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Abstract: The split feasibility problem models inverse problems arising from phase retrievals
problems and intensity-modulated radiation therapy. For solving the split feasibility problem,
Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we
use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed
CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto
closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed
CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and
strong convergence of the proposed algorithms are proved. Some numerical experiments are also
presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend
the corresponding results of Xu and some others.
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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖. Let I denote the identity operator on H. Let C and Q be nonempty closed convex
subset of real Hilbert spaces H1 and H2, respectively.

The split feasibility problem can mathematically be formulated as the problem of finding a point
u∗ ∈ C with the property

Au∗ ∈ Q, (1)

where A : H1 → H2 is a bounded linear operator. The SFP (SFP) in finite-dimensional Hilbert spaces
was first introduced by Censor and Elfving [1] for modeling inverse problems which arise from phase
retrievals and medical image reconstruction [2], with particular progress in intensity-modulated
radiation therapy [3,4]. It has been found that the SFP can also be used in the air traffic flow
management problems. Many researchers studied the SFP and introduced various algorithms to
solve it (see [5–15] and references therein).

The original algorithm introduced in [1] involves the computation of the inverse A−1 (assuming
the existence of the inverse of A) and thus does not become popular. A more popular algorithm that
solves the SFP (Equation (1)) seems to be the following CQ algorithm of Byrne [2,16]:

un+1 = PC(un − µA∗(I − PQ)Aun), (2)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, and A∗ is the adjoint
of A and µ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A. The CQ algorithm only
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involves the computations of the projections PC and PQ onto the sets C and Q, respectively, and is
therefore implementable in the case where PC and PQ have closed-form expressions (e.g., C and Q are
the closed balls or half-spaces). It remains however a challenge how to implement the CQ algorithm in
the case where the projections PC and/or PQ fail to have closed-form expressions though theoretically
we can prove (weak) convergence of the algorithm.

We assume that the SFP (Equation (1)) is consistent, and use Φ to denote the solution set of the
SFP (Equation (1)), i.e.,

Φ = {u ∈ C : Au ∈ Q}.

Thus, the set Φ is closed, convex and nonempty.
The CQ algorithm is found to be a gradient-projection method (GPM) in convex minimization

(it is also a special case of the proximal forward-backward splitting method). We can reformulate the
SFP (Equation (1)) as an optimization problem [17]. We may introduce the (convex) objective function

g(u) :=
1
2
‖(I − PQ)Au‖2 (3)

and consider the convex minimization problem

min
u∈C

g(u). (4)

The objective function g is continuously differentiable with gradient given by

∇g(u) = A∗(I − PQ)Au. (5)

Because I− PQ is (firmly) nonexpansive, we obtain that∇g is Lipschitz continuous with Lipschitz
constant L = ‖A‖2. It is well known that the gradient-projection algorithm (GPM), for solving the
minimization problem in Equation (4), generates the following iterative sequence {un}:

un+1 = PC(un − µ∇g(un)), (6)

where µ is chosen in the interval (0, 2/L) with L being the Lipschitz constant of ∇g. For solving the
problem in Equation (4), the GPM with gradient ∇g given as in Equation (5) is the CQ algorithm in
Equation (2).

By Equation (4), the SFP (Equation (1)) can be written as the following convex separable
minimization problem:

min
u∈H1

ιC(u) + g(u), (7)

where g(u) is defined by Equation (3) and ιC(u) is an indicator function of the set C defined by

ιC(u) =

{
0, u ∈ C,

+∞, u 6∈ C.
(8)

Chen et al. [18] designed and discussed an efficient algorithm for minimizing the sum of two
proper lower semi-continuous convex functions, i.e.,

min
u∈Rn

g1(u) + g2(u), (9)

where g1, g2 ∈ Γ0(Rn) (all proper lower semi-continuous convex functions from Rn to (−∞,+∞]) and
g2 is differentiable on Rn with 1/β-Lipschitz continuous gradient for some β ∈ (0,+∞). For g ∈ Γ0(Rn)
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and ρ ∈ (0,+∞), the proximal operator of g with order ρ, denoted by proxρg, is defined by: for each
x ∈ Rn,

proxρg(x) = arg min
y∈Rn
{g(y) + 1

2ρ
‖x− y‖2}. (10)

To solve the convex separable problem in Equation (9), they obtained the following fixed point
formulation: the point u∗ is a solution of Equation (9) if and only if there exists e∗ ∈ Rn such thate∗ = (I − prox µ

λ g1
)(u∗ − µ∇g2(u∗) + (1− λ)e∗),

u∗ = u∗ − µ∇g2(u∗)− λe∗,

where λ > 0 and µ > 0. They introduced the following Picard iterative sequence:en+1 = (I − prox µ
λ g1

)(un − µ∇g2(un) + (1− λ)en),

un+1 = un − µ∇g2(un)− λen+1.
(11)

It was shown [18] that, under appropriate conditions, the sequence {un} converges to a solution
of the problem in Equation (9). Moreover, u is the primal variable and e is the dual variable of the
primal-dual form (see [18]) related to Equation (9).

