn)

βn(1− ρ2)
〈xn − xn−1, j(wn − z)〉,

ηn = (1− βn)(1− δn)rn(2α− rnk)‖Awn − Az‖2

+ (1− βn)(1− δn)Φ(‖wn − rn Awn − Tnwn + rn Az‖),
dn = 2βn〈 f (z)− z, j(xn+1 − z)〉+ 2(1− βn)αn〈xn − xn−1, j(wn − z)〉.

(8)

we find from (6), (7) that

sn+1 ≤ (1− γn)sn + γnτn,

and also

sn+1 ≤ sn − ηn + dn.

Notice that ∑∞
n=1 βn = ∞, we see that ∑∞

n=1 γn = ∞. By the boundedness of {wn}, {xn} and the
restriction limn→∞ βn = 0, implies that limn→∞ dn = 0.

On the other hand, using Lemma 6, it remains to show that limk→∞ ηnk = 0 implies
lim supk→∞ τnk ≤ 0, for any subsequence {nk} ⊂ {n}. Let ηnk be a subsequence of ηn such that
limk→∞ ηnk = 0. It follows from the restrictions and the property of φ, we derive from (8) the following

lim
k→∞
‖Awnk − Az‖ = 0 = lim

k→∞
‖wnk − rnk Awnk − Tnk wnk + rnk Az‖ = 0.

By the triangle inequality, it turns out that

lim
k→∞
‖Tnk wnk − wnk‖ = 0.

and moreover, since 0 < lim infn→∞ rn, there exists ε > 0, such that rn ≥ ε for all n > 0, in view of the
inequality in Lemma 2, we have

‖Tεwnk − wnk‖ ≤ 2‖Tnk wnk − wnk‖.

It turns out that

lim sup
k→∞

‖Tεwnk − wnk‖ ≤ 0.
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Therefore, we can get

‖Tεwnk − wnk‖ = 0. (9)

Please note that

‖Tεwnk − xnk‖ ≤ ‖Tεwnk − wnk‖+ ‖wnk − xnk‖
≤ ‖Tεwnk − wnk‖+ αn‖xnk − xnk−1‖

We get from condition (i) and (9) that

lim
k→∞
‖Tεwnk − xnk‖ = 0. (10)

Put zt = t f (zt) + (1− t)Tεzt for any t ∈ (0, 1). Apply Lemma 4, we get zt → Q( f ) = z, t → 0.
Then we have

‖zt − xnk‖
2 = ‖t f (zt) + (1− t)Tεzt − xnk‖

2

= ‖t( f (zt)− xnk ) + (1− t)(Tεzt − xnk )‖
2

≤ (1− t)2‖Tεzt − xnk‖
2 + 2t〈 f (zt)− xnk , j(zt − xnk )〉

= (1− t)2‖Tεzt − xnk‖
2 + 2t〈 f (zt)− zt, j(zt − xnk )〉+ 2t〈zt − xnk , j(zt − xnk )〉

≤ (1− t)2(‖Tεzt − Tεwnk‖+ ‖Tεwnk − xnk‖)
2

+ 2t〈 f (zt)− zt, j(zt − xnk )〉+ 2t〈zt − xnk , j(zt − xnk )〉
≤ (1− t)2(‖zt − wnk‖+ ‖Tεwnk − xnk‖)

2

+ 2t〈 f (zt)− zt, j(zt − xnk )〉+ 2t‖zt − xnk‖
2

≤ (1− t)2(‖zt − xnk‖+ αn‖xnk − xnk−1‖+ ‖Tεwnk − xnk‖)
2

+ 2t〈 f (zt)− zt, j(zt − xnk )〉+ 2t‖zt − xnk‖
2

This implies that

〈zt − f (zt), j(zt − xnk )〉 ≤
(1− t)2

2t
(‖zt − xnk‖+ αn‖xnk − xnk−1‖

+ ‖Tεwnk − xnk‖)
2 +

2t− 1
2t
‖zt − xnk‖

2.
(11)

From (10), (11) we obtain

lim sup
k→∞

〈zt − f (zt), j(zt − xnk )〉 ≤
(1− t)2

2t
M2 ++

2t− 1
2t

M2

=
t
2

M2 → 0, as t→ 0,

(12)

for some M > 0 large enough. Since the duality mapping J is norm-to-norm uniformly continuous on
bounded sets of E, we see that ‖j(zt − xnk )− j(z− xnk )‖ → 0, t→ 0. Then, we have that

