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Abstract: In this paper, by characterizing a weak contractive condition based on using C−functions
and α−admissible multi-valued mapping of type S, we present some fixed point results for
(α, F)−admissible multi-valued mappings in the setting of b−metric spaces. Some examples and an
application are added in order to show the reliability of our obtained results. Our results amend,
unify, and generalize some existing results in the literature. The scientific novelty of our main results
is to take new contraction self-mappings in b−metric spaces for multi-valued mappings.

Keywords: α−admissible mapping of type S; multi-valued mapping; Fixed point; b−metric space;
Hausdorff metric

1. Introduction

The Banach contraction principle is considered to be one of the most useful tools in fixed point
theory. It has been extended or generalized in different directions and many (common) fixed point
theorems have been provided (see References [1–13]). The theory of fixed points for multi-valued
mappings has been developed after the famous paper of Nadler [14]. Several authors have given
many forms of multi-valued mapping conditions by using the concept of Hausdorff–Pompieu metric.
Among them, we cite References [15–17].

First, we recite some notations, definitions, and elementary results needed in the sequel. Denote
by N and R the sets of positive integers and real numbers, respectively. Consider a metric space (X, d).
Denote by 2X (resp. CL(X)) the family of subsets (resp. of closed subsets) of X. Let CB(X) be the class
of all nonempty closed bounded subsets of X and F( f ) be the set of all fixed points of f .

Definition 1 ([14]). A point u ∈ X is called a fixed point of the multi-valued map T : X → 2X if u ∈ Tu.

For B, C ∈ CL(X), let H : CL(X)× CL(X)→ [0, ∞] be defined by

H(B, C) =


max{δ(B, C), δ(C, B)}, if the maximum exists

∞, otherwise,
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where δ(B, C) =: supa∈B db(b, C). Such H is called the generalized Hausdorff–Pompieu metric induced
by the metric d. The known result of Nadler [14] is as follows:

Definition 2 ([14]). Let (X, d) be a metric space. A map f : X → CB(X) is said to be a multi-valued
contraction if there exists 0 ≤ λ < 1 such that

H( f x, f y) ≤ λd(x, y),

for all x, y ∈ X.

Bakhtin [18] and Czerwik [19] initiated the concept of a b-metric.

Definition 3 ([18,19]). Let X be a nonempty set and s ≥ 1 be a given real number. Take db : X× X → [0, ∞).
Suppose that for all ζ, η, ξ ∈ X, we have:

(i) db(ζ, η) = 0 if and only if ζ = η;
(ii) db(ζ, η) = db(η, ζ);
(iii) db(ζ, ξ) ≤ s[db(ζ, η) + db(η, ξ)].

Then, db is said a b-metric and the triplet (X, db, s) is called a b−metric space.

The authors in References [18,19] extended the Banach contraction principle to the class of
b−metric spaces. For other results in the setting of b−metric spaces, see References [3,4,10,20–23].

Example 1 ([18,19]). Consider the set X = [0, 1] endowed with the function db : X× X → [0, ∞) defined by
db(ζ, η) = |ζ − η|2 for all ζ, η ∈ X. Here, (X, db, 2) is a b−metric space, but it is not a metric space.

Let (X, db, s) be a b−metric space. Let {θn} be a sequence in X.

(i) {θn} ⊆ X converges to a point x ∈ X if limn→∞ db(θn, x) = 0,
(ii) {θn} ⊆ X is Cauchy if, for each ε > 0, there is some n(ε) ∈ N such that db(θn, θm) < ε for all

m, n ≥ n(ε),
(iii) (X, db, s) is said complete if any Cauchy sequence is convergent in X.

Lemma 1 ([2]). Let (X, db, s) be a b−metric space with s ≥ 1. Suppose that {θn} and {ηn} are b−convergent
sequences to θ and η, respectively. Then,

1
s

db(θ, η) ≤ lim
n→∞

inf db(θn, ηn)≤ lim
n→∞

sup db(θn, ηn) ≤ s2db(θ, η).

