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Abstract: In this paper, we present several new inequalities for weaving frames in Hilbert spaces
from the point of view of operator theory, which are related to a linear bounded operator induced by
three Bessel sequences and a scalar in the set of real numbers. It is indicated that our results are more
general and cover the corresponding results recently obtained by Li and Leng. We also give a triangle
inequality for weaving frames in Hilbert spaces, which is structurally different from previous ones.
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1. Introduction

Throughout this paper, H is a separable Hilbert space, and Idyy is the identity operator on H.
The notations J, R, and B(H) denote, respectively, an index set which is finite or countable, the real
number set, and the family of all linear bounded operators on H.

A sequence F = {f;}jcy of vectors in H is a frame (classical frame) if there are constants A, B > 0
such that

Allx|? < 30 [Cx /)P < Bllx|?,  vx €l ©)
jed
The frame F = {f;};cy is said to be Parseval if A = B = 1. If ' = {f;} <7 satisfies the inequality to
the right in Equation (1) we say that 7 = {f;}cJ is a Bessel sequence.

The appearance of frames can be tracked back to the early 1950s when they were used in the
work on nonharmonic Fourier series owing to Duffin and Schaeffer [1]. We refer to [2-16] for more
information on general frame theory. It should be pointed out that frames have played an important
role such as in signal processing [17,18], sigma-delta quantization [19], quantum information [20],
coding theory [21], and sampling theory [22], due to their nice properties.

Motivated by a problem deriving from distributed signal processing, Bemrose et al. [23] put
forward the notion of (discrete) weaving frames for Hilbert spaces. The theory may be applied to deal
with wireless sensor networks that require distributed processing under different frames, which could
also be used in the pre-processing of signals by means of Gabor frames. Recently, weaving frames
have attracted many scholars’ attention, please refer to [24-30] for more information.

Balan et al. [31] discovered an interesting inequality when further discussing the remarkable
Parseval frames identity arising in their work on effective algorithms for computing the reconstructions
of signals, which was then extended to general frames and alternate dual frames [32], and based on the
work in [31,32], some inequalities for generalized frames associated with a scalar are also established
(see [33-35]). Borrowing the ideas from [34,35], Li and Leng [36] have generalized the inequalities for
frames to weaving frames with a more general form. In this paper, we present several new inequalities
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for weaving frames and we show that our results can lead to the corresponding results in [36]. We also
obtain a triangle inequality for weaving frames, which differs from previous ones in the structure.

One calls two frames F = {f;};cy and G = {g;} ey in H woven, if there exist universal constants
C and D such that for each partition ¢ C J, the family {f;};cs U {gj}coc is a frame for H with frame
bounds C and D and, in this case, we say that {f;}jc; U {gj}jcoc is a weaving frame.

Suppose that F = {f;}icy and G = {g;};cy are woven, then associated with every weaving frame
{fitico U{gj}jcoe there is a positive, self-adjoint and invertible operator, called the weaving frame
operator, given below

Sw:H—H, Syx= Z<x,f]>f]+ Z<x/g]>g]

jeo jeo*
We recall that a frame H = {/;}cJ is said to be an alternate dual frame of {f;}jc, U {gj} e if

x = Z(x,fjﬂlj + E (x,gj>hj ()

jeo jeot

is valid for every x € H.
For each o C J, let §% be the positive and self-adjoint operator induced by ¢ and a given frame
F = {fj}jey of H, defined by

SE:H—H, SEx=) (xfi)fj

jeo

Let 7 = {f;}jc1, G = {8j}jer, and H = {h;};cy be Bessel sequences for H, then it is easy to check
that the operators

Srgu :H —H, Srgyx= Z<x,f]‘>h]' + Z <x,g]‘>h]‘ 3)
jeo jeot
and
Surg W —H, Syrgx =3 (xh)fi+ ) (xh))g; @)
jeo jeoe

are well-defined and, further, S rgy, Sy rg € B(H).

2. Main Results and Their Proofs

We start with the following result on operators, which will be used to prove Theorem 1.
Lemmal. If P,Q,L € B(H) satisfy P+ Q = L, then for any A € R,

2
PP S (QLALQ) = QQ (- M) (P LELP) + (A DL'L> (A~ S)L L

Proof. We have A A
PP+ 2 (QL+L7Q) = P'P— Z(P'L+ L*P) + AL'L,

and
Q Q-l—(l—E)(P L+L*P)+ (A—1)L*L="P P_E(P L+ L*P)+AL*L
A A A2 A2
— _ - * _ _ * > _ * .
(P 2L) (P 2L)+()\ T JL*L > (A T )L*L

Thus the result holds.