‖〈zt − f (zt), j(zt − xnk )〉 − 〈z− f (zt), j(z− xnk )〉‖
= ‖〈zt − z + z− f (zt), j(zt − xnk )〉 − 〈z− f (zt), j(z− xnk )〉‖
≤ ‖〈zt − z, j(zt − xnk )〉‖+ ‖〈z− f (zt), j(zt − xnk )〉 − 〈z− f (zt), j(z− xnk )〉‖
≤ ‖zt − z‖‖zt − xnk‖+ ‖z− f (zt)‖‖j(zt − xnk )− j(z− xnk )‖

(13)
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From (12), (13) and let t→ 0, we get that

lim sup
k→∞

〈z− f (z), j(z− xnk )〉 ≤ 0. (14)

On the other hand, we have

‖ynk − xnk‖
= ‖δnk wnk + (1− δnk )Tnk wnk − xnk‖
≤ δnk‖wnk − xnk‖+ (1− δnk )‖Tnk wnk − xnk‖
≤ δnk‖wnk − xnk‖+ (1− δnk )‖Tnk wnk − wnk‖+ (1− δnk )‖wnk − xnk‖
= ‖wnk − xnk‖+ (1− δnk )‖Tnk wnk − wnk‖
≤ αnk‖xnk − xnk−1‖+ (1− δnk )‖Tnk wnk − wnk‖

‖xnk+1 − xnk‖
= ‖βnk f (xnk ) + (1− βnk )ynk − xnk‖
≤ βnk‖ f (xnk )− xnk‖+ (1− βnk )‖ynk − xnk‖
≤ βnk‖ f (xnk )− f (z)‖+ βnk‖ f (z)− xnk‖+ (1− βnk )‖ynk − xnk‖
≤ βnk‖ f (xnk )− f (z)‖+ βnk‖ f (z)− xnk‖
+ (1− βnk )αnk‖xnk − xnk−1‖+ (1− βnk )(1− δnk )‖Tnk wnk − wnk‖

From condition (i),(ii) and (9), we have

lim
n→∞

‖xnk+1 − xnk‖ = 0. (15)

From (14) and (15), we obtain

lim sup
k→∞

〈z− f (z), j(z− xnk+1)〉 ≤ 0.

This implies that lim supk→∞ τnk ≤ 0 that means by Lemma 6, we get limn→∞ sn = 0. Hence, we
see that xn → z, n→ ∞. This finishes the proof.

Corollary 1. Let E be a uniformly convex and uniformly smooth Banach space. Let A : E → E be an
α-inverse-strongly accretive mapping and B : E → 2E be an m-accretive operator. Assume that Ω =

(A + B)−1(0) 6= ∅. Let {βn} ⊂ (0, 1), {αn},{δn} be real number sequences in [0, 1) and rn ⊂ (0,+∞).
Define a sequence {xn} in E as follows:

wn = xn + αn(xn − xn−1),

yn = δnwn + (1− δn)JB
rn(wn − rn Awn),

xn+1 = βnu + (1− βn)yn.

for all n ∈ N, where u, x0, x1 ∈ E and JB
rn = (I + rnB)−1. Assume that the following conditions hold:

(i)
∞

∑
n=1

αn‖xn − xn−1‖ < ∞; (ii) lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞;

(iii) 0 < lim inf
n→∞

rn < lim sup
n→∞

rn <
2α

k
; (iv) lim sup

n→∞
δn < 1.

Then the sequence {xn} converges strongly to z = Q(u), where Q is the sunny nonexpansive retraction of
E onto Ω.
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Proof. In this case, the map f : E→ E defined by f (x) = u, ∀x ∈ E is a strict contraction with constant
ρ = 0. The proof follows from Theorem 1 above.

Corollary 2. Let H be a uniformly convex and uniformly smooth Hilbert space. Let A : H → H be an
α-inverse-strongly monotone operator and B : H → 2H be a maximal monotone operator. Assume that
Ω = (A + B)−1(0) 6= ∅. Let f : H → H be a contraction with coefficient ρ ∈ [0, 1) and {βn} ⊂ (0, 1),
{αn},{δn} be real number sequences in [0, 1) and rn ⊂ (0, 2α). Define a sequence {xn} in E as follows:

wn = xn + αn(xn − xn−1),

yn = δnwn + (1− δn)JB
rn(wn − rn Awn),

xn+1 = βn f (xn) + (1− βn)yn.

for all n ∈ N, where x0, x1 ∈ E and JB
rn = (I + rnB)−1. Assume that the following conditions hold:

(i)
∞

∑
n=1

αn‖xn − xn−1‖ < ∞; (ii) lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞;

(iii) 0 < lim inf
n→∞

rn < lim sup
n→∞

rn <
2α

k
; (iv) lim sup

n→∞
δn < 1.

Then the sequence {xn} converges strongly to z = P( f (z)), where P is the metric projection of H onto Ω.

Proof. We only need to replace Banach space E with Hilbert space H in the proof of Theorem 1.