In the case that θ = η, we get limn→∞ db(θn, ηn) = 0. Moreover, for each η ∈ X,

1
s

db(θ, η) ≤ lim
n→∞

inf db(θn, η)≤ lim
n→∞

sup db(θn, η) ≤ s2db(θ, η).

Lemma 2 ([2]). Let (X, db, s) be a b−metric space with s ≥ 1. Let {θn} be a sequence in X such that

lim
n→∞

db(θn, θn+1) = 0.
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If {θn} is not a b−Cauchy sequence, then there exist ε > 0 and {θm(k)} and {θn(k)} two sequences of positive
integers such that

ε ≤ lim
n→∞

inf db(θm(k), θn(k)) ≤ lim
n→∞

sup db(θm(k), θn(k)) ≤ sε

ε

s
≤ lim

n→∞
inf db(θm(k), θn(k)+1) ≤ lim

n→∞
sup db(θm(k), θn(k)+1) ≤ s2ε

ε

s
≤ lim

n→∞
inf db(θm(k)+1, θn(k)) ≤ lim

n→∞
sup db(θm(k)+1, θn(k)) ≤ s2ε

ε

s2 ≤ lim
n→∞

inf db(θm(k)+1, θn(k)+1) ≤ lim
n→∞

sup db(θm(k)+1, θn(k)+1)≤ s3ε.

Lemma 3 ([21]). Let (X, db, s) be a b−metric space. For all P, Q, R ∈ CB(X), and ξ, θ ∈ X, we have:

(i) db(ξ, Q) ≤ db(ξ, η) for any η ∈ Q;
(ii) db(P, Q) ≤ H(P, Q);
(iii) δ(P, Q) ≤ H(P, Q);
(iv) db(ξ, Q) ≤ H(P, Q) for any ξ ∈ P;
(iiv) H(P, P) = 0;
(vi) H(P, Q) = H(Q, P);
(vii) H(P, R) ≤ s(H(P, Q) + H(Q, R));
(viii) db(ξ, P) ≤ s(db(ξ, θ) + db(θ, P)).

Remark 1 ([21]). Let (X, db, s) be a b−metric space. The function H : CL(X) × CL(X) → [0, ∞) is a
generalized Hausdorff b-metric, that is, H(A, B) = +∞ if max{δ(A, B), δ(B, A)} does not exist.

Lemma 4 ([21]). Let (X, db, s) be a b-metric space. For P ∈ CL(X) and ξ ∈ X, we have

db(ξ, P) = 0⇔ ξ ∈ P = P, (1)

where the closure of the set A is denoted by A.

The concept of α-admissibility was first initiated by Samet et al. [24].

Definition 4 ([24]). Given f : X → X and α : X × X → [0, ∞). f is called α-admissible if α(ζ, η) ≥ 1
implies that α( f ζ, f η) ≥ 1.

This concept was generalized by Sintunavarat [25].

Definition 5 ([25]). Let X be a nonempty set. Let f : X → X and α : X× X → [0, ∞) be two mappings. Let
s ≥ 1 be a given real number. We say that f is weak α−admissible of type S if for x ∈ X and α(x, f x) ≥ s, then
α( f x, f f x) ≥ s.

Definition 6 ([26]). Let X be a nonempty set. Given f : X → CL(X) and α : X × X → [0, ∞). Then, f is
said to be α−admissible whenever, for each ξ ∈ X and η ∈ f ξ with α(ξ, η) ≥ 1, we have α(η, θ) ≥ 1 for each
θ ∈ f η.

After that, many authors used the concept of α-admissible contractive type mappings to
investigate the existence of fixed points (see References [10,23,27–31] and references cited therein).

In 2014, Ansari [32] defined the concept of C-class functions.

