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Abstract: We focus on the improvement of operator Kantorovich type inequalities. Among the
consequences, we improve the main result of the paper [H.R. Moradi, I.H. Gümüş, Z. Heydarbeygi,
A glimpse at the operator Kantorovich inequality, Linear Multilinear Algebra, doi:10.1080/
03081087.2018.1441799].
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1. Notation and Preliminaries

At the beginning of this paper, we cite the following inequality which is called the operator
Kantorovich inequality [1]:

Φ
(

A−1
)
≤ (M + m)2

4Mm
Φ(A)−1 (1)

where Φ is a normalized positive linear map from B (H) to B (K), (we represent H and K as complex
Hilbert spaces throughout the paper) and A is a positive operator with spectrum contained in [m, M] with
0 < m < M. This is a non-commutative analogue of the classical inequality [2],

〈Ax, x〉
〈

A−1x, x
〉
≤ (M + m)2

4Mm

where x ∈ H is a unit vector.
In recent years, various attempts have been made by many authors to improve and generalize the

operator Kantorovich inequality. One may see the basic references [3–5] and the excellent survey [6] on
this topic. In [7], it was shown that

Φ
(

A−1
)
≤ Φ

(
m

A−MI
M−m M

mI−A
M−m

)
≤ (M + m)2

4Mm
Φ(A)−1. (2)
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The main aim of the present short paper is to improve both inequalities in (2). Actually, we prove that

Φ
(

A−1
)
≤ Φ

((
A−

(√
m−
√

M
)2

r(A)

)−1
)

≤ Φ
((

m
A−MI
M−m M

mI−A
M−m

)−1
)

≤ (M + m)2

4Mm
Φ(A)−1 −


(√

M−
√

m
)2

Mm

 r(A)

where r(A) = min
{

MI−A
M−m , A−mI

M−m

}
= 1

2 I − 1
M−m

∣∣∣A− M+m
2 I

∣∣∣.
In what follows, an operator means a bounded linear one acting on a complex Hilbert space H.

As customary, we reserve m, M for scalars and I for the identity operator. A self-adjoint operator A is said
to be positive if 〈Ax, x〉 ≥ 0 holds for all x ∈ H. A linear map Φ is positive if Φ (A) ≥ 0 whenever A ≥ 0.
It is said to be normalized if Φ (I) = I. We denote by σ (A) the spectrum of the operator A.

2. Main Results

Before we present the proof of our theorems, we begin with a general observation. We say that a
non-negative function f on [0, ∞) is geometrically convex [8] when

f
(

a1−vbv
)
≤ f (a)1−v f (b)v (3)

for all a, b > 0 and v ∈ [0, 1]. Equivalently, a function f is geometrically convex if and only if the associated
function F (y) = log ( f (ey)) is convex.

Example 1 ([9] Example 2.12). Given real numbers ci ≥ 0 and pi ∈ (−∞, 0] ∪ [1, ∞) for i = 1, · · · , n, the
function f (t) = ∑n

i=1 citpi is geometrically convex on (0, ∞).

Kittaneh and Manasrah [10] Theorem 2.1 obtained a refinement of the weighted arithmetic-geometric
mean inequality as follows:

a1−vbv ≤ (1− v) a + vb− r
(√

a−
√

b
)2

(4)

where r = min {v, 1− v}.
Now, if f is a decreasing geometrically convex function, then

f ((1− v) a + vb) ≤ f
(
((1− v) a + vb)− r

(√
a−
√

b
)2
)

≤ f
(

a1−vbv
)

≤ f (a)1−v f (b)v

≤ (1− v) f (a) + v f (b)− r
(√

f (a)−
√

f (b)
)2

≤ (1− v) f (a) + v f (b)

(5)



Mathematics 2019, 7, 139 3 of 7

where the first inequality follows from the inequality (1− v) a + vb− r
(√

a−
√

b
)2
≤ (1− v) a + vb and

the fact that f is decreasing function, in the second inequality we used (4), the third inequality is obvious
by (3), and the fourth inequality again follows from (4) by interchanging a by f (a) and b by f (b).