Corollary 3. (Convex minimization problem) Let H be a real Hilbert space. Let f : H → R be a convex
and differentiable function with K-Lipschitz continuous gradient ∇ f and g : H → R a convex and lower
semi-continuous function which f + g attains a minimizer. Let{βn} ⊂ (0, 1), {αn},{δn} be real number
sequences in [0, 1) and rn ⊂ (0, 2α). Define a sequence {xn} in H as follows:

wn = xn + αn(xn − xn−1),

yn = δnwn + (1− δn)J∂g
rn (wn − rn∇ f (wn)),

xn+1 = βn f (xn) + (1− βn)yn.

for all n ∈ N, where x0, x1 ∈ E and JB
rn = (I + rnB)−1. Assume that the following conditions hold:

(i)
∞

∑
n=1

αn‖xn − xn−1‖ < ∞; (ii) lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞;

(iii) 0 < lim inf
n→∞

rn < lim sup
n→∞

rn < 2α; (iv) lim sup
n→∞

δn < 1.

Then the sequence {xn} converges strongly to a minimizer of f + g.

Proof. We get that gradient ∇ f is K-Lipschitz continuous, then it is 1
K inverse strongly monotone,

and g is a convex and lower semi-continuous function, so ∂g is maximal monotone. Thus, let A = ∇ f
and B = ∂g in Theorem 1, the conclusion of Theorem 1 still holds.

4. Applications and Numerical Experiments

In this section, we give a concrete example of the numerical results to support the main theorem.
Furthermore, we give it to compare the efficiency of our proposed algorithm with the algorithm of
Pholasa et al. [10]. And we also show the algorithm presented in this paper converges more quickly.
The whole codes are written by Matlab R2013b. All the results are carried out by personal computer
with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz and RAM 8.00GB.
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Example 1. Let l3 be a uniformly convex and uniformly smooth Banach space, we set Ax = 5x +

(1, 1, 1, 0, 0, 0...) and Bx = 6x where x = (x1, x2, x3, ...) ∈ l3. We can check that A : l3 → l3 is a 1
5 -isa,

B : l3 → l3 is an m-accretive operator and R(I + rB) = l3 for all r > 0. we take rn = 0.02, αn = 0.4 for
all n ∈ N. Let βn = 1

1000n+1 , δn = 1
200n and f (x) = 1

3 x be a contraction with coefficient ρ = 1
3 . Starting

x0 = (1.8, 3.2, 9.6, ...), x1 = (1.4290014, 2.5542525, 7.6982578, ...) and using algorithm (1) in Theorem 1,
we obtain the following numerical results.

From Table 1 we see that x600 = (−0.0909,−0.0909,−0.0909, 0.0000, 0.0000, 0.0000, ...) is an
approximation of a solution with an error 1.8770214× 10−9. And we make the same choices for x1 as reported
in Table 1. In terms of the number of iterations and the errors, we provide the numerical examples to demonstrate
the performance and to compare our proposed algorithm with the iterative algorithm with αn = 0.

In these 600 experiments, Table 2 shows that the final approximation solution is the same as Table 1.
Figure 1 shows that the number of iterations and errors of our algorithm and the algorithm with αn = 0
for the above initial points. We can see that the convergence of our algorithm is faster than the algorithm of
Pholasa et al. [10].

Table 1. Numerical results of Example 1 for iteration process.

n xn ‖xn+1− xn‖l3

1 (1.4290014, 2.5542525, 7.6982578, 0.0000000, 0.0000000, 0.0000000, ...) 2.1732179
10 (−0.0677632,−0.0506892, 0.0273635, 0.0000000, 0.0000000, 0.0000000, ...) 8.911330× 10−2

20 (−0.0908530,−0.0908328,−0.0907403, 0.0000000, 0.0000000, 0.0000000, ...) 1.9408448× 10−4

30 (−0.0908917,−0.0908919,−0.0908926, 0.0000000, 0.0000000, 0.0000000, ...) 6.7808717× 10−7

40 (−0.0908964,−0.0908964,−0.0908964, 0.0000000, 0.0000000, 0.0000000, ...) 5.1789690× 10−7

50 (−0.0908991,−0.0908991,−0.0908991, 0.0000000, 0.0000000, 0.0000000, ...) 3.1714100× 10−7

60 (−0.0909009,−0.0909009,−0.0909009, 0.0000000, 0.0000000, 0.0000000, ...) 2.1345961× 10−7

70 (−0.0909021,−0.0909021,−0.0909021, 0.0000000, 0.0000000, 0.0000000, ...) 1.5346777× 10−7

80 (−0.0909030,−0.0909030,−0.0909030, 0.0000000, 0.0000000, 0.0000000, ...) 1.1564503× 10−7