Taking 2 instead of A in Lemma 1 yields an immediate consequence as follows.
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Corollary 1. If P,Q,L € B(H) satisfy P+ Q = L, then for any A € R,
P*P+A(Q'L+L*Q) = Q*Q+ (1= A)(P*L+L*P) + (2A — 1)L*L > (2A — A})L*L.

Theorem 1. Suppose that two frames F = {f;}jcy and G = {g;} ey in H are woven, and that H = {h;};c;
is a Bessel sequences for H. Then for any o C I, for all A € R and all x € H, we have

2 2

| e 1| +Re ot )0 Smgnen) = et 0| +Re ol )0y Sroms) )
> (A= A )Re Tjco(x, £i) (1, Srgnx) + (1 — 4 )Re Ljc e (x, 85) (), S rgax)
and
2 2
‘ Yieo (X 1) fi|| +Re Ljeoe (x, 1) (gj, Surgx) = ‘ Yicoe(x, hj)gj| +Re Ljcq(x, hj)(fj, Surgx) ©)
> (24 = A%)Re Lico (%, 1) (fj, Surgx) + (1 — A*)Re Licpe (¥, 1) (8, SurgXx),

where S gy and Sy rg are defined respectively in Equations (3) and (4).

Proof. For any ¢ C J, we define

Px=1Y (x,fj)hj and Qx= Y (x,gj)hj, VxeH. @)

jeo jeo*

Then P, Q € B(H), and a simple calculation gives

Px+Qx =Y (x,f)hj+ Y (x,8))hj = Srgnx.
jeo jeoe

By Lemma 1 we obtain

* A' *
x|+ ARe (ST Qx, %) = | Qx| +2(1 — 2)Re(SgpPx, ) + (A = DIIS gl

Therefore,

A \

1Px|[? = [1Qx|1* +2(1 — 5 )Re(SFgp P, x) + (A — 1)Re(Srgax, Srgnx) — ARe(Srgy Qx, x)
= [|Qx|[* +2Re(Skgy Px, x) — ARe((P + Q)x, Srgux) + (A — 1)Re(Srgnx, Srgmx)
= || Qx||* +2Re(Skgy, Px, x) — Re(Srgux, Srgux)
= [|Qx|[* + 2Re(Px, Srgyx) — Re(Px, Srgyx) — Re(Qx, Srgnx)
= [1Qx[|* + Re(Px, Srgyx) — Re(Qx, Srgux),

from which we conclude that

2

Y (x fihi|| +Re Y (x,8;) (hj, Srgnx)
jeo jeo*
= ||Px||* + Re(Qx, Srgnx) = ||Qx||* + Re(Px, Srgyx) 8)
2
= 1| ) (x, gk +Re ) (x, f;) (hj, Srgnx).
jeoe jeo
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For the inequality in Equation (5), we apply Lemma 1 again,

IPx[|* + ARe(S’g3 Qx, x) > (A — =) SFauSronx.x)

for any x € H. Hence

A2 N
|Px||> > (A — Z)<5ng5ngx, x) — ARe(Qx, S gy x)
A2 A2
=(A— T A)Re(Qx, S;ng> + (A - Z)Re(Px, S]:gyx> 9)

A? A?
=(A— Z)Re{Px, Sroux) — ZRe(Qx, Srgux),

and consequently,

2

Y (x, fidhi|| +Re Y (x,8)(hj, Srgux) = ||Px|* + Re(Qx, S rgnx)
jeT jeoe
A2 A2
> (A= T )Re(Px, Srgux) + (1= T)Re(Qx, S o)
A2 A2
= (A= )Re Lo (x, £i) (hj, Srgux) + (1= T)Re 1 (x, ) {hj, S ).
jET jeo*

Similar arguments hold for Equation (6), by using Corollary 1. O

Corollary 2. Let two frames F = {f;}jcy and G = {g;} ey in H be woven. Then for any o C J, forall A € R
and all x € H, we have

YS! SFx )P+ 1 (S SFx. gi) P+ 3 [(x, 81

jeo jeo* jeoe
= Y ISw'SG x fi)l? + X 1(Sw'SG 2.8 2+ X v, )
jeo jeoe jeo
A? 2 A? 2
> A=) XK I+ A=) 3 [(xgpl™
47 4’ =
jec 5%