Of course, each decreasing geometrically convex function is also convex. However, the converse does
not hold in general.

The inequality (5) applied to a = m, b = M, 1− v = M−t
M−m , and v = t−m

M−m gives

f (t) ≤ f
(

t−
(√

m−
√

M
)2

r(t)
)

≤ f
(

m
M−t
M−m M

t−m
M−m

)
≤ f (m)

M−t
M−m f (M)

t−m
M−m (6)

≤ M− t
M−m

f (m) +
t−m

M−m
f (M)−

(√
f (m)−

√
f (M)

)2
r(t)

≤ M− t
M−m

f (m) +
t−m

M−m
f (M)

with r(t) = min
{

t−m
M−m , M−t

M−m

}
= 1

2 −
1

M−m

∣∣∣t− M+m
2

∣∣∣ whenever t ∈ [m, M].
In order to establish our promised refinement of the operator Kantorovich inequality, we also use

the well-known monotonicity principle for bounded self-adjoint operators on Hilbert space (see, e.g., [6]
(p. 3)): If A ∈ B (H) is a self-adjoint operator, then

f (t) ≤ g (t) , t ∈ σ (A) ⇒ f (A) ≤ g (A) (7)

provided that f and g are real-valued continuous functions. Under the same assumptions, h (t) = |t|
implies h (A) = |A|.

Now, we are in a position to state and prove our main results. We remark that the following theorem
can be regarded as an extension of [5] Remark 4.14 to the context of geometrical convex functions.

Theorem 1. Let A ∈ B (H) be a self-adjoint operator with σ (A) ⊆ [m, M] for some scalars m, M with
0 < m < M and Φ be a normalized positive linear map from B (H) to B (K). If f is strictly positive decreasing
geometrically convex function, then

Φ
(

f
(

A−
(√

m−
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ µ (m, M, f ) f (Φ (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A))

where r(A) = min
{

A−mI
M−m , MI−A

M−m

}
= 1

2 I − 1
M−m

∣∣∣A− M+m
2 I

∣∣∣ and

µ (m, M, f ) = max
{

1
f (t)

(
M− t
M−m

f (m) +
t−m

M−m
f (M)

)
: t ∈ [m, M]

}
.



Mathematics 2019, 7, 139 4 of 7

Proof. On account of the assumptions, from parts of (6), we have

f
(

t−
(√

m−
√

M
)2

r(t)
)
≤ f

(
m

M−t
M−m M

t−m
M−m

)
≤ L (t)−

(√
f (m)−

√
f (M)

)2
r(t)

(8)

where
L (t) =

M− t
M−m

f (m) +
t−m

M−m
f (M) .

Note that inequality (8) holds for all t ∈ [m, M]. On the other hand, σ (A) ⊆ [m, M], which, by virtue of
monotonicity principle (7) for operator functions, yields the series of inequalities

f
(

A−
(√

m−
√

M
)2

r(A)

)
≤ f

(
m

MI−A
M−m M

A−mI
M−m

)
≤ L (A)−

(√
f (m)−

√
f (M)

)2
r(A).

It follows from the linearity and the positivity of the map Φ that

Φ
(

f
(

A−
(√

m−
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A)).

Now, by using [5] Corollary 4.12 we get

Φ
(

f
(

A−
(√

m−
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A))

≤ µ (m, M, f ) f (Φ (A))−
(√

f (m)−
√

f (M)

)2
Φ(r(A)).

This completes the proof.

As discussed extensively in [6] Cahpter 2, for f (t) = tp, we have

µ (m, M, tp) = max
{

1
tp

(
M− t
M−m

mp +
t−m

M−m
Mp
)

: t ∈ [m, M]

}
=

(mMp −Mmp)

(p− 1) (M−m)

(
p− 1

p
Mp −mp

mMp −Mmp

)p
.