90 (−0.0909037,−0.0909037,−0.0909037, 0.0000000, 0.0000000, 0.0000000, ...) 9.0267844× 10−8

100 (−0.0909043,−0.0909043,−0.0909043, 0.0000000, 0.0000000, 0.0000000, ...) 7.2416422× 10−8

200 (−0.0909067,−0.0909067,−0.0909067, 0.0000000, 0.0000000, 0.0000000, ...) 1.7357133× 10−8

300 (−0.0909075,−0.0909075,−0.0909075, 0.0000000, 0.0000000, 0.0000000, ...) 7.6097663× 10−9

400 (−0.0909079,−0.0909079,−0.0909079, 0.0000000, 0.0000000, 0.0000000, ...) 4.2517012× 10−9

500 (−0.0909082,−0.0909082,−0.0909082, 0.0000000, 0.0000000, 0.0000000, ...) 2.7101525× 10−9

600 (−0.0909083,−0.0909083,−0.0909083, 0.0000000, 0.0000000, 0.0000000, ...) 1.8770214× 10−9

Table 2. Numerical results for iteration process Algorithm (1) with αn = 0 in Example 1.

n xn ‖xn+1− xn‖l3

1 (1.4290014, 2.5542525, 7.6982578, 0.0000000, 0.0000000, 0.0000000, ...) 1.9308196
10 (0.1216527, 0.2789583, 0.9980697, 0.0000000, 0.0000000, 0.0000000, ...) 2.702205× 10−1

20 (−0.0670158,−0.0493531, 0.031391, 0.0000000, 0.0000000, 0.0000000, ...) 3.034530× 10−2

30 (−0.0882106,−0.0862275,−0.0771619, 0.0000000, 0.0000000, 0.0000000, ...) 3.407800× 10−3

40 (−0.0905947,−0.0903721,−0.0893543, 0.0000000, 0.0000000, 0.0000000, ...) 3.8297598× 10−4

50 (−0.0908649,−0.0908399,−0.0907256, 0.0000000, 0.0000000, 0.0000000, ...) 4.3220033× 10−5

60 (−0.0908968,−0.0908940,−0.0908812, 0.0000000, 0.0000000, 0.0000000, ...) 5.0028407× 10−6

70 (−0.0909015,−0.0909012,−0.0908997, 0.0000000, 0.0000000, 0.0000000, ...) 6.7427458× 10−7

80 (−0.0909028,−0.0909028,−0.0909026, 0.0000000, 0.0000000, 0.0000000, ...) 1.7183921× 10−7

90 (−0.0909036,−0.0909036,−0.0909036, 0.0000000, 0.0000000, 0.0000000, ...) 9.9664118× 10−8

100 (−0.0909042,−0.0909042,−0.0909042, 0.0000000, 0.0000000, 0.0000000, ...) 7.5993686× 10−8

200 (−0.0909067,−0.0909067,−0.0909067, 0.0000000, 0.0000000, 0.0000000, ...) 1.7674516× 10−8

300 (−0.0909075,−0.0909075,−0.0909075, 0.0000000, 0.0000000, 0.0000000, ...) 7.6990015× 10−9

400 (−0.0909079,−0.0909079,−0.0909079, 0.0000000, 0.0000000, 0.0000000, ...) 4.2884018× 10−9

500 (−0.0909082,−0.0909082,−0.0909082, 0.0000000, 0.0000000, 0.0000000, ...) 2.7286629× 10−9

600 (−0.0909083,−0.0909083,−0.0909083, 0.0000000, 0.0000000, 0.0000000, ...) 1.8876276× 10−9
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Figure 1. Error plotting of ‖xn+1 − xn‖l3 .

5. Conclusions

In this paper, we give a modified inertial viscosity splitting algorithm for accretive operators in
Banach spaces. The strong convergence theorems are established, and the numerical experiments are
presented to support that the inertial extrapolation greatly improves the efficiency of the algorithm.
In Theorem 1 and Corollary 1, if f (xn) = u and A is an inverse strongly monotone operator in Hilbert
space, it is the main results of Cholamjiak et al. [20]. In Theorem 1, if αn = 0, f (xn) = u and E is a
uniformly convex and q-uniformly smooth Banach space, it is the main results of Pholasa et al. [10].
Furthermore, some other results are also improved (see [8,9,18,19,26]).

The introduction of the inertial viscosity splitting algorithms sheds new light on inclusion
problem. Combined with recent research findings ([4,13,19,20]), Theorem 1 can be further applied to
the fixed-point problem, the split feasibility problem and the variational inequality problem. Indeed,
it is an important but unsolved problem to choose the optimal inertia parameters αn in the acceleration
algorithm. In the future, more work will be devoted to the wide application of the proposed algorithm
and the improvement of its convergence rate.
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