For solving the SFP (Equation (1)), we note that the CQ algorithm and many related iterative
algorithms (see [19–24]) only involves the computations of the projections PC and PQ onto the sets C
and Q, respectively, and is therefore implementable in the case where PC and PQ have closed-form
expressions. However, in some cases it is impossible or needs too much work to exactly compute an
orthogonal projection. Therefore, if it is the case, the efficiency of projection type methods will be
seriously affected. To overcome this difficulty, Fukushima [25] suggested a so-called relaxed projection
method to calculate the projection onto a level set of a convex function by computing a sequence
of projections onto half-spaces containing the original level set. Theoretical analysis and numerical
experiments show the efficiency of his method.

Let C and Q be level sets of convex functions, i.e.,

C = {u ∈ H1 : c(u) ≤ 0}, Q = {v ∈ H2 : q(v) ≤ 0}, (12)

where c : H1 → R and q : H2 → R are convex and lower semi-continuous functions with the
subdifferentials

∂c(u) = {z ∈ H1 : c(x) ≥ c(u) + 〈x− u, z〉, x ∈ H1} 6= ∅

for all u ∈ C and

∂q(v) = {w ∈ H2 : q(y) ≥ q(v) + 〈y− v, w〉, y ∈ H2} 6= ∅

for all v ∈ Q. Set
Cn = {u ∈ H1 : c(un) + 〈ξn, u− un〉 ≤ 0}, (13)

where ξn ∈ ∂c(un), and

Qn = {v ∈ H2 : q(Aun) + 〈ηn, v− Aun〉 ≤ 0}, (14)

where ηn ∈ ∂q(Aun). Obviously, Cn and Qn are half-spaces and the projections onto half-spaces Cn

and Qn have closed forms.
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In the setting of finite-dimensional spaces, relaxed projection method was followed by Yang [26],
who introduced the following relaxed CQ algorithms for solving the SFP (Equation (1)) where the
closed convex subsets C and Q are level sets of convex functions:

un+1 = PCn(un − µAT(I − PQn)Aun), n ≥ 1, (15)

where µ ∈ (0, 2/L) with L being the largest eigenvalue of matrix AT A, Cn and Qn are given in
Equations (13) and (14), respectively. Due to the special form of Cn and Qn, the proposed algorithm
can be easily implemented.

Recently, for the purpose of generality, the SFP (Equation (1)) is studied in a more general setting.
For instance, Xu [27] considered the SFP (Equation (1)) where H1 and H2 are infinite-dimensional
Hilbert spaces. Xu [27] proposed the following relaxed CQ algorithm where C and Q are given in
Equation (12):

un+1 = PCn(un − µA∗(I − PQn)Aun), n ≥ 1, (16)

where µ ∈ (0, 2/‖A‖2), Cn and Qn are given in Equations (13) and (14), respectively. Since
the projections PCn and PQn have closed-form expressions, the above relaxed CQ algorithm is
implementable. In [27], the relaxed CQ algorithm has the weak convergence result. He and Zhao [28]
introduced a Halpern-type relaxed CQ algorithm such that the strong convergence is guaranteed.
Some relaxed algorithms have been proposed to solve the SFP (Equation (1)) (see [29–31]).

Inspired and motivated by the works mentioned above, for solving the SFP (Equation (1)) in real
Hilbert spaces, we use the dual variable to propose a new relaxed CQ iterative algorithm:

tn = un − µn A∗(I − PQn)Aun,

en+1 = (I − PCn)(tn + (1− λ)en),

un+1 = tn − λen+1,

(17)

where e0 and u0 ∈ H1 are arbitrarily chosen, 0 < λ ≤ 1 and 0 < µn ≤ 2
‖A‖2 . Taking λ = 1, the

proposed algorithm in Equation (17) becomes the relaxed CQ algorithm in Equation (16) (Xu [27]).
Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Proposed
two relaxed CQ iterative algorithms which only involve orthogonal projections onto half-spaces, so
that the algorithms are implementable. Under suitable conditions, global weak and strong convergence
of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the
effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of
Xu and some others.

The rest of this paper is organized as follows. In the next section, some necessary concepts and
important facts are collected. The weak convergence theorem of the proposed algorithm is established
in Section 3. In Section 4, we modify the proposed algorithm by viscosity method so that it has strong
convergence result. Finally, we give some numerical experiments to illustrate the efficiency of the
proposed iterative methods.

2. Preliminaries

In this paper, we use→ and ⇀ to denote the strong convergence and weak convergence,
respectively. We use ωw(un) = {u : ∃unj ⇀ u} to stand for the weak ω-limit set of {un}.

Definition 1. A mapping S : H → H is said to be nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖

for all u, v ∈ H.
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Definition 2. A mapping S : H → H is said to be firmly nonexpansive if 2S − I is nonexpansive or,
equivalently,

〈u− v, Su− Sv〉 ≥ ‖Su− Sv‖2

for all u, v ∈ H.