Definition 7 ([32]). A mapping F : [0, ∞)× [0, ∞)→ R is called a C-class function if it is continuous and
for s, t ∈ [0, ∞), F satisfies the following two conditions:

(a) F(r, t) ≤ r;
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(b) F(r, t) = r implies that either r = 0 or t = 0.

The family of C-class functions is denoted by C.

Example 2 ([32]). The following functions F : R+ ×R+ → R are elements in C:

(a) F(r, t) = r− t for all r, t ∈ [0, ∞);
(b) F(r, t) = kr for all r, t ∈ [0, ∞), where 0 < k < 1;
(c) F(r, t) = rβ(r) for all r, t ∈ [0, ∞), where β : [0, ∞)→ [0, 1) is continuous;
(d) F(r, t) = r − ϕ(r) for all r, t ∈ [0, ∞), where ϕ : [0, ∞) → [0, ∞) is a continuous function such that

ϕ(t) = 0 if and only if t = 0;
(e) F(s, t) = s

(1+t)a with a ∈ (0, ∞), for all r, t ∈ [0, ∞);
( f ) F(s, t) = ln(t + ks)/(1 + t) with k > 1, for all r, t ∈ [0, ∞).

The generalization of the well-known Banach fixed point theorem with rational expressions
was considered by Reference [33]. On the other hand, there are many works on fixed point theory
using control functions (see References [24,28,34–37]). Let Φ be the set of lower semi-continuous
functions φ : [0, ∞)→ [0, ∞) such that φ(t) = 0⇔ t = 0. Let Ψ be the set of nondecreasing functions
ψ : [0, ∞)→ [0, ∞) such that

+∞

∑
n=1

snψn(t) < +∞ for each t > 0, (2)

where ψn is the nth iterate of ψ and s ≥ 1 is the coefficient of the b-metric space (X, d).
Note that if ψ ∈ Ψ, we have limn→+∞ ψn(t) = 0, ψ(t) < t

s ≤ t for each t > 0 and ψ(0) = 0.
Let X be a b−metric space with coefficient s ≥ 1 and f : X → 2X be a multi-valued map. The

graph of f is given as
Gr( f ) = {(ξ, η) ∈ X2, η ∈ f ξ}.

Such mapping f is called upper semi-continuous if the inverse image of closed sets is closed.
In this paper, inserting C-class functions we present some fixed point results in the setting of a

b−metric space for α−admissible multi-valued type mappings of type S. An example and application
are given.

2. Main Results

First, we introduce the notion of α−admissible multi-valued mappings of type S.

Definition 8. Let X be a nonempty set. Given f : X → CL(X) and α : X × X → [0,+∞). Let s ≥ 1 be
a given real number. Such that f is said to be α−admissible of type S if for each ξ ∈ X and η ∈ f ξ with
α(ξ, η) ≥ s, we have α(η, θ) ≥ s for each θ ∈ f η.

Example 3. Let X = [−1, 1] be endowed with the b−metric db(ξ, η) =| ξ − η |2 with s = 2 for all ξ, η ∈ X.
Define α : X× X → [0, ∞) and f : X → CL(X) by

f ξ =


{0, 1} if ξ = −1,

{1} if ξ = 0,

{−ξ} if ξ /∈ {−1, 0}.

α(ξ, η) =

{
2eξ+η if ξ = η,

4 if ξ 6= η.

It is easy show that f is α−admissible of type S.
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Example 4. Let X = N∪ {0} be endowed with the b−metric db(ξ, η) =| ξ − η |2 for all ξ, η ∈ X with s = 2.
Define the mappings α : X× X → [0, ∞) and f : X → CL(X) by

f ξ =

{
{0, 1} if ξ = 0, 1,

{ξ, ξ + 1} if ξ > 1.

α(ξ, η) =


4 if ξ, η ∈ {0, 1},
eξ+η if ξ, η > 1,

0 otherwise.

The mapping f is α−admissible of type S.