Now, the following fact can be easily deduced from Theorem 1 and Example 1.
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Corollary 1. Let A ∈ B (H) be a positive operator with σ (A) ⊆ [m, M] for some scalars m, M with 0 < m < M
and Φ be a normalized positive linear map from B (H) to B (K). Then for any p < 0,

Φ (Ap) ≤ Φ
((

A−
(√

m−
√

M
)2

r (A)

)p)
≤ Φ

((
m

A−MI
M−m M

mI−A
M−m

)p)
≤ K (m, M, p)Φ(A)p −

(
mp/2 −Mp/2

)2
Φ (r (A))

where

K (m, M, p) =
(mMp −Mmp)

(p− 1) (M−m)

(
p− 1

p
Mp −mp

mMp −Mmp

)p
.

In particular,

Φ
(

A−1
)
≤ Φ

((
A−

(√
m−
√

M
)2

r(A)

)−1
)

≤ Φ
((

m
A−MI
M−m M

mI−A
M−m

)−1
)

≤ (M + m)2

4Mm
Φ(A)−1 −


(√

M−
√

m
)2

Mm

Φ(r(A)).

We note that K (m, M,−1) = (M+m)2

4Mm is the original Kantorovich constant.

Theorem 2. Let all the assumptions of Theorem 1 hold. Then

f
(

Φ (A)−
(√

m−
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ µ (m, M, f )Φ ( f (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A)).

Proof. By applying a standard functional calculus for the operator Φ(A) such that mI ≤ Φ (A) ≤ MI, we
get from (8)

f
(

Φ (A)−
(√

m−
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A)).
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We thus have

f
(

Φ (A)−
(√

m−
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ L (Φ (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A))

= Φ (L (A))−
(√

f (m)−
√

f (M)

)2
r(Φ(A))

≤ µ (m, M, f )Φ ( f (A))−
(√

f (m)−
√

f (M)

)2
r(Φ(A))

where at the last step we used the basic inequality [5] Corollary 4.12.
Hence, the proof is complete.

As a corollary of Theorem 2 we have:

Corollary 2. Let all the assumptions of Corollary 1 hold. Then for any p < 0

Φ(A)p ≤
(

Φ (A)−
(√

m−
√

M
)2

r(Φ(A))

)p

≤
(

m
MI−Φ(A)

M−m M
Φ(A)−mI

M−m

)p

≤ K (m, M, p)Φ (Ap)−
(√

mp −
√

Mp
)2

r(Φ(A)).

Remark 1. Notice that the inequalities in Corollary 2 are stronger than the inequalities obtained in [11] Corollary 2.1.

Recall that if f is operator convex, the solidarities [12] or the perspective [13] of f is defined by

P f (A | B) = A
1
2 f
(

A−
1
2 BA−

1
2

)
A

1
2 .

Using a series of inequalities (6) we have the upper bounds of the perspective for non-negative
decreasing geometrically convex function (not necessary operator convex f ). We use the same symbol
P f (A | B) for a simplicity.

Proposition 1. Let A, B > 0 with mA ≤ B ≤ MA for some scalars 0 < m < M. For a non-negative decreasing
geometrically convex function f , we have

P f (A | B) ≤ A1/2 f
(

A−1/2BA−1/2 −
(√

m−
√

M
)2

r(A, B)
)

A1/2

≤ A1/2 f
(

m
MI−A−1/2BA−1/2

M−m M
A−1/2BA−1/2−mI

M−m

)
A1/2

≤ A1/2 f (m)
MI−A−1/2BA−1/2

M−m f (M)
A−1/2BA−1/2−mI

M−m A1/2

≤ M f (m)−m f (M)

M−m
A +

f (M)− f (m)

M−m
B−

(√
f (m)−

√
f (M)

)2
A1/2r(A, B)A1/2

≤ M f (m)−m f (M)

M−m
A +

f (M)− f (m)

M−m
B,
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where

r (A, B) = min

{
A−1/2 BA−1/2 −mI

M−m
,

MI − A−1/2 BA−1/2

M−m

}

=
1
2

I − 1
M−m

∣∣∣∣A−1/2 BA−1/2 − M + m
2

I
∣∣∣∣ .
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5. Mićić, J.; Carić, J.P.; Seo, Y.; Tominaga, M. Inequalities for positive linear maps on Hermitian matrices. J. Math.

Inequal. Appl. 2000, 3, 559–591.
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