Alternatively, a mapping S : H → H is firmly nonexpansive if and only if S can be expressed as

S =
1
2
(I + U),

where I denotes the identity mapping on H and U : H → H is a nonexpansive mapping.

Definition 3. A mapping h : H → H is said to be ρ-contraction if there exists a constant ρ ∈ [0, 1) such that

‖h(u)− h(v)‖ ≤ ρ‖u− v‖

for all u, v ∈ H.

Definition 4. A mapping h : C → H is said to be η-strongly monotone if there exists a positive constant η

such that
〈h(u)− h(v), u− v〉 ≥ η‖u− v‖2

for all u, v ∈ C.

It is obvious that, if h is a ρ-contraction, then I − h is a (1-ρ)-strongly monotone mapping. Recall
the variational inequality problem [32] is to find a point u∗ ∈ C such that

〈Fu∗, u− u∗〉 ≥ 0

for all u ∈ C, where C is a nonempty closed convex subset of H and F : C → H is a nonlinear operator.
It is well known that [33] if F : C → H is a Lipschitzian and strongly monotone operator, then the
above variational inequality problem has a unique solution.

Definition 5. A mapping S : H → H is said to be α-inverse strongly monotone (α-ism) if there exists a positive
constant α such that

〈u− v, Su− Sv〉 ≥ α‖Su− Sv‖2

for all u, v ∈ H.

Recall that the metric (nearest point) projection from H onto a nonempty closed convex subset C
of H, denoted by PC, is defined as follows: for each u ∈ H,

PC(u) = arg min
v∈C
{‖u− v‖}.

Then, PC is characterized by the inequality (for u ∈ H)

〈u− PCu, z− PCu〉 ≤ 0, ∀z ∈ C.

It is well known that PC and I − PC are firmly nonexpansive and 1-ism.

Definition 6. A function h : H → R is said to be weakly lower semi-continuous (w-lsc) at u if un ⇀ u implies

h(u) ≤ lim inf
n→∞

h(un).
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Lemma 1. [34] Let K be a nonempty closed convex subset of real Hilbert space H. Let {un} be a sequence
which satisfies the following properties:

(a) every weak limit point of {un} lies in K; and
(b) limn→∞ ‖un − u‖ exists for every u ∈ K.

Then, {un} converges weakly to a point in K.

Lemma 2. [35] Assume that {sn} is a sequence of nonnegative real numbers such that{
sn+1 ≤ (1− λn)sn + λnδn,

sn+1 ≤ sn − ηn + µn,

for each n ≥ 0, where {λn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers and {δn}
and {µn} are two sequences in R such that:

(a) Σ∞
n=1λn = ∞;

(b) limn→∞ µn = 0; and
(c) liml→∞ ηnl = 0 implies lim supl→∞ δnl ≤ 0 for any subsequence {nl} ⊂ {n}.

Then, limn→∞ sn = 0.

Lemma 3. [36] Let H be a real Hilbert space. Then, for all t ∈ [0, 1] and u, v ∈ H,

‖tu + (1− t)v‖2 = t‖u‖2 + (1− t)‖v‖2 − t(1− t)‖u− v‖2.

3. Weak Convergence Theorems

The CQ algorithm in Equation (2) involves two projections PC and PQ and hence might be hard to
be implemented in the case where one of them fails to have a closed-form expression. Now, we use
the dual variable to propose a new relaxed CQ algorithm for solving the SFP (Equation (1)) where
the closed convex subsets C and Q are level sets of convex functions. We just need projections onto
half-spaces, thus the algorithm is implementable in this case.

Let
C = {u ∈ H1 : c(u) ≤ 0}, Q = {v ∈ H2 : q(v) ≤ 0}, (18)

where c : H1 → R and q : H2 → R are convex and lower semi-continuous functions. We assume that c
and q are subdifferentiable on H1 and H2, respectively. Namely, the subdifferentials,

∂c(u) = {z ∈ H1 : c(x) ≥ c(u) + 〈x− u, z〉, x ∈ H1} 6= ∅

for all u ∈ C and

∂q(v) = {w ∈ H2 : q(y) ≥ q(v) + 〈y− v, w〉, y ∈ H2} 6= ∅

for all v ∈ Q. We also assume that ∂c and ∂q are bounded operators (i.e., bounded on bounded sets).
In this paper, we solve the SFP (Equation (1)) under the above assumptions. We note that every
convex function defined on a finite-dimensional Hilbert space is subdifferentible and its subdifferential
operator is a bounded operator.

Set
Cn = {u ∈ H1 : c(un) + 〈ξn, u− un〉 ≤ 0}, (19)

where ξn ∈ ∂c(un), and

Qn = {v ∈ H2 : q(Aun) + 〈ηn, v− Aun〉 ≤ 0}, (20)
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where ηn ∈ ∂q(Aun). Obviously, Cn and Qn are half-spaces and it is easy to verify the C ⊆ Cn and
Q ⊆ Qn for every n ≥ 0 from the subdifferentiable inequality.