Example 5. Let X = [0, ∞) be endowed with the b−metric db(ξ, η) =| ξ − η |2 (with coefficient s = 2) for
all ξ, η ∈ X. Define f : X → CL(X) and α : X → [0, ∞) by

f ξ =

{
[2, 2 + ξ

3 ] if ξ ∈ [0, 1],

[5, 5 + 5ξ] if ξ ∈ (1, ∞)

α(ξ, η) =

{
4 if ξ, η ∈ [0, 1],

eξ+η otherwise.

Clearly f is α−admissible of type S.

Definition 9. Let (X, db, s) be a b−metric space with constant s ≥ 1 and f : X → CL(X). Such that f is an
(α, F)-multi-valued mapping if there exist α : X× X → [0, ∞), F ∈ C, ψ ∈ Ψ and φ ∈ Φ such that

x, y ∈ X with α(x, y) ≥ s⇒ H( f x, f y) ≤ F(ψ(M(x, y)), ϕ(M(x, y))), (3)

where

M(x, y) = max{db(x, y),
db(x, f x)

1 + db(x, f x)
,

db(y, f y)
1 + db(y, f y)

,
1
2s

[db(x, f y) + db(y, f x)]}. (4)

Theorem 1. Let (X, db, s) be a b−metric space with constant s ≥ 1 and f : X → CL(X) be an
(α, F)−admissible multi-valued mapping. Assume that:

(i) f is α−admissible of type S;
(ii) there exist θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s;
(iii) Gr( f ) is a closed subset of X2.

Then, f has a fixed point.

Proof. By Condition (ii), θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s. If θ0 = θ1 or θ1 ∈ f θ1, we
deduce that θ1 is a fixed point of f and so the proof is done. Now, we assume that θ0 6= θ1 and θ1 /∈ f θ1.
By Lemma 4, db(θ1, f θ1) > 0. Applying Equation (3), we have

0 < db(θ1, f θ1) ≤ H( f θ0, f θ1)

≤ F(ψ(M(θ0, θ1)), φ(M(θ0, θ1))),
(5)
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where

M(θ0, θ1) = max{db(θ0, θ1),
db(θ0, f θ0)

1 + db(θ0, f θ0)
,

db(θ1, f θ1)

1 + db(θ1, f θ1)
,

1
2s

[db(θ0, f θ1) + db(θ1, f θ0)]}

≤ max{db(θ0, θ1), db(θ0, f θ0), db(θ1, f θ1),
1
2s

db(θ0, f θ1)}

≤ max{db(θ0, θ1), db(θ0, θ1), db(θ1, f θ1),
1
2
[db(θ0, θ1) + db(θ1, f θ1)]}

= max{db(θ0, θ1), db(θ1, f θ1)}.

(6)

If max{db(θ0, θ1), db(θ1, f θ1)} = db(θ1, f θ1), then by (5) and having in mind that ψ(t) < t for each
t > 0, we get

0 < db(θ1, f θ1) ≤ F(ψ(db(θ1, f θ1)), φ(db(θ1, f θ1))) ≤ ψ(db(θ1, f θ1)) < db(θ1, f θ1),

which is a contradiction. Thus, max{db(θ0, θ1), db(θ1, f θ1)} = db(θ0, θ1). Using again (5) and the fact
that ψ is nondecreasing, we get that

0 < db(θ1, f θ1) ≤ ψ(db(θ0, θ1)).

This implies that there exists θ2 ∈ f θ1 (of course, θ2 6= θ1) such that

0 < db(θ1, θ2) < ψ(db(θ0, θ1)).