Proof. For each j € J, taking
1
Swifi, jEo,
hj = { i
Sw'8j, JEU.
Then, clearly, H = {hj}jcy is a Bessel sequence for H. Since for any x € H, Srgyx =
1 1 1 1 1
Yico X fi) S’ fi + Ljcoe (¥, 87)Sw” 8j = Sw” Swx = Sjyx, we have Srgy = Sj;. Now

2

2 ’

szea<x,ﬁ>hj

1 1
\zjea<x,ﬁ>sww St Sico (6, £,
_1 _1 _1
= [|Sy? SEx||? = (S?S%x, Sy S%x) (10)
= Yico (S %X, fi) (fjs S SFx) + Ljcoe (S S5, 87) (87, Sy SFx)
= Yico (S S5, f)|* + Ljcoe (S Sx, 8)) |

2
1
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A similar discussion leads to

2
Y (ogil| = Y HSAsg x )P+ X 15! S5x, g2 a1
jeo* jeo jeo*
We also get
_1 1
Re ) (x, fj){hj, Sronx) = Re ) {x, i) (S fi, Siyx) = Y [{x, fi) % (12)
jeo jeo jeo
and ) )
Re Y (x,8)(hj, Srgux) =Re }_ (x,8))(Sp’ g, Six) = Y |(x, g) > (13)
jeot jeot jeT*

Thus the result follows from Theorem 1. [

Corollary 3. Suppose that two frames F = {f;}icy and G = {g;} ey in H are woven. Then for any o C J,
forall A € Rand all x € H,

2

Y (xh)g;

jeoe

Y (% hy)fi

jeo

2: Re( Z (x, hj><g]-,x>> +

jeot

Re(Z(x,h]->(fj,x))+

jET

> (24 — /\z)Re<2<x,hj>(fj, x)) +(1- /\Z)Re(z (x,hi)(gj, x)),

jE(T ]'ch
where H = {h;};cy is an alternate dual frame of the weaving frame {f;}jco U {g;}jcoc-
Proof. For any ¢ C J, since H = {hj}je j is an alternate dual frame of the weaving frame { fi } jec U
{8j}jeoc, Equation (2) gives
x =) (o) fi+ ) (xhpg
jeo jeo*

for any x € H and thus, Sy 7g = Idy. By Theorem 1 we obtain the relation shown in the corollary. [
Remark 1. Corollaries 2 and 3 are respectively Theorems 7 and 9 in [36].

Theorem 2. Suppose that two frames F = {f;}jcyand G = {g;} ey in H are woven, and that H = {h;};c;
is a Bessel sequences for H. Then for any o C I, for all A € R and all x € H, we have

2
Re ) (x, fj) (hj, Srgnx) — || Y_(x, fj)hj
jeo jeo (14)
A2 Ao
< TR ) (%8 Srgnx) + (1= 5)"Re Y (x, fj) () Sranx),
jeoe jeo
and
2 2
(% fidhy|| +| L (% gi)h
jeo jeo* (15)
/\2 A2
> (20 = 5 = DRe } (x, fi) (b, Srgnx) + (1= 5 )Re ) (x,8;) (hj, Srgnx),
jET jeoe

where S rgy is defined in Equation (3).
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Moreover, if the operators P and Q given in Equation (7) satisfy the condition that P*Q is positive, then

2

0 <Re) (x, fj)(hj, Sronx) — || Y_(x fihj| ,
jeo jeo
and
2 2
Y x|+l Y (o gidhi|| < ISFgnx®.
jeo jeoe

Proof. For any o C J, let P and Q be defined in Equation (7). Then all A € R and all x € H, we see
from Equation (9) that

2

Re Y (x, fi) (hj, Sronx) — || 1 (% fi)k;|| = Re(Px, Srgnx) — ||Px]?
jeo jeo
A2 A2
< Re(Px, Spgux) + -Re{Qx, Spgyx) — (A — - )Re(Px, Spgyx)

A? A?
= ZRe(Qx, Sroux)+(1—A+ Z)R6<Px, SFouX)

A2 A
= ZRE(QX, S]:g}[x> +(1- E)zRe<Px, S]:gHX>

2
= 2Re Y {x,8)) Iy Sronx) + (1 5)Re Y- (x, fi) Iy, Sronx).