Algorithm 1. Let u0, e0 ∈ H1 be arbitrary. For n ≥ 1, let
tn = un − µn A∗(I − PQn)Aun,

en+1 = (I − PCn)(tn + (1− λ)en),

un+1 = tn − λen+1,

(21)

where 0 < λ ≤ 1, 0 < µn ≤ 2
‖A‖2 .

Theorem 1. Suppose 0 < λ ≤ 1 and 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 2
‖A‖2 . Let {(en, un)} be

the sequence generated by Algorithm 1, then the sequence {un} converges weakly to a point u∗ ∈ Φ and the
sequence {(en, un)} weakly converges to the point (0, u∗).

Proof. First, we show that limn→∞ ‖un − u‖ exists for any u ∈ Φ. Taking u ∈ Φ, we have u ∈ C ⊆ Cn

and Au ∈ Q ⊆ Qn for all n ∈ N. We know that I − PCn and I − PQn are 1-ism for all n ∈ N. Thus, from
Algorithm 1, we have

‖en+1‖2 = ‖(I − PCn)(tn + (1− λ)en)‖2

= ‖(I − PCn)(tn + (1− λ)en)− (I − PCn)u‖
2

≤ 〈en+1, tn − u + (1− λ)en〉
= 〈en+1, tn − u〉+ (1− λ)〈en, en+1〉

(22)

and
‖un+1 − u‖2 = ‖tn − λen+1 − u‖2

= ‖tn − u‖2 − 2λ〈tn − u, en+1〉+ λ2‖en+1‖2.
(23)

Thus, from Equations (22) and (23), we have

‖un+1 − u‖2 + λ‖en+1‖2

=‖tn − u‖2 − 2λ〈tn − u, en+1〉+ λ2‖en+1‖2 + λ‖en+1‖2

≤‖tn − u‖2 + 2λ(1− λ)〈en, en+1〉 − λ(1− λ)‖en+1‖2

=‖tn − u‖2 + λ(1− λ)(2〈en, en+1〉 − ‖en+1‖2).

(24)

Since
2〈en, en+1〉 − ‖en+1‖2 = ‖en‖2 − ‖en+1 − en‖2,

we obtain
‖un+1 − u‖2 + λ‖en+1‖2

≤ ‖tn − u‖2 + λ(1− λ)‖en‖2 − λ(1− λ)‖en+1 − en‖2.
(25)

It follows from
〈un − u, A∗(I − PQn)Aun〉

= 〈Aun − Au, (I − PQn)Aun〉
= 〈Aun − Au, (I − PQn)Aun − (I − PQn)Au〉
≥ ‖(I − PQn)Aun − (I − PQn)Au‖2

= ‖(I − PQn)Aun‖2

(26)
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that
‖tn − u‖2

= ‖un − µn A∗(I − PQn)Aun − u‖2

= ‖un − u‖2 − 2µn〈un − u, A∗(I − PQn)Aun〉+ µ2
n‖A‖2‖(I − PQn)Aun‖2

≤ ‖un − u‖2 − 2µn‖(I − PQn)Aun‖2 + µ2
n‖A‖2‖(I − PQn)Aun‖2

= ‖un − u‖2 − µn(2− µn‖A‖2)‖(I − PQn)Aun‖2.

(27)

By Equations (25) and (27), we obtain

‖un+1 − u‖2 + λ‖en+1‖2

≤ ‖un − u‖2 − µn(2− µn‖A‖2)‖(I − PQn)Aun‖2

+ λ(1− λ)‖en‖2 − λ(1− λ)‖en+1 − en‖2

= ‖un − u‖2 + λ‖en‖2 − λ2‖en‖2 − λ(1− λ)‖en+1 − en‖2

− µn(2− µn‖A‖2)‖(I − PQn)Aun‖2.

(28)

Let sn = ‖un − u‖2 + λ‖en‖2, then the sequence {sn} is lower bounded. By the assumptions
on {µn} and λ, from Equation (28) we can get sn+1 ≤ sn, which implies that the sequence {sn} is
non-increasing and thus limn→∞ sn exists. Thus, it follows that {sn} is bounded and hence {un} is
bounded.

Moreover, from Equation (28), we also have

λ2‖en‖2 + λ(1− λ)‖en+1 − en‖2 + µn(2− µn‖A‖2)‖(I − PQn)Aun‖2 ≤ sn − sn+1,

which implies that
lim

n→∞
‖(I − PQn)Aun‖ = 0 (29)

and
lim

n→∞
‖en‖ = 0. (30)

Thus, limn→∞ ‖un − u‖2 = limn→∞(sn − λ‖en‖2) = limn→∞ sn exists.
Next, we prove ωω(un) ⊆ Φ. From Algorithm 1, we have

‖un − tn‖ = µn‖A∗(I − PQn)Aun‖ (31)

and
‖un+1 − tn‖ = ‖ − λen+1‖. (32)