Since α(θ0, θ1) ≥ s, θ1 ∈ f θ0 and θ2 ∈ f θ1, using the fact that f is α-admissible, we get α(θ1, θ2) ≥ s. If
θ2 ∈ f θ2, θ2 is a fixed point of f . Otherwise, θ2 /∈ f θ2, so we have db(θ2, f θ2) > 0. Applying again (3),
we have

0 < db(θ2, f θ2) ≤ H( f θ1, f θ2)

≤ F(ψ(M(θ1, θ2)), φ(M(θ1, θ2))),
(7)

where

M(θ1, θ2) = max{db(θ1, θ2),
db(θ1, f θ1)

1 + db(θ1, f θ1)
,

db(θ2, f θ2)

1 + db(θ2, f θ2)
,

1
2s

[db(θ1, f θ2) + db(θ2, f θ1)]}

≤ max{db(θ1, θ2), db(θ1, θ2), db(θ2, f θ2),
1
2s

db(θ1, f θ2)}

≤ max{db(θ1, θ2), db(θ1, θ2), db(θ2, f θ2),
1
2s

[db(θ1, θ2) + db(θ2, f θ2)]}

= max{db(θ1, θ2), db(θ2, f θ2)}.

(8)

Proceeding similarly as above, we get that max{db(θ1, θ2), db(θ2, f θ2)} = db(θ1, θ2). From (7) and (8),

0 < db(θ2, f θ2) ≤ ψ(db(θ1, θ2)) < ψ2(db(θ0, θ1)).

This implies again that there exists θ3 ∈ f θ2 (of course, θ3 6= θ2) such that

0 < db(θ2, θ3) < ψ2(db(θ0, θ1)).

Since α(θ1, θ2) ≥ s, θ2 ∈ f θ1 and θ3 ∈ f θ2, using the fact that f is α-admissible, we get α(θ2, θ3) ≥ s. If
θ3 ∈ f θ3, θ3 is a fixed point of f . Otherwise, θ3 /∈ f θ3, so we have db(θ3, f θ3) > 0. Similarly, we get

0 < db(θ3, f θ3) ≤ ψ(db(θ2, θ3)) < ψ3(db(θ0, θ1)).
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By continuing this process, we can construct a sequence {θn} in X such that θn 6∈ f θn, θn+1 ∈ f θn,
α(θn, θn+1) ≥ s and

0 < db(θn, f θn) ≤ db(θn, θn+1) ≤ ψn(db(θ0, θ1)), ∀n ∈ N. (9)

Let m, n ∈ N be such that m > n. Then,

db(θn, θm) ≤
m−1

∑
i=n

si−n+1db(θi, θi+1) ≤
∞

∑
i=n

siψi(db(θ0, θ1)).

Since ψ ∈ Ψ, {θn} is a Cauchy sequence in the complete b-metric space (X, db). Hence, there exists
z ∈ X such that zn → z. Since θn+1 ∈ f θn, we have (θn, θn+1) ∈ Gr( f ). The graph is closed, so as
n→ ∞, we get that (θn, θn+1)→ (z, z), with (z, z) ∈ Gr( f ). We deduce that z ∈ f z, that is, z is a fixed
point of f .

Now, we state the following known lemma.

Lemma 5 ([38]). Assume that f x ∈ CL(X) for each x ∈ X. If f is upper semi-continuous then Gr( f ) is
closed in X2.

Following Lemma 5, we may provide the following result, even the upper semi-continuity
condition is a strong hypothesis. Indeed, we may have a multivalued mapping such that its graph is
closed, but it is not upper semi-continuous (see Reference [39]).

Theorem 2. Let (X, db, s) be a b−metric space with a constant s ≥ 1 and f : X → CL(X) be an
(α, F)−admissible multi-valued mapping. Assume that:

(i) f is α−admissible of type S;
(ii) there exist θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s;
(iii) f is upper semi-continuous.

Then, f has a fixed point.

It is also possible to omit the closedness of the graph of f (or the upper semi-continuity of the
mapping f ) by introducing a regularity condition and adding the continuity of ψ.