jeoe jeo
We next prove Equation (15). By combining Equation (8) with Equation (9) we conclude that

2 2

Y fidky|| || 2o (X gi)h
jeo jeoe
= || Px[|* + [ Qx||* = 2|| Px||* + Re(Qx, S rgx) — Re(Px, Srgux)
2 2
> (20 — %)Re(Px, Srapx) — %Re(Qx, S ranx) + Re(Qx, S ranx) — Re(Px, S rgnx)
A2 AZ
= (2)\ — 7 — 1)Re<Px, S;ng> + (1 - 7)Re<Qx, S]:gHX>
A? A?
= (2)\ 5 1)Re Z(x,f/><h], S;g;p() + (1 — 7)Re Z <x,g]> <h], S]:gq.lx>, Vx € H.
jeor jeo*

Suppose now that P*Q is positive, then for any x € H,

2

Re Y (x, fi) (hj, Srgnx) — || Y_(x, fj)hj|| =Re(Px,Srgyx) — Re(Px, Px)
jeo jeo
= Re(Px, Qx) = Re(P*Qx,x) > 0.
Noting that

|Px|[*> = [|Qx|[|* — Re(Qx, Spgx) + Re(Px, Srgyx)
= Re(Qx, Qx) — Re(Qx, Srgyx) + Re(Px, Srgy x)
= —(Re(Qx, Srgux) —Re(Qx, Qx)) + Re(Px, S gy x)
= —Re(Qx, Px) + Re(Px, S rgyx) < Re(Px,Srgux),



Mathematics 2019, 7, 141 7 of 11

and similarly,
|Qx[* < Re(Qx, Srgnx),
we obtain

2 2

(%, fi)hj = |[Px|* + | Qx|I?

jeo

Y (x,8)hj

jeoe

< Re(Px, S gy x) + Re(Qx, S rgy x)
= Re(Px + Qx, S]:gq.[x> = HS]:ngHZ,

and the proof is completed. [

Remark 2. Suppose that the weaving frame {f;} ey U {8} jeo< is Parseval for each ¢ C J, and letting h; = f;
ifj € cand hj = g if j € 0°, then it is easy to check that the operator P*Q is positive.

Corollary 4. Suppose that two frames F = {f;}jcyand G = {g;};cy in H are woven. Then for any o C J,
forall A € R and all x € H, we have

0< ) I(x )P = XIS SFx fi) P = Y 1Sy S5, 70

jea jeo jeot

<*Z|M’;I2 L fi) P

jeoe jeo

(16)

2)\———1 2| f]|2 Z|xg]
jeo jeoe
<Y HSW' SFx )P+ ) [(Sy' ST, 81
je(?' jGO'C (17)
+ Y (Sw'SE x 1P+ Y 1(Si'SG x.8) 7

jeo jeoe

<Y )P+ Y Kxgpl®

jeo jeoe

Proof. Let H = {h;}cy be the same as in the proof of Corollary 2. By combining Equations (10) and (12),
and Theorem 2 we arrive at

Y )P = L HSw' SFx fi)l? = 10 1(Sw' S, 8))

jeo jeo jeat
2
= Re Z(x,f]><h], S]:ng> — Z(x,ﬁ)h]
jeo jeo
A2 A
< ZRG Y (%8 (hy Srgmx) + (1= 5)"Re ) _(x, fj) (b, Srgmx)
jeoe jeo
T Z [ gi) P+ (1= 22 L 1(x /)l
]eaf jeo

_1
for each x € H. Let P and Q be given in Equation (7). Then a direct calculation shows that P = S,* S

_1 _1 _1 _1 _1
and Q = S,/° Sgc and, P*Q = S‘}S;vlsgc as a consequence. Since S,,*S%S,* and S,* SgSW2 are
positive and commutative,

_1 -1 1 . 1 _1 c 1
0 < S’ SESW S ST S = S SFSW'S% S,
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implying that S%S, 15‘7 = P*Q > 0. Again by Theorem 2,

2
0 <Re) (x,fj)(hj, Srgnx) — || Y_(x, fj)hj
jEo jeo
= Ll i) = LS S5 )2 = 1 15 S5, 7).
jer jeo jeot

We are now in a position to prove Equation (17). By Equations (10) and (11) we have

2 2
Y (% fih Y (x,gi)h;
jeo jea* (18)
= L USw ST i)+ 10 [(Sy! 852 gi) P+ Yo [(Sy! S x, f) P + 1 1(S'SG x.)) 17
jeo jeo* jeo jeoe

for any x € H. We also have

IS Fgaxll* = ||5 x|? = (Swx,x) = Y [ x )P+ ) Hx )

jeo jeoe

This together with Equations (12), (13) and (18), and Theorem 2 gives Equation (17). O

Remark 3. Inequalities (16) and (17) in Corollary 4 are respectively inequalities in Theorems 14 and 15 shown
in [36].