Combining Equations (29) and (30), we get

lim
n→∞

‖un − tn‖ = lim
n→∞

‖un+1 − tn‖ = 0. (33)

It follows from Algorithm 1 that

un+1 = tn − λen+1 = tn − λ(I − PCn)(tn + (1− λ)en)

= tn − λ
(
tn + (1− λ)en − PCn(tn + (1− λ)en)

)
= (1− λ)tn − λ(1− λ)en + λPCn(tn + (1− λ)en),

(34)

which implies that

PCn(tn + (1− λ)en) =
1
λ

un+1 −
1− λ

λ
tn + (1− λ)en. (35)
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Let zn+1 = 1
λ un+1 − 1−λ

λ tn + (1− λ)en, then zn+1 ∈ Cn. Since ∂c is bounded on bounded sets,
there exists a constant ξ > 0 such that ‖ξn‖ ≤ ξ for all n ∈ N. It follows that

c(un) ≤ −〈ξn, un+1 − un〉 ≤ −〈ξn,
1
λ

un+1 −
1− λ

λ
tn + (1− λ)en − un〉

= −〈ξn,
1
λ

un+1 −
1
λ

tn + tn + (1− λ)en − un〉

≤ ξ(‖ 1
λ
(un+1 − tn)‖+ ‖tn − un‖+ ‖(1− λ)en‖).

(36)

By Equations (30), (33) and (36), we have

lim sup
n→∞

c(un) ≤ 0. (37)

Assume that û ∈ ωw(un), i.e., there exists a subsequence {unj} of {un} such that unj ⇀ û as
j→ ∞. By the weak lower semicontinuity of c and Equation (37), we have

c(û) ≤ lim inf
j→∞

c(unj) ≤ 0. (38)

Therefore, û ∈ C.
Now, we show that Aû ∈ Q. Since ηn ∈ ∂q(Aun), so we have ‖ηn‖ ≤ η for all n ∈ N. It follows

from PQn Aun ∈ Qn that
q(Aun) + 〈ηn, PQn Aun − Aun〉 ≤ 0, (39)

which implies that
q(Aun) ≤ 〈ηn, Aun − PQn Aun〉 ≤ η‖Aun − PQn Aun‖. (40)

It follows from Equation (28), the weak lower semicontinuity of q and the fact that Aunj ⇀ Aû
that

q(Aû) ≤ lim inf
j→∞

q(Aunj) ≤ 0. (41)

Namely, Aû ∈ Q.
Thus, û ∈ Φ, hence ωw(un) ⊆ Φ. By Lemma 1, we have un ⇀ u∗ and the sequence {(en, un)}

weakly converges to the point (0, u∗), where u∗ ∈ Φ. This completes the proof.

Remark 1. When λ = 1, Algorithm 1 becomes the relaxed CQ algorithm in Equation (16) proposed by Xu [27]
for solving the SFP where the closed convex subsets C and Q are level sets of convex functions. Thus, Theorem 1
extends the related results of Xu [27] for solving the SFP (Equation (1)).

4. Strong Convergence Theorems

In this section, we modify the proposed Algorithm 1 to show that the algorithm has strong
convergence. It is known that the viscosity approximation method is often used to approximate a fixed
point of a nonexpansive mapping U in Hilbert spaces with the strong convergence, which it is defined
as follows [37]:

un+1 = βnh(un) + (1− βn)U(un)

for each n ≥ 1, where {βn} ⊆ [0, 1] and h is a contractive mapping. Now, we adapt the viscosity
approximation method to get the strong convergence result for solving the SFP (Equation (1)) where
the closed convex subsets C and Q are given in Equation (18).

Algorithm 2. Let h : H1 → H1 be a ρ-contraction mapping and Cn and Qn given in Equations (19) and (20),
respectively. Let u0, e0 ∈ H1 be arbitrary. For n ≥ 0, let
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

tn = un − µn A∗(I − PQn)Aun,

en = (I − PCn)(tn + (1− λ)en),

un = tn − λen,

en+1 = βnh(en) + (1− βn)en,

un+1 = βnh(un) + (1− βn)un,

where 0 < λ ≤ 1, 0 < µn ≤ 2
‖A‖2 and {βn} ⊂ [0, 1].

Theorem 2. Assume that {βn}, {µn}, λ and ρ satisfy the following assumptions:

(i) limn→∞ βn = 0 and ∑∞
n=0 βn = ∞;

(ii) 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 2
‖A‖2 ; and

(iii) 0 ≤ ρ < 1√
2

and 0 < λ < 1.

Then, the sequence (en, un) generated by Algorithm 2 strongly converges to (0, u∗), where u∗ ∈ Φ and u∗

solves the following variational inequality problem:

〈(I − h)u∗, u− u∗〉 ≥ 0 (42)

for any u ∈ Φ.