Theorem 3. Let (X, db, s) be a b−metric space with coefficient s ≥ 1 and f : X → CL(X) be an
(α, F)−multi-valued mapping. Assume that:

(i) f is α−admissible of type S and ψ is continuous;
(ii) there exist θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s;
(iii) if {θn} is a sequence in X with θn → u ∈ X and α(θn, θn+1) ≥ s for all n ∈ N∪ {0}, then α(θn, u) ≥ s

for all n ∈ N∪ {0}.

Then, f has a fixed point.

Proof. Following the proof of Theorem 1, there exists a sequence {θn} such that

θn+1 ∈ f θn, θn /∈ f θn and α(θn, θn+1) ≥ s for all n ∈ N∪ {0}, (10)

Furthermore, {θn}, which is a Cauchy sequence in X, converges to some u as n→ ∞. By Condition
(iii), we get

α(θn, u) ≥ s for all n ∈ N∪ {0}. (11)
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If u ∈ f u, the proof is completed. We assume that db(u, f u) > 0. We have

0 < db(u, f u) ≤ s[db(u, θn+1) + db(θn+1, f u)]

≤ sdb(u, θn+1) + sH( f θn, f u)

≤ sdb(u, θn+1) + sF(ψ(M(θn, u)), φ(M(θn, u)))

≤ sdb(u, θn+1) + sψ(M(θn, u))

(12)

where

M(θn, u) = max{db(θn, u),
db(θn, f θn)

1 + db(θn, f θn)
,

db(u, f u)
1 + db(u, f u)

,
1
2s

[db(θn, f u) + db(u, f θn)]}

≤ max{db(θn, u), db(θn, θn+1), db(u, f u),
1
2
[db(θn, f u) + db(u, θn+1)]}

≤ max{db(θn, u), db(θn, θn+1), db(u, f u),
1
2
[db(θn, f u) + db(u, θn+1)]}.

(13)

Letting n → ∞, we have lim supn→∞ M(θn, u) ≤ db(u, f u). Using the continuity of ψ, we get
lim supn→∞ ψ(M(θn, u)) ≤ ψ(db(u, f u)). Letting n→ ∞ in (12), we obtain

0 < db(u, f u) ≤ sψ(db(u, f u)) < db(u, f u),

which is a contradiction. Therefore, u ∈ f u and hence f has a fixed point.

Corollary 1. Let (X, db, s) be a b−metric space with constant s ≥ 1 and f : X → CL(X) be an
(α, F)−multivalued mapping. Suppose there exist α : X → [0, ∞), ψ ∈ Ψ, and φ ∈ Φ such that

α(x, y)H( f x, f y)) ≤ F(ψ(M(x, y)), φ(M(x, y))), (14)

for all x, y ∈ X. Assume that:

(i) f is α−admissible of type S;
(ii) there exist θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s;
(iii) the graph of f is closed.

Then, f has a fixed point.

Proof. By (14), the contraction (3) holds for all x, y ∈ X with α(x, y) ≥ s. Thus, f is an
(α, F)−multi-valued mapping. By Theorem 1, the multi-valued mapping f has a fixed point.

Corollary 2. Let (X, db, s) be a b−metric space with a constant s ≥ 1 and f : X → CL(X) be an (α, F)−
multi-valued mapping. Assume that there exist α : X → [0, ∞), ψ ∈ Ψ, and φ ∈ Φ such that

α(x, y)H( f x, f y)) ≤ F(ψ(M(x, y)), ϕ(M(x, y))), (15)

for all x, y ∈ X. Assume that:

(i) f is α−admissible of type S and ψ is continuous;
(ii) there exist θ0 ∈ X and θ1 ∈ f θ0 such that α(θ0, θ1) ≥ s;
(iii) {θn} is a sequence in X with θn → x ∈ X and α(θn, θn+1) ≥ s for all n ∈ N ∪ {0}, then α(θn, x) ≥ s

for all n ∈ N∪ {0}.

Then, f has a fixed point.