Suppose that F = {f;}jc5, G = {gj}jes, and H = {h;}cy are Bessel sequences for H, and that
{a;} ey is a bounded sequence of complex numbers. For any ¢ C J and any x € H, we define linear
bounded operators E?, E°, F” and F’* respectively by

Efx =Y (1-a){xh)f;, ETx=3 (1-a)xh)g

jeo jeoe

and

x—sz f], Fx—Zoc

jeo jeot

We are now ready to present a new triangle inequality for weaving frames.

Theorem 3. Suppose that two frames F = {f;}jcy and G = {g;};ey in H are woven. Then for any bounded
sequence {a;}jcy, for all o C J and all x € H, we have

2

3 2
Z <
2l <

Y ai(x hy)g+ ) aj(x

jeo* jeo

34 EU—I—EUE—FU—I—FVC 2

+Re(2(l—o¢)< Y fix)+ Y (1—aj)(x, k) (g, x >)

jET je€o*

(19)

where H = {h;}cy is an alternate dual frame of the weaving frame {f;}ic, U {g;}jcoc-
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Proof. For any - C J, since CH = {hj} ey is an alternate dual frame of the weaving frame {f;};c, U
{8i}jeoe, EY + E7 + F7 4+ F7 = Idy. For any x € H we obtain

Z wj{x, hi)gi + sz

jeot jeo

= ((F7 4+ F7)*(F" + F")x, x) + Re((E7x, x) + (E x, x))

((E”+E7 + (E7)" + (E7)")x,x) + ((Idg — (E7 + E))*(Idw — (E7 + E7))x,x)

2
—I—Re(Z(l—zxj)( ) (firx) + Z (1 —aj)(x, hj)(gj,x ))

jeo jeo*

Ty 5 (B + B+ (') (E7)) + (E7 + )" (B° + E) ), ) 20

(
(( (E°+E”) — IdH> ' <(E‘7 +E%) — ;IdH> +ZIdH> x,x>

2

= ’( (E7 4+ E™) — IdH) —i—ZHtz
> 2|2
On the other hand we get
2
L oyt tlgy + Syl | +Re( S - a)x ) () + (1= ) (1) 5,
jeo* jeo jeo jeot

= ((F7 + F)x, (F" + F")x) + Re((E” + E7')x, x)

((F" + F7)x, (F7 + F")x) + Re((x,x) — ((F" + F")x,x))

= (x,x) — Re((F7 + F7)x,x) + ((F" + F7)x, (F7 + F" )x)

= (x,x) — Re((F7 + F")x, (E° + E)x)
(

1 o load o load
§<(E +E% )x, (F7 + F7 )x) 1)
J(E7+E7) + (F7 + F7))x)

((F7+F)x, (E7+ E )x) —

N\H

= (x,x) —

3 1 :
= Jlxl? + (((B7+ E7) + (F" + F"))x

))x
1, - 1
~5((F + F%)x, (E7 4 E7)x) — 3

= el + G + ) — (P 4+ F ), (B + %) — (F° + F))x)

((E” + E7)x, (F7 + F")x)

3 1 C C
< Il + g (BT + E7) = (F7+ F7) |21 x|

_ 3+ H(EU+EUC) — (FU+P0C)H2HXHZ
= 1 .

This along with Equation (20) yields Equation (19). O

Corollary 5. Suppose that two frames F = {f;}icy and G = {g;};ey in H are woven. Then for all ¢ C J and
all x € H, we have

3+1189,5 — S, 7|12
+Re 2 g], x) < g4 ||x||2,

jeoe

el <

L (x/hp)fj

jET

where S%g/ S9, 7 € B(H) are defined respectively by

Shgx = Y {xhpg; and Sfrx =Y (xh)f;,

jeot jeo
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and H = {h;}jcy is an alternate dual frame of the weaving frame {f;}ico U {8} jcoe-

Proof. The conclusion follows by Theorem 3 if we take

o 1, jeo,
7710 jeos
]
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