Proof. Let u∗ ∈ Φ be unique solution of the variational inequality problem (42). Then, u∗ ∈ C ⊂ Cn

and Au∗ ∈ Q ⊂ Qn for all n ≥ 0. It follows from Equation (28) that

‖un − u∗‖2 + λ‖en‖2

≤‖un − u∗‖2 + λ‖en‖2 − µn(2− µn‖A‖2)‖(I − PQn)Aun‖2 − λ2‖en‖2

− λ(1− λ)‖en − en‖2.

(43)

In particular, we have

‖un − u∗‖2 + λ‖en‖2 ≤ ‖un − u∗‖2 + λ‖en‖2. (44)

From Algorithm 2, we get

‖un+1 − u∗‖2 + λ‖en+1‖2

=‖βnh(un) + (1− βn)un − u∗‖2 + λ‖βnh(en) + (1− βn)en‖2

≤βn‖h(un)− u∗‖2 + (1− βn)‖un − u∗‖2 + λ
(

βn‖h(en)‖2 + (1− βn)‖en‖2)
≤2βn

(
‖h(un)− h(u∗)‖2 + ‖h(u∗)− u∗‖2)+ (1− βn)‖un − u∗‖2

+ λ[2βn
(
‖h(en)− h(0)‖2 + ‖h(0)‖2)+ (1− βn)‖en‖2]

≤2βnρ2‖un − u∗‖2 + 2βn‖h(u∗)− u∗‖2 + (1− βn)‖un − u∗‖2

+ 2λβnρ2‖en‖2 + 2λβn‖h(0)‖2 + λ(1− βn)‖en‖2

=(1− βn)(‖un − u∗‖2 + λ‖en‖2) + 2βnρ2(‖un − u∗‖2 + λ‖en‖2)

+ 2βn(‖h(u∗)− u∗‖2 + λ‖h(0)‖2)

≤(1− βn)(‖un − u∗‖2 + λ‖en‖2) + 2βnρ2(‖un − u∗‖2 + λ‖en‖2)

+ 2βn(‖h(u∗)− u∗‖2 + λ‖h(0)‖2)

=[1− βn(1− 2ρ2)](‖un − u∗‖2 + λ‖en‖2)

+ βn(1− 2ρ2)
2

1− 2ρ2 (‖h(u
∗)− u∗‖2 + λ‖h(0)‖2).

(45)
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Setting sn = ‖un − u∗‖2 + λ‖en‖2, we have

sn+1 ≤ [1− βn(1− 2ρ2)]sn + βn(1− 2ρ2)
2

1− 2ρ2 (‖h(u
∗)− u∗‖2 + λ‖h(0)‖2). (46)

It follows from induction that

sn ≤ max
{

s0,
2

1− 2ρ2 (‖h(u
∗)− u∗‖2 + λ‖h(0)‖2)

}
for each n ≥ 0, which implies that {un} and {en} are bounded. In addition, {un}, {en}, {h(un)} and
{h(en)} are bounded. It follows from Algorithm 2 that

‖un+1 − u∗‖2 + λ‖en+1‖2

=‖βnh(un) + (1− βn)un − u∗‖2 + λ‖βnh(en) + (1− βn)en‖2

=β2
n‖h(un)− u∗‖2 + 2βn(1− βn)〈h(un)− u∗, un − u∗〉+ (1− βn)

2‖un − u∗‖2

+ λ
(

β2
n‖h(en)‖2 + 2βn(1− βn)〈h(en), en〉+ (1− βn)

2‖en‖2)
=β2

n‖h(un)− u∗‖2 + (1− βn)
2‖un − u∗‖2 + λβ2

n‖h(en)‖2 + λ(1− βn)
2‖en‖2

+ 2βn(1− βn)
(
〈h(un)− h(u∗), un − u∗〉+ 〈h(u∗)− u∗, un − u∗〉

)
+ 2λβn(1− βn)(〈h(en)− h(0), en〉+ 〈h(0), en〉)
≤β2

n‖h(un)− u∗‖2 + (1− βn)
2‖un − u∗‖2 + λβ2

n‖h(en)‖2 + λ(1− βn)
2‖en‖2

+ βn(1− βn)(‖h(un)− h(u∗)‖2 + ‖un − u∗‖2)

+ 2βn(1− βn)〈h(u∗)− u∗, un − u∗〉
+ λβn(1− βn)(‖h(en)− h(0)‖2 + ‖en‖2) + 2λβn(1− βn)〈h(0), en〉
≤β2

n‖h(un)− u∗‖2 + (1− βn)‖un − u∗‖2 + λβ2
n‖h(en)‖2 + λ(1− βn)‖en‖2

+ βn(1− βn)ρ
2‖un − u∗‖2 + 2βn(1− βn)〈h(u∗)− u∗, un − u∗〉

+ λβn(1− βn)ρ
2‖en‖2 + 2λβn(1− βn)〈h(0), en〉.