Proof. Again, by (15), the contraction (3) holds for all x, y ∈ X such that α(x, y) ≥ s. Thus, f is an
(α, F)−multi-valued mapping. By Theorem 3, f has a fixed point.
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By considering singlevalued mappings in Theorem 1 and Theorem 3, respectively, we have the
following:

Corollary 3. Let (X, db, s) be a b−metric space with coefficient s ≥ 1 and f : X → X. Suppose there exist
α : X× X → [0,+∞), F ∈ C, ψ ∈ Ψ, and φ ∈ Φ such that

x, y ∈ X with α(x, y) ≥ s⇒ db( f x, f y)) ≤ F(ψ(M(x, y)), ϕ(M(x, y))), (16)

where M(x, y) was defined by (4). Assume that:

(i) u, v ∈ X, α(u, v) ≥ s implies α( f u, f v) ≥ s;
(ii) there exists θ0 ∈ X such that α(θ0, f θ0) ≥ s;
(iii) the graph of f is closed.

Then, f has a fixed point.

Corollary 4. Let (X, db, s) be a b−metric space with coefficient s ≥ 1 and f : X → X. Suppose there exist
α : X× X → [0,+∞), F ∈ C, ψ ∈ Ψ, and φ ∈ Φ such that the Condition (16) holds. Assume that:

(i) u, v ∈ X, α(u, v) ≥ s implies α( f u, f v) ≥ s. Also, ψ is continuous;
(ii) there exists θ0 ∈ X such that α(θ0, f θ0) ≥ s;
(iii) if for ξ0 ∈ X, the sequence {ξn = f nξ0} in X is such that f nξ0 → ξ ∈ X and α( f nξ0, f n+1ξ0) ≥ s for

each integer n ≥ 0, then α( f nξ0, ξ) ≥ s for each n ≥ 0.

Then, f has a fixed point.

Example 6. Let X = [0, ∞) be endowed with the b−metric db(x, y) = (x− y)2 with s = 2 for all x, y ∈ X.
Define f : X → CL(X) and α : X → [0, ∞) by

f x =

{
[0, x

4 ] if x ∈ [0, 1],

[x, x2] if x ∈ (1, ∞)

α(x, y) =

{
2 if x, y ∈ [0, 1],

0 otherwise.

Furthermore, define the functions ψ, φ : [0, ∞)→ [0, ∞) by ψ(t) = t, φ(t) = 15
16 t. Take F(r, t) = r− t for all

r, t ∈ [0, ∞).
Firstly, we show that f is α−admissible of type S. Let x ∈ X and y ∈ f x with α(x, y) ≥ s = 2. Then,

x, y ∈ [0, 1]. Let z ∈ f y, then z ∈ [0, y
4 ] ⊂ [0, x

16 ] ⊂ [0, 1]. Then,

α(y, z) = 2 = s.

Hence, f is α−admissible of type S. For θ0 = 1
2 and θ1 = 1

16 ∈ f θ0, we have α(θ0, θ1) = 2 = s. For any
sequence {θn = f nθ0} ⊆ X (where θ0 ∈ X is arbitrary) such that θn → x as n→ ∞ and α(θn, θn+1) = 2 = s
for each n ∈ N, we have xn, x ∈ [0, 1], so α(θn, x) = 2 = s for each n ∈ N.

Now, we will show that the conditions of Theorem 3 are fulfilled for all x, y ∈ X with α(x, y) ≥ s, that is,
x, y ∈ [0, 1]. Without loss of generality, take x 6= y. Then,

H( f x, f y) =
(x− y)2

16
.

Thus,

H( f x, f y) =
(x− y)2

16
=

1
16

db(x, y) ≤ 1
16

M(x, y) = F(ψ(M(x, y)), φ(M(x, y))).

All hypotheses of Theorem 3 are satisfied and f has a fixed point. Here, 0 and each x > 1 are fixed points of f .
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Note also that the graph of f is closed, so we may also apply Theorem 1.