(47)

Thus, by Equations (44) and (47), we have

sn+1 ≤[1− βn(1− (1− βn)ρ
2)]sn + βn[βn(‖h(un)− u∗‖2 + λ‖h(en)‖2)

+ 2(1− βn)
(
〈h(u∗)− u∗, un − u∗〉+ λ〈h(0), en〉

)
]

=(1− λn)sn + λnδn,

(48)

where
λn = βn(1− (1− βn)ρ

2)

and

δn =
2(1− βn)(〈h(u∗)− u∗, un − u∗〉+ λ〈h(0), en〉)

1− (1− βn)ρ2

+
βn(‖h(un)− u∗‖2 + λ‖h(en)‖2)

1− (1− βn)ρ2 .
(49)

On the other hand, from Equations (43) and (47), we have
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sn+1

≤[1− βn(1− (1− βn)ρ
2)]sn + β2

n(‖h(un)− u∗‖2 + λ‖h(en)‖2)

+ 2βn(1− βn)(〈h(u∗)− u∗, un − u∗〉+ λ〈h(0), en〉)
− (1− βn)

[
µn(2− µn‖A‖2)‖(I − PQn)Aun‖2 + λ2‖en‖2 + λ(1− λ)‖en − en‖2]

≤sn + β2
n(‖h(un)− u∗‖2 + λ‖h(en)‖2)

+ 2βn(1− βn)(〈h(u∗)− u∗, un − u∗〉+ λ〈h(0), en〉)
− (1− βn)

[
µn(2− µn‖A‖2)‖(I − PQn)Aun‖2 + λ2‖en‖2 + λ(1− λ)‖en − en‖2].

(50)

Now, by setting

an =β2
n(‖h(un)− u∗‖2 + λ‖h(en)‖2) + 2βn(1− βn)(〈h(u∗)− u∗, un − u∗〉+ λ〈h(0), en〉)

and
ηn = (1− βn)

[
µn(2− µn‖A‖2)‖(I − PQn)Aun‖2 + λ2‖en‖2 + λ(1− λ)‖en − en‖2],

Equation (50) can be rewritten in the following form:

sn+1 ≤ sn − ηn + an (51)

for each n ≥ 0. By the assumptions on {βn} and ρ, we have

∞

∑
k=0

λn = ∞, lim
n→∞

an = 0.

To use Lemma 2, it suffices to verify that, for any subsequence{nl} ⊂ {n}, liml→∞ ηnl = 0 implies

lim sup
l→∞

δnl ≤ 0. (52)

Since liml→∞ ηnl = 0, from the assumptions on λ and {µn}, we obtain

lim
l→∞
‖(I − PQnl

)Aunl‖ = lim
l→∞
‖enl‖ = lim

l→∞
‖enl‖ = 0. (53)

From
‖unl − unl‖ = ‖unl − unl + µnl A∗(I − PQnl

)Aunl + λenl‖

= ‖µnl A∗(I − PQnl
)Aunl + λenl‖

≤ µnl‖A‖‖(I − PQnl
)Aunl‖+ λ‖enl‖,

we obtain
lim
l→∞
‖unl − unl‖ = 0. (54)

In a similar way to the proof of Theorem 1, we can get ωw(unl ) ⊆ Φ. Since

lim
l→∞

(1− (1− βnl )ρ
2) = 1− ρ2

and
lim
l→∞

βnl (‖h(unl )− u∗‖2 + λ‖h(enl )‖
2) = 0,

to get Equation (52), we only need to verify

lim sup
l→∞

(〈h(u∗)− u∗, unl − u∗〉+ λ〈h(0), enl 〉) ≤ 0.
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From Equation (54), we can take subsequence {(enlj
, unlj

)} of {(enl , unl )} such that unlj
⇀ ũ as

j→ ∞ and
lim sup

l→∞
(〈h(u∗)− u∗, unl − u∗〉+ λ〈h(0), enl 〉)

= lim
j→∞

(〈h(u∗)− u∗, unlj
− u∗〉+ λ〈h(0), enlj

〉)

= lim
j→∞
〈h(u∗)− u∗, unlj

− u∗〉

= 〈h(u∗)− u∗, ũ− u∗〉.

(55)

Since ωw(unl ) ⊂ Φ and u∗ is a solution of the variational inequality problem in Equation (42), it
follows from Equation (55) that

lim sup
l→∞

(〈h(u∗)− u∗, unl − u∗〉+ λ〈h(0), enl 〉) ≤ 0.

Thus, it follows from Lemma 2 that

lim
n→∞

sn = lim
n→∞

(‖un − u∗‖2 + λ‖en‖2) = 0,

which implies that un → u∗, en → 0 and (en, un)→ (0, u∗), where u∗ ∈ Φ and u∗ solves the variational
inequality problem in Equation (42). This completes the proof.

5. Numerical Results

In this section, we provide some numerical experiments and show the performance of the
proposed modified relaxed CQ iterative Algorithm 1 for solving the SFP (Equation (1)) where the
closed convex subsets C and Q are level sets of convex functions. All codes were written in MATLAB
and were performed on a personal Lenovo computer with Pentium(R) Dual-Core CPU @ 2.4GHz and
RAM 2.00 GB.

Example 1. We consider the SFP (Equation (1)) as follows: H1 = H2 = R2, the matrix A = (ai,j)N×N
and ai,j ∈ (0, 1) are generated randomly, the nonempty closed convex set C = {u ∈ R2| c(u) ≤ 0} and
Q = {v ∈ R2| q(v) ≤ 0}, where

c(u) = −u1 + u2
2

and
q(v) = v1 + v2

2

for all u = (u1, u2)
T ∈ R2 and v = (v1, v2)

T ∈ R2.

Now, we compare the proposed modified relaxed CQ Algorithm 1 with the relaxed CQ algorithm
in Equation (16) proposed by Xu [27] to solve Example 1. In the implementation, we took µn = 1.55

‖A‖2

and p(un) < ε = 10−4 as the stopping criterion, where

p(un) = ‖un − PCn un‖+ ‖Aun − PQn Aun‖.

We took different u0 and e0 as initial points. In Case 1, we took u0 = (5,−4)T and e0 = (0,−1)T .
In Case 2, we took u0 = (−10, 4)T and e0 = (−2, 10)T .

We tried different values of λ for solving this example. When the parameter λ = 1, Algorithm 1
becomes the relaxed CQ algorithm in Equation (34). We report the numerical results in Tables 1 and 2.
In the tables, “Iter.” denotes the terminating iterative numbers, and C(u) and Q(Au) denote the value
of c(u) and q(Au) at the terminal point, respectively.
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Table 1. Numerical results for solving Example 1 with different λ.

u0 = (5,−4)T , e0 = (0,−1)T

λ Iter. C(u) Q(Au)

1 7 1.4363× 10−7 −2.7797× 10−4

0.9 5 −0.1930 −0.0082
0.8 6 −0.1940 −0.1720
0.7 6 −0.3159 −0.2697
0.6 6 −0.3916 −0.3400
0.5 6 −0.4044 −0.3793
0.4 6 −0.4158 −0.3316
0.3 8 −0.1115 −0.7977
0.2 7 −0.4482 −0.1027
0.1 10 −0.3799 −0.3628

Table 2. Numerical results for solving Example 1 with different λ.

u0 = (−10, 4)T , e0 = (−2, 10)T

λ Iter. C(u) Q(Au)

1 9 9.4358× 10−7 −0.7504
0.9 7 −0.1351 −0.7958
0.8 4 −0.2007 −0.8981
0.7 8 −0.1166 −0.8570
0.6 6 −0.3025 −0.8072
0.5 7 −0.1696 −0.4115
0.4 9 −0.0020 −1.0547
0.3 11 −0.0030 −1.0185
0.2 8 −0.4556 −0.2518
0.1 11 −0.5349 −0.4600

Example 2. Let H1 = H2 = R3, A = (ai,j)N×N and ai,j ∈ (0, 1) are generated randomly, the nonempty
closed convex set C = {u ∈ R3| c(u) ≤ 0} and Q = {v ∈ R3| q(v) ≤ 0}, where

c(u) = −u1 + u2
2 + u2

3

and
q(v) = v1 + v2

2 + v2
3

for all u = (u1, u2, u3)
T ∈ R3 and v = (v1, v2, v3)

T ∈ R3.

Similar to Example 1, we compared the proposed modified relaxed CQ Algorithm 1 with the
relaxed CQ algorithm in Equation (34) proposed by Xu [27] to solve this example. We took µn = 1.55

‖A‖2

and the same stopping criterion as in Example 1. We took different u0 and e0 as initial points. The
numerical results are given in Tables 3 and 4.
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Table 3. Numerical results for solving Example 2 with different λ.

u0 = (5,−4, 3)T , e0 = (0, 1,−1)T

λ Iter. C(u) Q(Au)

1 13 2.7532× 10−9 1.2270× 10−4

0.9 9 −0.0094 −6.6177× 10−5

0.8 7 −0.0954 −0.0055
0.7 7 −0.0228 −0.0247
0.6 8 −0.4571 −0.0030
0.5 8 −0.6276 −0.0322
0.4 9 −0.8269 −0.0114
0.3 10 −0.9781 −0.0132
0.2 11 −1.1005 −0.0017
0.1 16 −1.1647 −0.0139

Table 4. Numerical results for solving Example 2 with different λ.

u0 = (−2, 1, 15)T , e0 = (3,−2, 1)T

λ Iter. C(u) Q(Au)

1 9 6.8996× 10−7 −1.0408
0.9 8 −0.0250 −1.0249
0.8 7 −0.0369 −0.9827
0.7 7 −0.3059 −0.8919
0.6 9 −0.1699 −0.9188
0.5 10 −0.2647 −0.8608
0.4 9 −0.1480 −0.9394
0.3 10 −0.0890 −0.9616
0.2 10 −0.3267 −0.8054
0.1 12 −0.2652 −0.8550

We can see in Tables 1–4 that Algorithm 1 was efficient and behaved better than the relaxed CQ
algorithm in Equation (34) when choosing a suitable parameter λ for solving Examples 1 and 2.
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