3. Application

The aim of this section is to give an application on the existence of a solution for an integral
equation by applying Corollary 4.

First, let X be the set of continuous functions specified on the closed interval [a, b]. We endow X
by the standard b−metric db : X× X → [0, ∞):

db(x, y) = ( sup
t∈[a,b]

| x(t)− y(t) |)2,

for all x, y ∈ X. Then, (X, db) is a complete b−metric space with coefficient s = 2.

We consider the following integral equation:

y(r) = y0 +
∫ b

a
P(r, t)g(t, y(t))dt (17)

where y0 ∈ R and P : [a, b]× [a, b]→ [0, ∞), g : [a, b]×R→ R are continuous functions.

Define f : X → X as

f y(r) = y0 +
∫ b

a
P(r, t)g(t, y(t))dt. (18)

Then, a solution of Equation (17) is equivalent to stating that the map f has a fixed point.
Now, we will prove the following result applying Corollary 4.

Theorem 4. Assume that the following conditions are satisfied:

(i) there exists α : X× X → [0, ∞) such that if α(u, v) ≥ s = 2 for u, v ∈ X, we have for each t ≥ 0,

| g(t, u(t)− g(t, v(t) |≤
√

ln(1 + (| u(t)− v(t) |)2),

and

sup
r∈[a,b]

∫ b

a
P(r, t)dt ≤ 1;

(ii) u, v ∈ X, α(u, v) ≥ 1 implies α( f u, f v) ≥ 1;
(iii) there exists u0 ∈ X such that α(u0, f u0) ≥ s = 2;
(iv) if {ξn =: f nξ0} (where ξ0 is arbitrary in X) is a sequence in X with ξn → ξ ∈ X and α(ξn, ξn+1) ≥ s

for each integer n ≥ 0, then α(ξn, ξ) ≥ s for each n ≥ 0.

Then, the integral Equation (17) has a solution in X.

Proof. For all u, v ∈ X, we have

db( f u, f v) = sup
r∈[a,b]

| f u(r)− f v(r) |)2.
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We also have for r ∈ [a, b],

(| f u(r)− f v(r) |)2

= (|
∫ b

a
P(r, t) | g(t, u(t))− g(t, v(t)) | dt |)2

≤ (
∫ b

a
P(r, t) | g(t, u(t))− g(t, v(t)) | dt)2

≤ (
∫ b

a
P(r, t)

√
ln(1 + (| u(t)− v(t) |)2)dt)2

≤ (
∫ b

a
P(r, t)

√
ln(1 + db(u, v))dt)2

≤ (
∫ b

a
P(r, t)dt)2 ln(1 + db(u, v))

≤ ln(1 + db(u, v)).

Thus,

H( f u, f v) ≤ ln(1 + db(u, v)) ≤ ln(1 + M(u, v))

= M(u, v)− (M(u, v)− ln(1 + M(u, v)))

= F(ψ(M(u, v)), φ(M(u, v))),

where ψ(t) = t (it is continuous), φ(t) = t− ln(1 + t), and F(s, t) = s− t. Since (iii) and (iv) hold,
all hypotheses of Corollary 4 hold. Thus, f has a fixed point, that is, the integral Equation (17) has a
solution in X.

4. Conclusions

Many researchers proved the existence and uniqueness of some fixed point results for
self-mappings in b-metric spaces. In this paper, we have introduced the existence and uniqueness of
fixed point results for (α, ψ, φ)−admissible multi-valued mappings in the setting of b−metric spaces by
defining a weak contractive condition using C− functions and α−admissible multi-valued mappings of
type S. We have provided examples and an application of integral equations to show the superiority of
our results and given concepts. Furthermore, as perspectives, we suggest extending more results to find
(common) fixed point results in generalized metric spaces as extended b-metric spaces, b-metric-like
spaces. Otherwise, we recommend utilizing our main results for non-self-mappings to establish the
existence of an optimal approximate solution.
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